Plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

DAEM - MERPMEDER

Tome 0 Résumé Exécutif

Rapport Final Aout 2015

RAPPORT FINAL

Plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

Tome 0 – Résumé Exécutif

Références du contrat : DAEM : 206/MEF/MERPMEDER/DNCMP/SP

IED: 2014/007

Client IDA

Consultant IED Innovation Energie Développement

2 chemin de la Chauderaie 69340 Francheville, France Tel: +33 (0)4 72 59 13 20

Fax: +33 (0)4 72 59 13 39

Site web: www.ied-sa.fr

Rédaction du document

	VERSION 1	VERSION 2	VERSION 3
Date	Avril 2015	Aout 2015	
Rédaction	CA/PS/HP	CA/PS/HP	
Relecture	CA/PS/HP	CA/PS/HP	
Validation	HP	HP	

Ce rapport a été rédigé par IED dans le cadre du contrat Elaboration du plan directeur de développement du sous-secteur de l'énergie électrique au Bénin à parti des informations collectées au cours des missions effectuées au Bénin et des échanges avec les personnes rencontrées. Il ne reflète pas nécessairement les opinions de la Banque Mondiale , du Ministère de l'Energie du Bénin, de la SBEE, de l'ABERME.

PLAN DIRECTEUR DE DEVELOPPEMENT DU SOUS-SECTEUR DE L'ENERGIE ELECTRIQUE AU BENIN

LISTE DES TOMES:

TOME 0: RESUME EXECUTIF

TOME 1: SCENARIOS DE DEMANDE

TOME 2: PLAN D'EXPANSION DES MOYENS DE PRODUCTION

TOME 3: DEVELOPPEMENT DU RESEAU

TOME 4: ELECTRIFICATION RURALE

TOME 5: ANALYSES FINANCIERES

TOME 6: PLAN D'ACTION

TOME 0 – TABLE DES MATIERES

1	SITUATION ACTUELLE AU BENIN	5
2	Scenarios de Demande	6
2.1	Bénin	6
2.2	Togo	7
3	PLAN D'EXPANSION DES MOYENS DE PRODUCTION	7
3.1	Hypothèses principales et méthodes de calcul	7
3.2	Résultats pour la période 2015 – 2019	9
3.3	Résultats pour la période 2020 – 2035	9
4	RESEAU DE TRANSPORT	12
4.1	Situation actuelle, travaux en cours et envisagés	12
4.2	Résultats concernant le développement des réseaux et la stabilité dynamique	12
4.2.1	Développement du réseau de transport de la CEB	13
4.2.2	Développement du réseau de transport de la SBEE	14
4.2.3	Stabilité dynamique	14
5	ELECTRIFICATION RURALE	15
6	ANALYSES FINANCIERES	16
6.1	Approche et hypothèses principales	16
6.2	Tarifs de la CEB	18
6.3	Tarifs pour le Bénin	19
7	PLAN DE MISE EN ŒUVRE	21

Liste des acronymes

CEB Communauté électrique du Bénin

DAO Dossier d'Appel d'OffreGNL Gaz Naturel Liquéfié

HFO Heavy Fuel Oil (Fioul luord)MMBTU Million British Thermal Unit

MPC Million Pieds Cube
MT Moyenne Tension

MW MégaWatt

O&M Opération et Maintenance PIB Produit Intérieur Brut

PV PhotoVoltaique

SBEE Société Béninoise d'Energie Electrique

TAG Turbine à Gaz

TCN Transport Company of Nigeria

VRA Volta River Authority

WASP Wien Automatic System Package

1 Situation actuelle au Bénin

La situation actuelle dans le secteur de l'électricité du Bénin est loin d'être satisfaisante.

Actuellement, environ 50% des localités au Bénin sont raccordées au réseau de la SBEE. Mais c'est uniquement dans les grandes villes qu'un pourcentage élevée des ménages est raccordé au réseau (presque 100% à Cotonou). Dans les moyennes et petites localités, le pourcentage est en général faible. Il est estimé qu'en moyenne seul 35% des ménages dans les localités raccordées au réseau de la SBEE sont branchés. Par rapport au nombre total de ménages au Bénin, le nombre d'abonnés se traduit en taux d'électrification d'environ 20%.

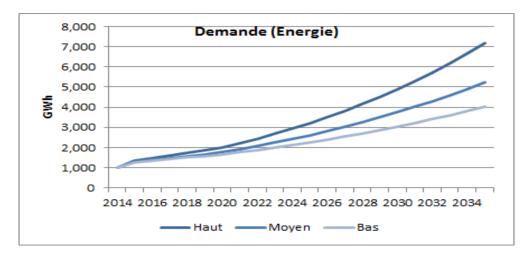
L'approvisionnement électrique du Bénin est aujourd'hui plus fragile que jamais. Le potentiel de production et d'importations et des problèmes au niveau du réseau de transport ne permettent pas de satisfaire la demande des abonnés existants. Des délestages sont fréquents et parfois de longue durée.

Les coûts de production souffrent du manque de gaz. Le gazoduc qui alimente le Bénin, le Togo et le Ghana du gaz de provenance du Nigéria a une capacité de 200 MPC/jour mais le fournisseur N-Gas au Nigéria ne peut pas livrer les quantités contractuelles de 134 MPC/jour. Seul 10 MPC/jour sont au total disponible pour le Bénin et le Togo, ayant pour conséquence que des centrales qui étaient prévues de fonctionner au gaz tournent au fioul lourd (ContourGlobal) ou au Jet A1 (CAI), deux combustibles qui sont nettement plus coûteux.

Les objectifs de la présente étude sont :

- (a) de développer des plans d'expansion des sources d'approvisionnement en énergie électrique qui satisfont la demande au moindre coût économique ;
- (b) de déterminer les investissements en réseau de transport qui sont nécessaires pour transporter l'énergie des sites de production aux consommateurs ;
- (c) de déterminer l'impact des plans sur le tarif au Bénin.

Tenant compte que des paramètres importants qui déterminent le futur parc de production et le réseau de transport ne sont pas connus, le Plan Directeur a été préparé pour trois scénarios de demande, chacun basé sur un programme d'électrification ambitieux, et plusieurs hypothèses concernant la disponibilité de gaz, les coûts des combustibles, les prix des importations et les prix d'achat auprès des producteurs indépendants (IPP).


Le Consultant considère que le Plan Directeur du Bénin ne peut faire abstraction du territoire de la CEB dans son ensemble même si certaines problématiques ne seront approfondies que pour le Bénin. Ce point de vue résulte de l'imbrication des réseaux de transport des pays concernés, du partage de certaines unités de production et de l'exploitation du système de production et transport par un organisme commun. De plus la vision prospective encourage à poursuivre cette intégration pour des raisons technico-économiques dues aux économies d'échelle inhérentes aux systèmes électriques et parce qu'elle constitue un embryon du marché de l'électricité de l'Afrique de l'Ouest promu par le WAPP et encouragé par les bailleurs de fonds internationaux.

2 Scénarios de Demande

2.1 Bénin

Le Graphique 1 montre les projections de la demande d'énergie à satisfaire par le réseau interconnecté du Bénin dans la période 2015 – 2035 (les données de 2014 reflètent l'estimation des ventes en 2014).

Graphique 1 Scénarios d'évolution de la demande d'énergie électrique au Bénin

Dans le Scénario Haut, la demande augmente en moyenne de 9,3% par an entre 2015 et 2035 ; Scénario Moyen 7,7% ; Scénario Faible 6,3%. Ces taux n'incluent pas la demande des cimenteries de SCB Lafarge et de NOCIBE qui sont alimentées par la CEB.

La pointe annuelle, qui était en 2014 d'environ 200 MW, atteint dans le Scénario Haut 1402 MW en 2035 ; 1014 MW dans le Scénario Moyen et 768 MW dans le Scénario Faible.

Les déterminantes principales de la demande sont le taux d'accroissement de la population (en moyenne 3,3% par an dans la période 2015 – 2035), le taux de croissance du PIB réel et la politique d'électrification. La croissance moyenne du PIB réel est de 6,5% par an dans le dans le Scénario Haut, de 5,4% par an dans le Scénario Moyen et de 4,5% par an dans le Scénario Faible.

Le programme d'électrification sous forme de raccordement des localités au réseau interconnecté est ambitieux dans chacun des scénarios. Actuellement, environ 50% des localités au Bénin sont raccordées au réseau. En 2035, le taux est de 92% dans le Scénario Haut, de 86% dans le Scénario Moyen et de 79% dans le Scénario Faible.

La politique d'expansion de l'électrification se reflète aussi dans les hypothèses concernant le développement du taux d'électrification étendu¹ dans les localités qui sont déjà raccordées au réseau (densification). Le taux est actuellement de l'ordre de 47%. Il est en 2035 de 93% dans le Scénario Haut, de 84% dans le Scénario Moyen et de 71% dans le Scénario Faible.

6

¹ Le taux d'électrification étendu est la relation entre le nombre d'abonnés BT et le nombre de ménages. L'application de la définition standard du taux d'électrification – nombre d'abonnés ménages divisé par le nombre total de ménages – n'était pas possible parce que les statistiques de la SBEE n'ont pas permis de séparer les abonnés ménages des abonnés BT.

2.2 Togo

Le plan d'expansion des moyens de production et le plan de développement du réseau de transport sont basés sur la demande au Bénin et au Togo. La demande du Togo a été tirée d'un fichier reçue de la CEB en Octobre 2014. Selon ce plan, la demande en énergie du Togo augmente dans la période 2015 – 2035 en moyenne de 8,2% par an dans le Scénario Haut, de 5,5% par an dans le Scénario Moyen et de 3,8% par an dans le Scénario Faible.

La pointe au Togo atteint dans le Scénario Haut 1302 MW en 2035 ; 719 MW dans le Scénario Moyen et 454 MW dans le Scénario Faible.

3 Plan d'expansion des Moyens de Production

3.1 Hypothèses principales et méthodes de calcul

La période d'étude a été segmentée en trois parties:

- Avant 2020 : A part des améliorations des conditions d'exploitation du parc de production, la marge d'action est faible en raison du peu d'opportunités réalistes à si bref délai.
- ❖ 2020 2035 : La marge d'action est plus ouverte en termes de possibilité d'installation de nouvelles centrales de production et des sources d'importation.

C'est notamment pour la période 2020 – 2035 que le parc de production a été déterminé de façon à satisfaire la demande au Togo et au Bénin **au moindre coût économique.**

Le parc de production analysé entre 2015 et 2019 comprend les centrales existantes, y compris les centrales en location, et les importations du Nigéria (TCN), du Ghana (VRA) et de la Côte d'Ivoire (CIE). Une nouvelle centrale bicombustible d'une capacité de 120 MW dont la planification est déjà au stade de l'APD est supposée être mise en service à Maria Gleta à partir de 2018. Des projets de centrales PV connectés au réseau pour un total de 140 MWc sont supposés apparaître progressivement à partir de 2017.

Les technologies candidates pour le parc de production dans la période 2020 – 2035 sont des technologies éprouvées et fiables : cycle combiné associant des turbines à gaz et à vapeur, centrales vapeur au charbon à lit fluidisé circulant, centrales basées sur des technologies diesel permettant l'utilisation de plusieurs combustibles : fuel léger, lourd ou gaz naturel. Les énergies renouvelables sont également parmi les sources potentielles de production : centrales hydroélectriques, centrales PV, centrales à biomasse. Cela s'applique aussi à l'option d'importer de l'électricité du Niger produite par une centrale à charbon. Les importations du Nigéria et du Ghana/Côte d'Ivoire continuent d'être des options d'approvisionnement en énergie électrique.

Les coûts de production des centrales qui utilisent des produits pétroliers ou du gaz naturel et les coûts d'importations du Nigéria et du Ghana/Côte d'Ivoire sont liés au prix du pétrole brut. Deux scénarios d'évolution de ce prix sont analysés :

- Le prix reste au niveau actuel de 50 65 US\$/baril durant toute la période 2015 2035.
- o Le prix actuel augmente à partir de 2017 à 100 US\$/baril en 2020 et reste ensuite à ce niveau.

Les combustibles les plus importants sont le gaz importé par le gazoduc et le charbon importé. Le coût actuel du gaz est de 11 US\$/MMBTU. Ce coût augmente à 14 US\$/MMBTU si le prix du pétrole brut atteint 100 US\$/baril. Le coût d'importation du charbon est considéré dans le modèle comme indépendant du prix du pétrole brut. Deux scénarios sont examinés : le charbon coûte 4 US\$/MMBTU ou 5 US\$/MMBTU.

Le coût du GNL a été lié au coût du gaz du gazoduc : plus 15% et une surcharge d'environ 12 FCFA/kWh pour la location d'une barge pour le stockage et la regazéification. La surcharge est basée sur l'hypothèse que des grandes quantités sont importées ce qui nécessitera probablement que les importations soient aussi faites pour d'autres pays que le Bénin et le Togo.

Le Tableau 1 présente les coûts économiques de production et d'importation hors les coûts des émissions de gaz à effet de serre.

Tableau 1 : Coûts d'investissement, coûts de production et prix d'importation. (FCFA/kWh au prix 2015 ; coûts incluent combustible et O&M, hors coûts carbone)

		Coûts de produc	tion/d'importation					
Source	Coûts d'investissement	Pétrole brut	Pétrole brut					
		50 - 65 US\$/baril	100 US\$/baril					
		FCFA par kW	/h au prix 2015					
Centrales SBEE	Existent. Retiré fin 2025.	85	136					
Centrales location	Existent. Retiré fin 2019.	85 + prime fixe	136 + prime fixe					
TAG (CEB, CAI)	Existent. Fin durée de vie : fin 2025.	71 gaz 198 (Jet A1)	90 gaz 331 (Jet A1)					
	Fill duree de vie . IIII 2025.	196 (Jet A1)	331 (Jet A1)					
Centrale diesel	1 350 US\$/kW	52 HFO	77 HFO					
bicombustible	(Centrale ContourGlobal existe)	60 gaz	75 gaz					
Cycle combiné	1 100 US\$/Kw	46 gaz	58 gaz					
Cycle combine	1 100 033/KW	65 GNL	79 GNL					
Centrale charbon	Lit fluidisé circulant	24 si charbon 4 US\$/MMBTU						
Centrale charbon	2 600 US\$/kW *	/ * 29 si charbon 5						
	Nangbeto existe.	Nangbeto: 9 (65 MW, 185 GWh/an						
Centrales	Adjarala à partir 2020.	Adjarala: 10 (148 MW, 355 GWh/ar						
hydroélectriques	Candidats : Kétou-Dogo (229 GWh/an), Vossa (167), Béthel Bis (89),							
	Olougbe (62), Dyodyonga (56), Bétérou (49). Tous candidats : 3000 US\$/kW							
	1 000 US\$/kWc ; 2 000 US\$/kWc c	lans analyses de sen	sibilité.					
Centrale PV	140 MWc sont supposés être programmés d'ici 2020.							
	Production annuelle : 1 400 kWh par kWc installé.							
Centrale Biomasse	21 MW sont supposé être disponi	bles à partir de 2020	produisant					
Centrale Diomasse	150GWh/an. Aucune autre capaci	té n'est programmé	e.					
Import Nigéria	TCN	60	71					
Import Ghana/CdI	VAR / CIE	66	77					
Import Niger	Centrale charbon	60 si charbon 4 US\$/MMBTU						
port rager	Certaine Grandon	66 si charbon 5 US\$/MMBTU						

^{*} Inclut 100 US\$/kW pour port minéralier

3.2 Résultats pour la période 2015 - 2019

Les importations du Nigéria ont été limitées à environ 1 400 GWh/an et les importations du Ghana/Côte d'Ivoire à 550 GWh/an. La production de la centrale hydroélectrique de Nangbeto est de 185 GWh/an. Les centrales PV entrent progressivement à partir de 2017 et fournissent jusqu'à 227 GWh/an au Bénin.

Sous ces hypothèses et supposant que la livraison de gaz reste limitée à 10 MPC/jour, le modèle a déterminé la production des centrales thermiques existantes - TAG de la CEB, TAG de la centrale CAI, centrales diesel de la SBEE, centrales en locations et la centrale bicombustible de Contour Global – et la production de la nouvelle centrale bicombustible qui est prévue d'être installée à Maria Gleta et supposée être disponible en 2018. La centrale fonctionnera au fioul lourd tant que davantage de gaz ne sera pas disponible sur le site de Maria Gléta. L'approvisionnement en fioul lourd pose de délicats problèmes environnementaux à Maria-Gléta.

Les analyses montrent que l'utilisation de la centrale de Contour Global au bénéfice des deux pays et non seulement pour le Togo comme c'est actuellement le cas permet un mix énergétique global plus performant et beaucoup moins coûteux que les errements actuels. Encore faut-il que les mandants de la CEB l'autorisent à acheter cette énergie.

3.3 Résultats pour la période 2020 - 2035

Le besoin en capacité additionnelle de production pour satisfaire la demande du Togo et du Bénin dans la période 2020 – 2035 varie entre environ 600 MW (Scénario Faible) et 1 800 MW (Scénario Haut). Outre le coût des combustibles, trois hypothèses influent largement sur le choix des centrales à installer :

- a) La quantité de gaz disponible à l'importation par le gazoduc de l'Afrique de l'Ouest. Les cas analysés comprennent les hypothèses 10 ; 50 et 200 MPC/jour pour le Bénin et le Togo.
- b) La possibilité ou non d'installer une barge pour l'importation et la regazéification du GNL.
- c) La possibilité ou non de disposer de centrales à charbon jusqu'à 1 000 MW.

Les résultats principaux de ces hypothèses concernant l'addition de capacités de production se présentent comme suit :

Si la disponibilité du gaz fourni par le gazoduc est limitée à 10 ou 50 MPC/jour, la plus grande partie des nouveaux moyens de production est constituée de centrales à charbon que le charbon coûte 4 ou 5 US\$/MMBTU.

L'alimentation d'un cycle combiné fonctionnant au gaz n'est pas possible si seulement 10 ou 50 MPC/jour sont disponibles. Le gaz est utilisé dans ce cas en priorité par les turbines à gaz (TAG) existantes (CEB et CAI) puis par les centrales bicombustibles existantes et programmées (centrale de ContourGlobal et centrale à Maria Gleta). Si la capacité charbon atteint la limite de 1000 MW dans le Scénario Haut, des cycles combinés au gaz issu du « GNL » ou des centrales bicombustibles fonctionnant principalement au fioul lourd s'ajoutent.

- ❖ Si le coût du gaz est de 14 US\$/MMBTU, le charbon devient l'option optimale indépendamment de la disponibilité de gaz et que le charbon coûte 4 ou 5 US\$/MMBTU.

 Dans le Scénario Haut où la capacité charbon atteint la limite de 1000 MW, l'offre énergétique est complétée à partir de 2030 par des centrales au gaz naturel ou au HFO suivant la disponibilité du gaz.
- ❖ Les cycles combinés fonctionnant au gaz du gazoduc constituent la source préférée à condition que le WAPCo puisse livrer suffisamment de gaz (200 MPC/jour) et que le prix de ce gaz soit égal ou inférieur à 11 US\$/MMBTU.

Les résultats concernant les autres sources potentielles sont :

Importation de GNL: Le coût du GNL est majoré de 15% par rapport au gaz du gazoduc et une surcharge de 12 FCFA/kWh pour la location d'un méthanier. Ceci fait que le GNL n'apparait que rarement dans le parc de production à moindre coût économique et la production d'électricité à partir de cette source est toujours faible. Il faut que le coût du GNL soit de 9,20 US\$/MMBTU (coûts hors surcharge) pour que le GNL devienne une source principale pour la génération d'électricité. Le consultant a des réserves si ce coût est atteignable.

<u>Centrales PV</u>: Si le solaire coûte à l'investissement 1000 US\$/kWc, la puissance installée optimale est égale à la puissance maximale autorisée (50% de la pointe à midi). Suivant les scénarios de demande, la capacité installée dans l'ensemble du Togo et du Bénin atteint dans ce cas 520, 740 ou 1120 MWc en 2035. Le fait que les centrales ne produisent que pendant la journée limite leur contribution au mix énergétique à environ 10%. Si le coût d'investissement est de 2000 US\$/kWc, nettement moins de capacité PV est installée (en 2035, entre environ 640 et 680 MWc dans le Scénario Haut) et les dates de mise en service sont retardées.

<u>Centrales hydroélectriques</u>: Hormis Adjarala dont la construction est en cours, aucun des sites candidats n'est sélectionné pour faire partie du parc de production quel que soit le scénario de demande. Les coûts d'investissement (3 000 US\$/kW) sont trop élevés par rapport au productible des centrales candidates. Les centrales candidates peuvent offrir un total cumulé de 650 GWh/an ce qui représente à peine 6% de la demande prévue pour 2035 sur l'espace CEB.

<u>Importations du Nigéria</u>: Les importations montrent dans presque tous les cas examinés une tendance à la baisse à partir de 2020. Le niveau atteint en 2035 est typiquement entre 500 et 800 GWh/an. Un niveau même plus faible est parfois atteint vers 2025 mais les importations remontent ensuite pour atteindre en 2035 le niveau mentionné. Si la demande suit le Scénario Haut et le gazoduc ne fournit que 10 MPC/jour, les importations peuvent même remonter au niveau actuel d'environ 1300 GWh/an.

<u>Importations du Ghana/Côte d'Ivoire</u>: Les importations deviennent très faibles à partir de 2020; typiquement à 10 - 40 GWh/an. Elles sont remplacées par la production des centrales à charbon ou des cycles combinés à gaz qui coûtent moins cher.

<u>Importations du Niger</u>: Les importations du Niger, produite par une centrale à charbon, font partie de la solution optimale dans tous les scénarios de demande et toutes les options

d'approvisionnement. Les importations commencent en 2025. Le niveau est typiquement entre 1000 et 1500 GWh/an. Le coût de 60 – 66 FCFA/kWh font des importations une source attrayante.

<u>Impact des coûts d'émissions</u>: Les résultats présentés en haut sont basés sur le coût de 20 US\$ par tonne de CO2 équivalent. Les calculs faits avec 40 US\$/tCO2 et supposant que 200 MPC/jour sont disponible² par le gazoduc montrent que la tendance de favoriser les centrales à charbon ne change pas. Les centrales à charbon arrivent plus tard et la capacité totale est plus faible mais elles restent la source dominante. C'est seulement si le gaz coûte 11 US\$/MMBTU et la demande suit le Scénario Faible ou Moyen qu'il n'y a plus de centrales à charbon. Mais dans ces cas, les cycles combinés à gaz sont aussi les centrales préférées au coût de 20 US\$/tCO2.

Conclusion: Vue les incertitudes de disponibilité de gaz du gazoduc, il est recommandé d'envisager la construction d'une centrale à charbon de 250 MW. Il est vrai que si jamais le gazoduc peut fournir jusqu'à 200 MPC/jour et cela au coût d'aujourd'hui en termes réelles (= prix de 2015), l'installation des cycles combinés à gaz est préférée aux centrales à charbon. Mais l'installation de 250 MW en capacité charbon est même recommandée dans ce cas sous l'optique de diversification des sources d'approvisionnement. Les modèles comme WASP ne tiennent pas compte des risques que la forte dépendance à une source entraine.

Localisation des futures centrales charbon-vapeur: La localisation des centrales au charbon dépendra de l'emplacement des infrastructures permettant l'importation des énergies primaires correspondantes. Le plan directeur de développement des infrastructures d'énergies électrique du Togo (SNC-Lavalin juillet 2014) préconise également l'installation de centrales au charbon pour le Togo. Il ne paraît pas raisonnable de doubler les infrastructures d'importation du charbon. Si l'option charbon est retenue sur l'espace CEB un seul port minéralier sera construit pour le bénéfice des deux pays. Sous réserve d'une étude de faisabilité technique, économique et environnementale, l'implantation d'un port minéralier et de centrales charbon-vapeur à Sémé-Kpodji est une option intéressante, bénéficiant la de la proximité du poste 330 kV de Sakété pour les raccordements électriques.

² Si seuls 10 ou 50 MPC/jour sont disponibles, l'impact du coût des émissions risque de ne pas apparaître parce que la disponibilité limitée du gaz nécessite l'installation des centrales à charbon.

4 Réseau de Transport

4.1 Situation actuelle, travaux en cours et envisagés

Le réseau de la CEB est actuellement en train de subir des modifications conséquentes :

- Interconnexion en 330 kV des postes de Sakété (Bénin) et Davié (Togo) pour renforcer les interconnexions avec les pays voisins (Ghana et Nigéria). Toutefois le plein bénéfice de cette interconnexion ne sera obtenu qu'après la résolution des problèmes de réglage et de stabilité du réseau nigérian qui permettra l'interconnexion effective entre le Nigéria et le Ghana.
- Raccordement du nord du Bénin dans un avenir proche au poste de Sakété via une ligne double terne entre Onigbolo et Parakou qui se prolongera jusqu'à l'extrême nord du Bénin à Malanville. Ces lignes vont sécuriser l'approvisionnement des zones septentrionales alimentées jusque-là via l'unique ligne raccordant Atakpamé à Kara.
- Le bouclage du nord du réseau de la CEB sera réalisé par la connexion Natitingou-Kara.
- La construction de la centrale hydroélectrique d'Adjarala sera associée à la construction de plusieurs lignes qui viendront compléter le bouclage du sud du Bénin : Adjarala-Notsé et Adjarala-Avakpa

La situation décrite présente un réseau de la CEB dont l'ossature principale est largement dessinée. Le Bénin et le Togo sont deux pays longilignes qu'il parait naturel d'organiser d'un point de vue électrique par rapport à deux dorsales nord-sud. Ces deux dorsales reliant Davié à Kara (Togo) et Sakété à Malanville (Bénin) sont déjà réalisées ou en cours de construction. Afin d'avoir un schéma d'exploitation sécurisé, il est nécessaire de boucler en plusieurs points ces deux axes Sud - Nord, ce qui est déjà réalisé.

La majorité de la consommation et de la production, tant au Bénin qu'au Togo se trouve le long de la côte au niveau des capitales. Il était nécessaire de relier ces deux points de consommation – production par une interconnexion forte d'un niveau de tension élevé, ce qui est en cours de réalisation au moyen de la ligne 330 kV Sakété-Davié.

4.2 Résultats concernant le développement des réseaux et la stabilité dynamique

L'enjeu principal de la présente étude est double : trouver des solutions pour évacuer la puissance générée sur la côte à Lomé et Cotonou et amener cette énergie à tous les consommateurs sur l'ensemble du territoire.

Le plan d'expansion des moyens de production ne précise pas la localisation géographique des futures centrales au-delà de leur répartition nationale. Etant donné que les ressources primaires devront être importées par la mer les centrales se trouveront près des ports de Lomé et Cotonou, ou au débouché du gazoduc, c'est-à-dire au niveau du poste du site de Lomé-Port ou de Maria-Gléta. A partir de cette hypothèse, l'étude du réseau a identifié les investissements suivants :

4.2.1 Développement du réseau de transport de la CEB

Ligne 330 kV Davié - Lomé

Les lignes en 161 kV existantes à Lomé ne permettront pas d'évacuer la puissance générée dans le scénario haut. Il sera nécessaire de construire une liaison en 330 kV vers Davié depuis Lomé. Cette ligne est nécessaire dans les Scénario Haut (2030) mais ne paraît pas nécessaire dans les Scénarios Moyen et Faible. La construction de cette ligne devra être coordonnée avec la construction de nouvelles centrales débitant sur le poste de Lomé-Port. En effet les lignes actuelles ne pourront faire transiter plus de 150 MW supplémentaires.

Ligne 330 kV SèmèKpodji -Saketé

Le site de Maria-Gléta ne permettra pas d'implanter plus de 450 MW supplémentaires environ. En effet l'évacuation de la puissance doit se faire par quatre lignes 161 kV permettant tout au plus de véhiculer chacune 150-200 MW, le reste étant consommé sur place. Il faudra donc créer un nouveau poste d'envergure dans les environs de Cotonou. L'ouest de Cotonou est bien alimenté par Maria-Gléta qui dispose d'infrastructures de production et de transport. Le poste de Védoko est situé en plein centre-ville et il parait très compliqué de rajouter des lignes pour augmenter l'importation d'énergie vers Cotonou au niveau de ce poste. Il manque un point d'injection de puissance à l'est de Cotonou. Le site de SèmèKpodji paraît une bonne option, surtout s'il est couplé à la construction de nouvelles centrales de production. Il conviendra de construire une nouvelle ligne 330kV entre SèmèKpodji et Saketé pour amener vers Cotonou l'énergie disponible sur la dorsale sud. La construction de cette ligne sera nécessaire aux alentours de 2020 si la demande suit le Scénario Haut ou Moyen et que la stratégie de production à prédominance charbon se réalise. Dans le Scénario Faible cette ligne n'est pas nécessaire d'ici à 2035.

Interconnexions Nord

Deux autres grosses infrastructures de transport seront nécessaires dans les trois scénarios de demande : l'interconnexion du nord du réseau de la CEB avec (1) le Niger et (2) le Nigéria. Ces interconnexions permettront d'alimenter les charges septentrionales sans avoir à faire transiter l'énergie le long des axes Atakpamé-Kara et Onigbolo-Parakou, ce qui engendrerait des pertes conséquentes. Des interconnexions 330 kV entre Malanville et Dosso au Niger et Bembéréké et Kainji seraient très profitables pour l'exploitation des réseaux nord de la CEB. Par contre le prolongement de la dorsale médiane prévu par le WAPP entre Kainji et Kara puis Yendi au Ghana ne parait pas nécessaire au vu des charges effectives au nord du Togo. Cette ligne poserait plus de problèmes de compensation de l'énergie réactive qu'elle n'apporterait de bénéfices à l'écoulement de charge dans cette zone. L'interconnexion avec le Niger devra être effective en 2025, celle avec le nord Nigéria en 2030.

Peu d'autres lignes importantes seront nécessaires. Il faudra cependant envisager de renforcer la liaison Parakou-Djougou et Onigbolo-Sakété dans le Scénario Haut.

4.2.2 Développement du réseau de transport de la SBEE

Le fort développement de la demande en dehors des grands centres urbains que sont Cotonou, Porto-Novo, Abomey-Calavi Abomey Bohicon et Parakou, va poser la question du développement d'un réseau 63 kV conséquent pour alimenter toutes ces charges éloignées des centres de production et du réseau de transport. Le consultant préconise la construction des lignes 63 kV suivantes :

- Avakpa-Ouidah-Grand Popo
- Avakpa-Zé-Toffo
- Bohicon-Agbanzinzoun
- Bembereke-Alafiarou-Perere
- Lokossa-Houeyogbe

- Adjaralla-Aplahoué-Lalo
- Dassa-Savalou
- Ogoutedo-Ouesse-Banté-Bassila
- Bembereké-Sinende-Pehunco-Kerou-Banikoara

La plupart de ces lignes étant en antenne, il sera possible de les boucler pour sécuriser l'approvisionnement, mais les investissements nécessaires seront importants au regard des gains de fiabilité, d'autant que le réseau MT pourra servir de secours partiel.

La plupart de ces zones sont déjà alimentées par des réseaux MT en 20 ou 33 kV, mais les distances à couvrir sont bien trop grandes pour qu'à terme, les conditions normales de tension soient respectées. Il faut dès à présent prévoir le développement de réseaux 63 kV. Des postes sources additionnels 161/MT seront également à prévoir le long des lignes 161 kV existantes :

- Adjohoun (ligne Sakété-Vedocko)
- Dogbo (Ligne Avakpa-Adjarala)
- Pobe (ligne Sakete-Onigbolo)
- Cove (Ligne Onigbolo-Bohicon) Bohicon-Rural (ligne Onigbolo-Bohicon)
- Tchatchou (ligne Onigbolo-Parakou)
- Ndali (ligne Parakou-Bembéréké)
- Tanguieta (ligne Natitingou-Porga)

Les villes de Cotonou et d'Abomey-Calavi ne sont aujourd'hui alimentées que par un nombre restreint de postes sources. Il faudra envisager de renforcer ce réseau par des postes secondaires pour soulager les jeux de barres et les transformateurs HTB/HTA. Un réseau de distribution 63 kV doit être développé entre Abomey-Calavi, Cotonou, SèmèKpodji et Porto-Novo. Quatre postes sources supplémentaires 63/15 kV doivent être créés à Cotonou et Abomey-Calavi pour soulager les postes existants. Le réseau 63 kV correspondant doit être développé. Une tranche 63 kV doit être rajoutée à Maria-Gléta pour évacuer la puissance qui y sera produite directement vers les postes sources avoisinants de Calavi, Cococodji et Godomey sans avoir à transiter par la ligne 161 kV entre Maria-Gléta et Védoko qui sinon sera très vite surchargée.

4.2.3 Stabilité dynamique

Les études de stabilité dynamique ont montré que le réseau est stable tant en fonctionnement iloté, c'est-à-dire coupé de ses voisins, que lorsque les interconnexions avec le Nigéria et le Ghana sont en service.

5 Electrification Rurale

En 2015, 1654 des 3817 localités du Bénin sont raccordées au réseau de la SBEE, soit 43%. La population vivant dans ces localités représente environ 60% de la population totale du Bénin. Hors des grandes zones urbaines seulement 43% de la population vit dans des localités électrifiées.

L'électrification par raccordement au réseau de la SBEE est la stratégie principale à suivre vu que le réseau de la SBEE couvre déjà relativement bien le pays : 82% des localités non électrifiées sont à moins de 1 km du réseau MT existant, 12% sont entre 5 et 20 km et seulement 2% sont à plus de 20 km. En accord avec la DGE, il a été fixé comme seuil que toutes les localités qui auront en 2035 plus de 1000 habitants devraient être raccordées au réseau dans le Scénario Haut. Les seuils correspondants dans le Scénario Moyen et Faible sont de 1500 et de 2000 respectivement. Concernant le rythme de l'électrification, les hypothèses de 100, 90 et 80 localités par an ont été retenues.

La priorité dans la sélection des localités a été donnée aux localités où le bénéfice d'électrification est le plus élevé. Ainsi le consultant a hiérarchisé les localités selon la présence d'infrastructures socio-économiques. Un autre critère, utilisé dans la sélection des localités à raccorder dans l'avenir proche, reflète la politique du Gouvernement d'électrifier tous chef lieux d'arrondissement. Les 127 chefs-lieux qui ne sont pas encore électrifiées sont raccordés au réseau dans le plan préparé entre 2016 et 2018. Le consultant a également veillé à respecter une certaine équité entre le sud et le nord du pays pour que les deux zones du pays bénéficient en même temps du programme d'électrification rurale.

Dans le programme d'électrification, au total 1850 localités sont raccordées au réseau entre 2016 et 2035 dans le Scénario Haut. Le nombre correspondant est de 1641 dans le Scénario Moyen et de 1385 dans le Scénario Faible. Entre 79% (Scénario Faible) et 92% (Scénario Haut) des localités du Bénin seront donc raccordées au réseau en 2035, permettant à 90% - 94% de la population béninoise de vivre dans des localités électrifiées. A l'intérieur des localités qui sont électrifiées à partir de 2016, le taux d'électrification varie selon le scénario et la date d'électrification. Dans le Scénario Moyen, par exemple, il sera d'environ 66% en 2035 dans les localités qui seront raccordées en 2016 et d'environ 20% dans les localités raccordées seulement en 2034.

Un tel programme d'électrification par raccordement au réseau nécessitera l'installation de 4400 à 5200 km de lignes MT supplémentaire (la SBEE exploite déjà un réseau d'environ 10 000 km de long). L'augmentation de la taille du réseau devra être accompagnée de la multiplication des postes sources afin de permettre une exploitation dans des conditions de qualités normées. Les extensions de réseau proposées ont été validées électriquement au regard de l'implantation de nouveaux postes. Les détails de chaque extension proposée devront cependant faire l'objet d'études spécifiques et détaillées.

6 Analyses Financières

6.1 Approche et hypothèses principales

Les tarifs qui permettent de recouvrir les dépenses de la CEB et les tarifs qui permettent de recouvrir les dépenses du secteur de l'électricité du Bénin ont été calculés dans les analyses financières. Les calculs ont été faits au prix constant de 2015. Tous les tarifs présentés ici sont des tarifs hors taxes. Les tarifs ont été déterminés pour les solutions d'approvisionnement en énergie électrique qui constituent les solutions à moindre coût économique.

Toutes dépenses pour l'approvisionnement en énergie électrique entrent dans le calcul; dépenses liées à la production, à l'achat d'énergie, à l'extension et O&M des réseaux de transport et de distribution et les dépenses pour le fonctionnement de la CEB et de la SBEE respectivement. Les subventions sous forme de financement par le budget national ou de dons reçus des bailleurs de fonds n'entrent pas dans le calcul des tarifs. Les subventions financent une partie importante des investissements en électrification rurale et des investissements de la SBEE pour la densification et l'extension de son réseau de transport³.

Les dépenses pour la production et l'achat d'électricité comptent toujours pour la plus grande partie des dépenses. Pour 85 – 95% des dépenses de la CEB et pour environ 75% - 85% des dépenses de la SBEE. Les hypothèses les plus importantes concernant les dépenses pour la production et l'achat sont :

- Hormis la centrale hydroélectrique d'Adjarala, toutes les nouvelles centrales sont traitées dans le modèle comme des centrales appartenant à des IPP. Un prix de vente est donc calculé qui assure une certaine rentabilité (environ 10% sur fonds propres). L'approche IPP est en ligne avec la politique du Gouvernement qui a ouvert le secteur aux producteurs privés.
- Le Bénin (SBEE) est l'acheteur de la production des centrales en location (MRI, Agrekko), de la centrale CAI, de la nouvelle centrale à Maria Gleta (120 MW), des centrales PV qui sont installées jusqu'en 2019 et des centrales à biomasse. Toutes autres nouvelles centrales sont dans le modèle des centrales qui vendent à la CEB, donc notamment les grandes centrales : cycles combinés à gaz et centrales à charbon.
- La centrale de ContourGlobal à Lomé continue de vendre sa production à la CEET. Les coûts de la centrale n'entrent donc ni dans le calcul du tarif de la CEB ni dans le calcul du tarif pour le Bénin.

Le tableau suivant présente les coûts de production et les prix d'achat.

_

³ Les subventions sont aussi à l'origine du prix moyen de 1000 US/kWc pour les systèmes PV. Sans subventions, ce prix ne serait pas réalisable dans la période 2015 – 2019. Que le Bénin peut s'attendre à obtenir des subventions suit du programme d'appui du MCC qui envisage de financer 45 MWc sous forme de don.

Tableau 2 : Coût de production et prix d'achat d'énergie électrique (FCFA/kWh au prix 2015)

Centrale	Fioul	Prix de combustible	Coûts production.
		(PV : prix par kWc installé)	Prix d'achat.
			(FCFA/kWh)
Centrales SBEE	Gasoil	13,1 / 21,9 US\$/GJ	83 / 119
Centrales location	Gasoil	13,1 / 21,9 US\$/GJ	107 / 208
Centrale CAI	Jet A1	29,2 / 48,7 US\$/GJ	208 / 340
Centrale CAI	Gaz	Gaz : 11 / 14 US\$/MMBTU	77 / 100
TAG CEB	Gaz	Gaz : 11 / 14 US\$/MMBTU	71 / 89
Import. Nigeria	Mixte		60 / 71
Import Ghana/CdI	Mixte		66 / 77
Import Niger	Charbon	Charbon: 4 / 5 US\$/MMBTU	60 / 66
Centrale dual fuel	HFO	8,5 / 12,9 US\$/GJ	67 / 92
Centrale dual fuel	Gaz pipe	Gaz : 11 / 14 US\$/MMBTU	75 / 91
Cycle combiné	Gaz pipe	Gaz : 11 / 14 US\$/MMBTU	61 / 73
Cycle combiné	GNL (Barge)	GNL: 12,7 / 16,1 US\$/MMBTU	79 / 93 *
Centrale à charbon	Importation de charbon	Charbon: 4 / 5 US\$/MMBTU	58 / 63
Centrale PV	Solaire	1000 / 2000 US\$/kWc	45 / 89
Centrale biomasse	Biomasse	Biomasse : 20 US\$/MWh	64

^{*} Une surcharge d'environ 12 FCFA/kWh est à ajouter pour les coûts de location d'une barge pour le stockage et la regazéification du GNL.

Les coûts d'investissements en réseau et l'électrification sont présentés ci-après (Scénario Haut / Moyen / Faible). Il s'agit des coûts moyens sur la période 2015 – 2035. Les coûts annuels montrent des (fortes) variations d'une année à l'autre.

- CEB, réseau de transport : 8,3 / 4,3 / 3,8 milliards de FCFA. Pas de subvention.
- SBEE, réseau de transport : 8,9 / 8,2 / 6,7 milliards de FCFA. Les subventions financent ≈ 35%.
- SBEE, densification: 26,6 / 23,1 / 18,1 milliards de FCFA. Les subventions financent ≈ 40%⁴.
- Bénin, électrification rurale : 18,7 / 15,2 / 10,8 milliards de FCFA. Subvention finance ≈ 55%⁵.

_

⁴ Environ 17% des coûts d'investissement sont payés par les abonnés sous forme de frais de branchement.

⁵ Environ 9% des coûts d'investissement sont payés par les abonnés sous forme de frais de branchement.

6.2 Tarifs de la CEB

Le Graphique 2 montre le développement du tarif de vente de la CEB si la demande au Bénin et au Togo suit le Scénario Haut.

CEB - Scénario Haut, tarifs moyen, couverture dépenses 80.0 FCFA/kWh 78.0 76.0 74.0 A2 72.0 70.0 68.0 66.0 B1, B2 64.0 **B5** 62.0 60.0 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 —A3 ——A4 ——A5 ——A6 ——B1 ——B3 ——B5

Graphique 2 : Développement du tarif de la CEB dans le Scénario Haut

Légende: Disponibilité de gaz: Jusqu'à et compris 2019, 10 MPC/jour. Ensuite 10 MPC/jour dans les cas B1, A1 et A2, 50 MPC/jour dans les cas B3, A3, A4 et jusqu'à 200 MPC/jour dans les cas B5, A5 et A6.

Prix du gaz : toujours 11 US\$/MMBTU dans B1, B3 et B5. Dans les cas A1, ..., A6, 14 US\$/MMBTU à partir de 2020.

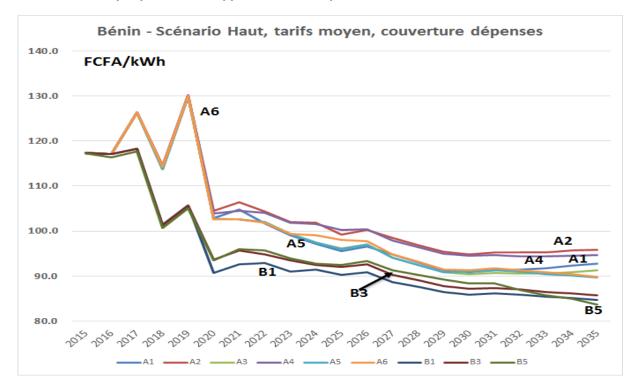
<u>Prix charbon</u>: 4 US\$/MMBTU (B1, B3, B5, A1, A3, A5) et 5 US\$/MMBTU (A2, A4, A6). <u>PV</u>: 1000 US\$/kWc dans tous les cas.

Le tarif qui permettra de recouvrir les dépenses de la CEB est en 2015 de l'ordre de 69 FCFA/kWh.

Le tarif reste plus ou moins à ce niveau jusqu'en 2019 si les prix des produits pétroliers et du gaz ne changent pas en termes réelles (cas B1, B3, B5). S'ils augmentent, le tarif augmente et un tarif de 79 FCFA/kWh sera nécessaire en 2019 (A1, ..., A6).

En 2020, le tarif chute dans tous les cas ; à 64-65 FCFA/kWh (prix produits pétroliers/gaz au niveau actuel) et à 68-71 FCFA/kWh respectivement (prix plus élevés). La chute est notamment due à la mise en service des centrales à charbon ou des cycles combinés à gaz (B5).

La tendance à la baisse continue jusqu'en 2029 pour la raison principale que plus de capacité charbon ou de cycle combiné est installée. Les centrales PV et les importations du Niger à partir de 2025 contribuent à la réduction du tarif. Ces importations deviennent la source d'importation la plus importante. Les importations du Ghana/Côte d'Ivoire deviennent marginales et les importations du Nigéria sont, dans la plupart des cas examinés, aussi nettement plus faibles qu'aujourd'hui.



La raison principale pour l'augmentation du tarif à partir de 2030 est que la capacité des centrales à charbon atteint la limite de 1000 MW. Cela conduit à l'installation des cycles combinés à gaz naturel s'il y a suffisamment de gaz (200 MPC/jour dans les cas A5 et A6), ou des centrales qui utilisent le HFO ou le GNL (après regazéification). Toutes ces technologies coûtent plus cher que la production des centrales à charbon. Le tarif est en 2035 à 64 - 65 FCFA/kWh (prix produits pétroliers/gaz au niveau actuel) et à 68 - 71 FCFA/kWh respectivement (prix plus élevés).

Les tarifs dans le Scénario Moyen et Faible montrent les mêmes tendances et les tarifs ne sont que peu différents. Raison : La structure du parc de production est sensiblement la même et les prix unitaires des sources d'approvisionnement sont identiques au prix dans le Scénario Haut.

6.3 Tarifs pour le Bénin

Le Graphique 3 montre le développement du tarif pour le Bénin si la demande au Bénin et au Togo suit le Scénario Haut.

Graphique 3 : Développement du tarif pour le Bénin dans le Scénario Haut

En 2013, le tarif moyen hors taxes était de 110 FCFA/kWh. La Figure 2 montre que le tarif qui recouvre les dépenses en 2015 devrait être de 117 FCFA/kWh. Si le prix du gaz et des produits pétroliers reste au niveau actuel, le tarif de 117 FCFA/kWh suffit en 2016 et 2017. En 2018, la mise en service de Maria Gleta permet de réduire le tarif à 101 FCFA/kWh, suivi d'une légère augmentation à 106 FCFA/kWh en 2019. Si les prix des produits pétroliers et du gaz augmentent, ce qui se réalise dans les cas A1, ..., A6 à partir de 2017, le tarif augmente à 130 FCFA/kWh en 2019. La nouvelle centrale à Maria Gleta (prix d'achat d'environ 67 FCFA/kWh) réduit l'augmentation mais ne l'évite pas. Entre 2017 et 2019, une forte augmentation du tarif est nécessaire ; jusqu'à 130 FCFA/kWh.

La raison principale pour la chute du tarif en 2020 est la raison mentionnée pour le tarif de la CEB : la disponibilité des centrales à charbon ou des cycles combinés. L'arrêt des centrales en location et le fonctionnement de la centrale CAI au gaz au lieu de Jet A1 si le gazoduc fournit 50 MPC/jour ou plus contribuent à la chute.

Les raisons mentionnées plus haut pour la CEB expliquent aussi essentiellement le développement jusqu'en 2035 : une tendance à la baisse jusqu'en 2035 ou jusqu'en 2029 suivi d'une faible augmentation. En 2035, le tarif est entre 83 et 86 FCFA/kWh (prix des combustibles au niveau actuel en termes réelles) et entre 90 et 95 FCFA/kWh respectivement (prix plus élevés en termes réelles).

A partir de 2020, les dépenses pour le réseau deviennent importantes : densification, extension du réseau de transport, dépenses liées à l'électrification rurale (extension des réseaux construits sous l'égide de l'ADERME, O&M des tous réseaux construites en milieu rural), O&M du réseau existant. Mais ces dépenses ne dépassent normalement pas 15% des dépenses totales. C'est le prix de l'énergie qui est la déterminante principale du tarif.

Trois résultats des analyses complémentaires méritent mention :

- ❖ Si le prix des systèmes PV est de 2000 US\$/kW au lieu de 1000, une augmentation du tarif de 3 − 5 FCFA/kWh est nécessaire à partir de 2020.
- ❖ Sans subventions pour l'électrification rurale et les investissements de la SBEE en réseau de transport et de distribution (densification), le tarif est de 3 − 6 FCFA/kWh plus élevé à partir de 2020.
- ❖ Les résultats présentés en haut supposent que le fonds de roulement couvre un mois de dépenses. Un mois est considéré le minimum. Si on calcule avec deux mois, le tarif serait en 2015 de 126 FCFA/kWh au lieu de 117. Dans les années suivantes, les augmentations par rapport au tarif « un mois » seraient faibles ; typiquement 1 ou 2 FCFA.

La tendance des tarifs est dans le Scénario Moyen et Faible identique à la tendance dans le Scénario Haut. On constate également que les tarifs sont peu différents de ceux du Scénario Haut et cela pour essentiellement les mêmes raisons qui expliquent pourquoi il n'y a que de très faibles différences entre les tarifs de la CEB dans les trois scénarios de demande : la structure du parc de production est sensiblement la même et les prix unitaires des sources d'approvisionnement sont identiques.

Résumé: Les résultats montrent que le tarif qui permet de recouvrir les dépenses pourrait beaucoup diminuer en termes réels si les centrales à charbon ou les cycles combinés à gaz constituent la source principale d'approvisionnement dans le futur. L'installation de capacité PV aide à réduire les tarifs si le coût des centrales est dans l'ordre de 1000 US\$/kWc. Cela nécessite aujourd'hui des subventions importantes mais pourrait se réaliser après 2020 avec des faibles subventions ou même sans subvention si la baisse des coûts des systèmes PV continue. Signalons que la réduction du tarif tient compte qu'un programme ambitieux d'électrification est réalisé. Ce programme est supposé bénéficier des subventions. Sans subvention, la réduction serait plus faible mais encore importante.

7 Plan de Mise en Œuvre

Le plan de mise en œuvre décrit ce qu'il faut faire pour la réalisation des projets proposés.

Le plan inclut d'importantes études. Il s'agit notamment :

- D'une étude sur la disponibilité de gaz du gazoduc et des prix du gaz. Le focus sera sur le Nigéria comme source de provenance mais la possibilité que le Ghana développe ses gisements en gaz et injecte dans le gazoduc est aussi à examiner.
- D'une étude sur la construction d'un port minéralier qui sera nécessaire pour l'importation du charbon.
- D'une étude sur la possibilité d'importer du GNL. L'étude doit, entre autres, déterminer si l'importation seule pour le Bénin et le Togo est faisable ou s'il faut importer des quantités plus importantes ce qui nécessite la participation d'autres pays. Le prix de location d'une barge pour le stockage et la regazéification est aussi parmi les sujets de l'étude.

Plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

DAEM - MERPMEDER

Tome 1 Scénarios de Demande

Rapport Final - Aout 2015

RAPPORT Final

Plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

Tome 1:

Scénarios de Demande

Références du contrat : DAEM : 206/MEF/MERPMEDER/DNCMP/SP

IED: 2014/007

Client IDA

Consultant IED Innovation Energie Développement

2 chemin de la Chauderaie 69340 Francheville, France Tel: +33 (0)4 72 59 13 20 Fax: +33 (0)4 72 59 13 39

Site web: www.ied-sa.fr

Rédaction du document

	VERSION 1	VERSION 2	VERSION 3
Date	Avril 2015	Aout 2015	
Rédaction	CA/HP	CA/HP	
Relecture	CA/HP/PS	CA/HP/PS/UA	
Validation	HP	HP	

Ce rapport a été rédigé par IED dans le cadre du contrat Elaboration du plan directeur de développement du sous-secteur de l'énergie électrique au Bénin à parti des informations collectées au cours des missions effectuées au Bénin et des échanges avec les personnes rencontrées. Il ne reflète pas nécessairement les opinions de la Banque Mondiale, du Ministère de l'Energie du Bénin, de la SBEE, de l'ABERME.

PLAN DIRECTEUR DE DEVELOPPEMENT DU SOUS-SECTEUR DE L'ENERGIE ELECTRIQUE AU BENIN

LISTE DES TOMES:

TOME 0 : RESUME EXECUTIF

TOME 1: SCENARIOS DE DEMANDE

TOME 2: PLAN D'EXPANSION DES MOYENS DE PRODUCTION

TOME 3 : DEVELOPPEMENT DU RESEAU

TOME 4: ELECTRIFICATION RURALE

TOME 5 : ANALYSE FINANCIERE

TOME 6: PLAN D'ACTION

TOME 1 - TABLE DES MATIERES

1	INTRODUCTION	7
2	DEVELOPPEMENT DEMOGRAPHIQUE	8
3	DEVELOPPEMENT ECONOMIQUE	11
3.1	Période 1991 – 2014	11
3.2	Scénarios pour la période 2015 - 2035	13
4	DEMANDE BT DANS LES GRANDS CENTRES URBAINS	14
4.1	Carte des grands centres urbains	14
4.2	Développement des abonnés BT et des ventes MT dans le passé	15
4.2.1	Abonnés BT et taux d'électrification étendu	15
4.2.2	Ventes BT	16
4.3	Modèle pour les scénarios	17
4.3.1	Développement du taux d'électrification étendu	17
4.3.2	Demande spécifique en 2014	18
4.3.3	B Développement de la demande spécifique	20
4.4	Résultats	22
5	DEMANDE MT	25
5.1	Développement des ventes MT dans le passé	25
5.2	Scénarios de Demande MT	27
5.2.1	Demande en 2014	27
5.2.2	Méthode utilisée pour estimer la demande MT dans les années 2015 - 2035	28
5.2.3	Répartition de la demande MT sur les régions et centres de la SBEE	30
5.3	Résultats – Demande MT dans les Grands Centres Urbains	31

6	DEMANDE DANS LES LOCALITES EN DEHORS DES GCU ET DEJA ELECTRIFIEES 32
6.1	Nombre de localités
6.2	Données disponibles
6.3	Approche pour estimer la demande BT32
6.4	Approche pour estimer la demande MT
6.5	Résultats35
7	DEMANDE CREEE PAR LE PROGRAMME D'ELECTRIFICATION
7.1	Sélection provisoire des localités à électrifier38
7.2	Estimation de la demande
9	D'ENERGIE ELECTRIQUE ET DE PUISSANCE DANS LE RESEAU INTERCONNECTE 41
9.1	Taux d'électrification41
9.2	Demande d'énergie électrique41
9.3	Pointes annuelles dans le réseau interconnecté43
9.3.1	Demande au niveau de l'injection
9.3.2	Facteurs de charge et de coïncidence
9.3.3	Pointes annuelles
10	DEMANDE DE LA CEET
	NNEXE 1 : EVOLUTION DU NOMBRE D'ABONNES MT DANS LES REGIONS DE LA SBEE DANS LA IODE 2002 – 2014
	NNEXE 2 : Scenarios de demande MT dans les GCU et les centres en dehors des GCU ont deja des abonnes MT
ANI	NEXE 3: Puissance appelee au point d'injection durant la pointe annuelle (MW) 50

TABLE DES ILLUSTRATIONS

Liste des tableaux

Tableau 1 Définition des grands centres urbains en termes de centres de la SBEE	
Tableau 2 Scénario démographique	. 9
Tableau 3 Taux de croissance du PIB réel dans la période 1991-2014 (aux prix constants de 1985)	11
Tableau 4 Scénarios de la croissance du PIB réel du Bénin dans la période 2015 - 2035 (% par an)	13
Tableau 5 Nombre d'abonnés BT dans les grands centres urbains dans la période 2002 - 2014	15
Tableau 6 Taux d'électrification étendu dans les GCU dans la période 2002 - 2014	15
Tableau 7 Ventes BT dans les années 2011 - 2014 (MWh)	16
Tableau 8 : Ventes spécifiques des abonnés BT dans les années 2011 - 2014* (kWh par abonné BT p	oar
mois)	17
Tableau 9 Taux d'électrification étendu dans l'année 2035 en fonction du scénario	17
Tableau 10 Estimation de la demande BT spécifique en 2014	18
Tableau 11 Résultats des GCU pour les scénarios Haut Moyen Faible	23
Tableau 12 Ventes MT dans la période 2002 - 2014 (kWh)	25
Tableau 13 Autoproduction dans les grands centres urbains	28
Tableau 14 Répartition de la demande MT par centre en 2015 et 2035	30
Tableau 15 Taux d'électrification (étendu) en 2035	33
Tableau 16 Autoproduction en dehors des grands centres urbains	34
Tableau 17 Taux de croissance moyenne de la demande BT et MT dans les localités	35
Tableau 18 Demande des localités en dehors des GCU mais déjà électrifiées en 2014 (GWh)	37
Tableau 19 Nombre de localité non électrifiées en 2015 et programme d'électrification	39
Tableau 20 Taux de connexion dans les localités qui seront électrifiées	40
Tableau 21 Demande spécifique (kWh/mois) dans les localités qui seront électrifiées	
Tableau 22 Croissance de la demande spécifique (% par an)	40
Tableau 23 Demande totale en énergie	42
Tableau 24 Scénarios de la demande d'énergie et des pointes annuelles de la CEET	45
Liste des graphiques	
Graphique 1 Scénarios d'évolution de la demande d'énergie électrique au Bénin	6
Graphique 2 Evolution de la population du bénin	
Graphique 3 Evolution de la production cotonnière au bénin ; campagnes 2000/1 - 2011/12	
Graphique 4 Comparaison des ventes MT observées dans la période 2003–2014 avec l'estimation	
partir du modèle où les ventes sont une fct de la croissance du PIB réel avec l'élasticité de 1,4	
Graphique 5 Bénin - Scénarios de demande MT dans les grands centres urbains	
Graphique 6 Population totale suivant la taille des localités	
Graphique 7 Développement du taux d'électrification étendu	
Graphique 8 Evolution de la demande d'énergie au niveau de facturation	
Graphique 9 Evolution des pointes annuelles dans le réseau interconnecté du Bénin	

Liste des acronymes :

BT : Basse Tension

CEB : Communauté Electrique du Bénin

CEET: Compagnie Energie Electrique du Togo

DGE :Direction Générale de l'Energie

FCFA: Franc CFA

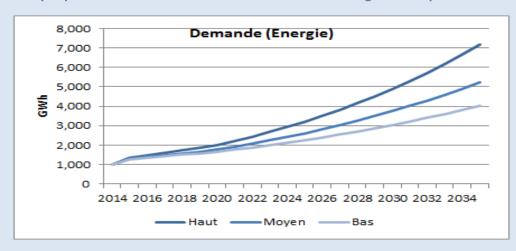
FMI: Fonds Monétaire International

GCU: Grands Centres Urbains

IED : Innovation Energie Développement

MT : Moyenne Tension
PIB : Produit Intérieur Brut

SBEE : Société Béninoise d'Energie Electrique


TTC : Toute Taxe Comprise

1 € = 1,10 USD 1€ = 655 FCFA

RESUME

Le Graphique 1 montre les projections de la demande d'énergie à satisfaire par le réseau interconnecté du Bénin dans la période 2015 – 2035 (les données de 2014 reflètent l'estimation des ventes en 2014).

Graphique 1 Scénarios d'évolution de la demande d'énergie électrique au Bénin

Dans le Scénario Haut, la demande augmente en moyenne de 9,3% par an entre 2015 et 2035 ; Scénario Moyen 7,7% ; Scénario Faible 6,3%. Ces taux n'incluent pas la demande des cimenteries de SCB Lafarge et de NOCIBE qui sont alimentées par la CEB.

La pointe annuelle, qui était en 2014 d'environ 200 MW, atteint dans le Scénario Haut 1402 MW en 2035 ; 1014 MW dans le Scénario Moyen et 768 MW dans le Scénario Faible.

Les déterminantes principales de la demande sont le taux d'accroissement de la population (en moyenne 3,3% par an dans la période 2015 – 2035), le taux de croissance du PIB réel et la politique d'électrification. La croissance moyenne du PIB réel est de 6,5% par an dans le dans le Scénario Haut, de 5,4% par an dans le Scénario Moyen et de 4,5% par an dans le Scénario Faible.

Le programme d'électrification sous forme de raccordement des localités au réseau interconnecté est ambitieux dans chacun des scénarios. Actuellement, environ 50% des localités au Bénin sont raccordées au réseau. En 2035, le taux est de 92% dans le Scénario Haut, de 86% dans le Scénario Moyen et de 79% dans le Scénario Faible.

La politique d'expansion de l'électrification se reflète aussi dans les hypothèses concernant le développement du taux d'électrification étendu¹ dans les localités qui sont déjà raccordées au réseau (densification). Le taux est actuellement de l'ordre de 47%. Il est en 2035 de 93% dans le Scénario Haut, de 84% dans le Scénario Moyen et de 71% dans le Scénario Faible.

¹ Le taux d'électrification étendu est la relation entre le nombre d'abonnés BT et le nombre de ménages. L'application de la définition standard du taux d'électrification – nombre d'abonnés ménages divisé par le nombre total de ménages – n'était pas possible parce que les statistiques de la SBEE n'ont pas permis de séparer les abonnés ménages des abonnés BT.

1 INTRODUCTION

Le présent rapport décrit les modèles qui sont utilisés pour produire des scénarios de demande et présente les résultats.

Les scénarios sont produits pour :

- La demande BT dans six Grands Centres Urbains (GCU): Cotonou, Abomey-Calavi, Sémé-Kpodji, Abomey-Bohicon, Porto Novo, Parakou; voir le Tableau 1.
- La demande MT dans les six GCU.
- La demande BT et MT dans les localités qui sont en dehors des grands centres urbains mais déjà électrifiées.
- La demande dans les localités qui ne sont pas encore électrifiées mais qui seront électrifiées dans le Plan Directeur d'ici 2035 par raccordement au réseau interconnecté.

Tableau 1 Définition des grands centres urbains en termes de centres de la SBEE

NOM DU GRAND CENTRE URBAIN	CENTRES DE LA SBEE DANS LE GRAND CENTRE
Cotonou	Littoral 1, Littoral 2
Abomey-Calavi	Godomey, Abomey-Calavi, Zinvie, Cocotomey
Sémé-Kpodji	Sémé-Kpodji, Djrégbé
Abomey-Bohicon	Abomey, Bohicon
Porto Novo	Porto Novo, Adjarra, Avrankou, Missérété
Parakou	Parakou

Trois scénarios, appelés Haut, Moyen et Faible, sont préparés pour la période 2015 – 2035. La croissance de la population, le développement de l'économie du Bénin et la politique d'électrification sont dans chaque scénario les déterminantes principales de la demande d'électricité. La croissance de la population est identique dans chaque scénario. Ils se distinguent donc notamment par les hypothèses concernant le développement économique et la politique d'électrification.

Pour établir ce plan directeur, il est indispensable d'avoir connaissance de la demande totale sur les années de la période 2015 – 2035 ainsi que sa répartition géographique. Etant donné la demande, la manière dont elle a été estimée n'a pas d'impact sur le plan d'expansion de production et le plan d'expansion des réseaux de transport et de distribution. Cela n'implique pas que le modèle qui est choisi pour estimer la demande n'est pas important. Le modèle doit bien refléter la tendance d'un développement « si tout va bien » ainsi que la tendance d'un développement où on est seulement « prudemment optimiste ».

Dans les modèles utilisés dans la présente étude, des scénarios de demande sont préparés pour plusieurs catégories d'abonnés et beaucoup de zones géographiques (6 grands centres urbains et 77 centres en dehors des GCU). Les modèles permettent notamment de tenir compte de la politique d'électrification (augmentation du taux d'électrification et dimension régionale de l'augmentation) et des tendances attendues concernant la répartition géographique des grands consommateurs (abonnés MT).

2 DEVELOPPEMENT DEMOGRAPHIQUE

L'objectif de la prévision démographique est d'estimer le nombre d'habitant par plus petite unité d'étude disponible pour la durée de planification : 2015-2035. Les données démographiques sont disponibles par localité pour le recensement de 2002 (3817 localités). Le recensement de 2002 donne également le nombre de personnes par ménage et par département.

Les données du recensement qui a eu lieu en 2013 sont toujours en cours de traitement. Seule des données provisoires connue : le nombre d'habitants dans les communes.

Le calcul de la population de chaque localité en 2013 a été effectué en appliquant le taux de croissance intercensitaire 2002-2013 de la commune de rattachement. Ce calcul abouti à une population totale légèrement supérieure aux résultats communiqués par l'INSAE. Pour être cohérent avec les résultats provisoires de l'INSAE, une normalisation au niveau communal a été réalisée. C'est-à-dire que les résultats en terme de population de la base de donnée sur laquelle la prévision de la demande a été faite est exactement la même que les résultats de l'INSAE.

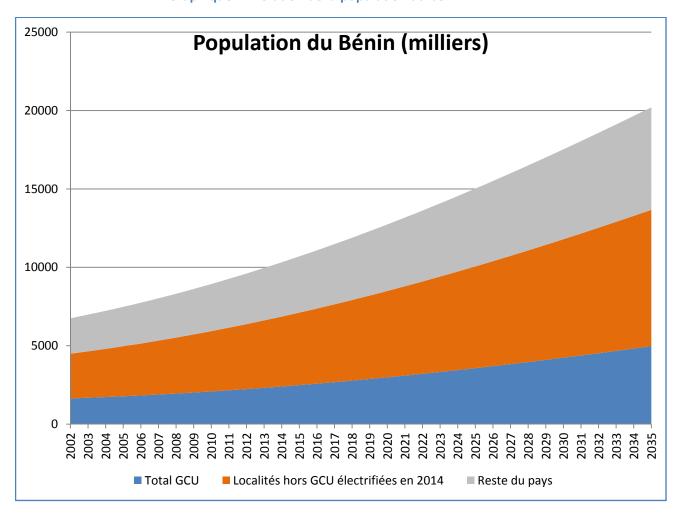
Afin de calculer les taux d'électrification réels de 2002 à aujourd'hui il a été nécessaire de calculer les populations pour toutes les années intermédiaires. Cette étape a été réalisée en calculant le taux de croissance moyen par localité sur la période 2002-2013.

Pour la période 2013-2035 deux approches différentes ont été suivies, une pour les grands centres urbains, une pour le reste du pays. Dans les deux cas il a été choisi de faire varier les taux de croissances 2002-2013 vers des valeurs plus faibles afin de modéliser la baisse du taux de croissance de la population.

- Grands centres urbains: le taux final 2034-2035 a été fixé comme hypothèse, une interpolation linéaire a permis de calculer les taux 2013-2034.
- Reste du pays: pour toutes les communes du Bénin, le taux 2034-2035 a été pris 33% plus faible que le taux moyen 2002-2013, les taux intermédiaires ont été calculé sur la base d'une extrapolation linéaire.

Une fois les résultats consolidés sur les zones suivantes : Grand Centres Urbains, localités électrifiées, localités non électrifiées, on constate que les hypothèses prises donnent des taux de croissance de population plus forts dans les grands centres urbains que dans le reste du pays, traduisant notamment l'exode rural.

Tableau 2 Scénario démographique


	Population (milliers)	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
GCU		1636	1683	1731	1783	1837	1895	1956	2020	2088	2161	2237	2318	2403
	lités électrifiées 014 hors GCU	2866	2972	3083	3198	3318	3443	3573	3709	3850	3998	4151	4311	4471
Rest	e du pays	2267	2349	2433	2520	2611	2706	2804	2906	3011	3121	3236	3354	3475
Tota	l Bénin	6769	7004	7247	7501	7766	8044	8333	8635	8949	9280	9624	9983	10349
	GCU		2,80%	2,90%	3,00%	3,10%	3,10%	3,20%	3,30%	3,40%	3,50%	3,50%	3,60%	3,60%
croissance	Localités électrifiées en 2014 hors GCU		3,70%	3,70%	3,70%	3,80%	3,80%	3,80%	3,80%	3,80%	3,80%	3,80%	3,90%	3,70%
	Reste du pays		3,60%	3,60%	3,60%	3,60%	3,60%	3,60%	3,60%	3,60%	3,70%	3,70%	3,70%	3,60%
Ĭ.	Total Bénin		3,47%	3,47%	3,50%	3,53%	3,58%	3,59%	3,62%	3,64%	3,70%	3,71%	3,73%	3,67%

	Population (milliers)	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
GCL	J	2491	2583	2678	2777	2880	2986	3096	3209	3327	3447	3571
	alités électrifiées 2014 hors GCU	4636	4804	4977	5153	5334	5519	5707	5900	6096	6296	6500
Rest	te du pays	3598	3724	3853	3984	4118	4254	4393	4535	4678	4825	4973
Tota	al Bénin	10725	11111	11508	11914	12332	12759	13196	13644	14101	14568	15044
	GCU	3,70%	3,70%	3,70%	3,70%	3,70%	3,70%	3,70%	3,70%	3,70%	3,60%	3,60%
croissance	Localités électrifiées en 2014 hors GCU	3,70%	3,60%	3,60%	3,50%	3,50%	3,50%	3,40%	3,40%	3,30%	3,30%	3,20%
	Reste du pays	3,50%	3,50%	3,50%	3,40%	3,40%	3,30%	3,30%	3,20%	3,20%	3,10%	3,10%
ř	Total Bénin	3,63%	3,60%	3,57%	3,53%	3,51%	3,46%	3,43%	3,39%	3,35%	3,31%	3,27%

	Population (milliers)	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
GCU		3699	3830	3964	4100	4240	4383	4528	4675	4824	4975
Localités électrifiées en 2014 hors GCU		6707	6918	7131	7348	7568	7791	8016	8244	8474	8706
Reste d	Reste du pays		5276	5430	5586	5744	5903	6064	6226	6389	6553
Total B	énin	15529	16024	16525	17034	17552	18077	18608	19145	19687	20234
a	GCU	3,60%	3,50%	3,50%	3,50%	3,40%	3,40%	3,30%	3,30%	3,20%	3,10%
Croissance	Loc. électrifiées 2014 hors GCU	3,20%	3,10%	3,10%	3,00%	3,00%	2,90%	2,90%	2,80%	2,80%	2,70%
	Reste du pays	3,00%	3,00%	2,90%	2,90%	2,80%	2,80%	2,70%	2,70%	2,60%	2,60%
ř	Total Bénin	3,22%	3,19%	3,13%	3,08%	3,04%	2,99%	2,94%	2,89%	2,83%	2,78%

Graphique 2 Evolution de la population du bénin

3 DEVELOPPEMENT ECONOMIQUE²

3.1 Période 1991 - 2014

Le Tableau 3 montre l'évolution du PIB réel dans la période 1991 – 2014.

Tableau 3 Taux de croissance du PIB réel dans la période 1991-2014 (aux prix constants de 1985)

1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
4,2	3,0	5,8	2,0	6,0	4,3	5,7	4,0	5,3	4,9	6,2	4,4
2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
3,9	3,1	2,9	3,8	4,6	5,0	2,7	2,6	3,3	5,4	5,6	5,7

Sources

- 1991 2012 INSAE sauf pour 2011 où la valeur d'INSAE de 3,5% a été remplacée par la valeur de 3,3% indiquée dans le document du Gouvernement « Projet de Loi de Finances, Document de la Programmation Budgétaire et Economique Pluriannuelle 2015 2017 »
- 2013 et 2014 Document du Gouvernement cité ci-dessus.

En moyenne, le taux de croissance du PIB réel était sur la période 1991 – 2014 de 4,4% par an.

Les raisons principales de l'évolution économique jusqu'en 2014

Dans les années 90, de nombreuses réformes macro-économiques ont été mises en œuvre, notamment dans le cadre des Programmes d'Ajustement Structurels signés avec le FMI et la Banque Mondiale. Les réformes ont permis à l'économie de retrouver le sentier de la croissance entre 1995 et 2001. Le relâchement dans la mise en œuvre des réformes structurelles, les délestages de 2004 et l'interdiction de réexportations que le Nigéria avait imposée entre 2003 et 2005 expliquent la tendance à la baisse observée entre 2002 et 2005. Les bonnes campagnes agricoles, la modernisation du port de Cotonou, la fin des restrictions imposées par le Nigéria dans les relations commerciales et la poursuite des réformes sont mentionnées comme raisons pour la croissance dans les années 2006 – 2008. Le ralentissement dans la période 2009 – 2011 est intervenu à la suite de divers chocs dont la crise financière mondiale de 2008 ainsi que les inondations de 2010 qui ont détruit une grande partie des récoltes agricoles et contribué au mauvais rendement de la filière coton (voir le Graphique 3.1). L'accélération de croissance depuis 2012 provient notamment de la hausse de la production du coton et de la bonne performance du commerce.

• République du Bénin, Document de la Programmation Budgétaire et Economique Pluriannuelle 2015 – 2017.

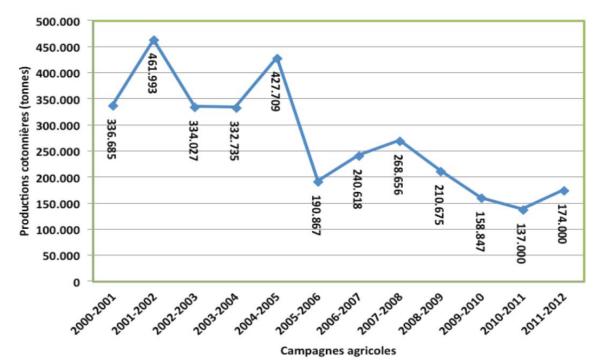
² Ce chapitre est basé sur les renseignements de M. Aristide Medenou, Directeur dans le Ministère de l'Economie et des Finances, et la revue des documents suivants :

[•] CAPOD, Politiques Macroéconomiques au Bénin: Progrès, Limites et Perspectives, Septembre 2010. BAfD/OCDE, Perspectives économiques en Afrique – Bénin, 2008.

[•] BAD, Bénin – Document de Stratégie Pays 2012 – 2016, Juin 2012.

[•] FMI, Rapport No. 14/150, Juin 2014.

[•] INSAE, Note sur les comptes nationaux de 2012, Février 2013.


Importance des secteurs économiques

L'économie béninoise est dominée par l'agriculture et les services. L'industrie demeure un secteur peu développé.

L'agriculture représente environ 22% du PIB et occupe 50% - 60% de la population active. Le produit principal du secteur est le coton. Les exportations du coton participent à hauteur de 80% à la constitution des recettes d'exportations. Le Graphique 2 montre la production cotonnière dans les années 2000/1 – 2011/12. Autres produits du secteur, les cultures vivrières (manioc, haricot, igname, sorgho, mais, mil, riz), l'huile de palme, l'anacarde et l'ananas. Le secteur agricole reste tributaire des pluies et il est peu compétitif du fait des coûts des intrants élevés et de sa faible mécanisation.

Le secteur secondaire est encore embryonnaire au Bénin. Sa contribution au PIB est de l'ordre de 13%. La production industrielle est dominée par l'industrie textile, les cimenteries et l'industrie alimentaire. L'agro-industrie n'est rien d'autre que la transformation artisanale qui souffre de manque d'équipements et ne produit pas à grande échelle.

Le secteur tertiaire compte pour environ 50% du PIB. Les activités du secteur reposent essentiellement sur le commerce qui reste largement tributaire des relations avec le Nigéria.

Graphique 3 Evolution de la production cotonnière au bénin ; campagnes 2000/1 - 2011/12

Source: La Filière Coton Tisse Sa Toile Au Bénin, SNV Bénin (Organisation Néerlandaise de Développement), KIT Publishers 2013, p.18. Le Rapport No. 14/150 du FMI (Juin 2014) mentionne sur page 26 que la production cotonnière était en 2012/13 de 240 000 tonnes. En 2013/14, elle était de 307 355 tonnes selon le document « Projet de Loi de Finances, Document de la Programmation Budgétaire et Economique Pluriannuelle 2015 – 2017 » du Gouvernement (p.12).

3.2 Scénarios pour la période 2015 - 2035

Le FMI considère les perspectives économiques dans l'ensemble favorables (Rapport 14/150 de juin 2014). L'amélioration du climat des affaires pour accroitre l'investissement privé et l'augmentation des investissements dans les infrastructures de base, y compris dans le secteur de l'électricité, sont deux conditions principales pour réussir. Le Gouvernement est conscient de ces conditions. La politique économique du Gouvernement jusqu'à 2017 sera axée sur le développement de l'entreprise et de l'initiative privée. La politique prévoit à cet effet notamment la poursuite des réformes structurelles³, des investissements publics dans l'infrastructure et l'augmentation du degré de mécanisation dans le secteur de l'agriculture.

La réalisation des bonnes perspectives dépend aussi de facteurs en dehors du contrôle du Gouvernement. Il s'agit notamment de la politique commercial du Nigéria, des conditions météorologiques et du prix du coton sur le marché mondial.

Les scénarios de demande sont basés sur trois scénarios de développement économique.

Tableau 4 Scénarios de la croissance du PIB réel du Bénin dans la période 2015 - 2035 (% par an)

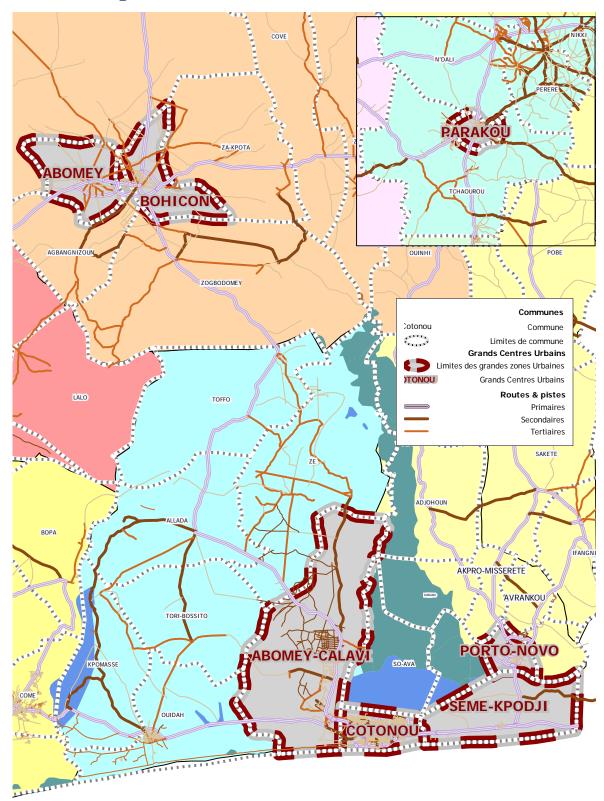
Scénario	2015	2016	2017	2018	2019	2020	 2035
Haut	6,0	6,0	6,5	6,5	6,5	6,5	 6,5
Moyen	5,2	4,8	4,8	4,8	4,8	5,5	 5,5
Faible	4,5	4,5	4,5	4,5	4,5	4,5	 4,5

Sources

• Scénario Haut: Projection du Gouvernement jusqu'en 2017; ensuite estimation du consultant.

Scénario Moyen: Projection du FMI jusqu'en 2019⁴; ensuite estimation du consultant.

• Scénario Faible : Estimation du consultant.


³ Les réformes porteront aussi sur la SBEE. Le document « Projet de Loi de Finances, Document de la Programmation Budgétaire et Economique Pluriannuelle 2015 – 2017 » mentionne « la réforme du secteur de l'énergie par l'assainissement de la SBEE et la création d'une société publique de patrimoine chargée de réaliser les investissements et de les entretenir ainsi que d'une société mixte de gestion, chargée de la distribution et dont le capital social sera cédé à hauteur de 51% » (p. 21 et 22).

⁴ Source: FMI, Sixième Revue de l'Accord au Titre de la Facilité Elargie de Crédit. Rapport 14/150, Juin 2014, p.15. http://www.imf.org/external/french/pubs/ft/scr/2014/cr14150f.pdf

4 DEMANDE BT DANS LES GRANDS CENTRES URBAINS

4.1 Carte des grands centres urbains

4.2 Evolution des abonnés BT et des ventes MT dans le passé

4.2.1 Abonnés BT et taux d'électrification étendu

L'évolution des abonnés BT dans la période 2002 - 2014 est présentée dans le tableau ci-dessous.

Tableau 5 Nombre d'abonnés BT dans les grands centres urbains dans la période 2002 - 2014

GRAND CENTRE URBAIN	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Cotonou	114,815	122,984	129,521	135,483	140,889	144,632	148,283	151,404	162,469	167,306	172,177	177,127	181,000
Abomey-Calavi	24,203	27,434	30,852	34,806	38,319	42,209	47,220	47,079	56,670	61,893	66,857	72,027	78,000
Sémé-Kpodji	2,539	2,819	3,454	4,093	4,746	5,659	6,448	5,984	7,488	7,835	8,596	9,357	10,500
Abomey-Bohicon	12,712	14,637	15,524	16,280	17,325	18,427	20,249	20,637	21,950	23,417	27,422	25,994	29,000
Porto Novo	27,455	29,417	31,918	33,870	36,856	38,368	40,262	43,362	45,127	47,736	49,858	50,904	52,000
Parakou	12,260	13,095	13,994	14,508	15,499	16,757	17,896	20,525	20,220	21,185	22,598	24,857	27,000

Source

- SBEE. 2014 : Estimation du consultant.
- Sémé-Kpodji 2012 : moyenne des valeurs de 2011 et de 2013. Le nombre dans les statistiques de la SBEE est de 7258.

La division du nombre d'abonnés BT par le nombre de ménages donne les « taux d'électrification étendu » présentés ci-dessous. On constate que le taux a presque toujours augmenté.

Tableau 6 Taux d'électrification étendu dans les GCU dans la période 2002 - 2014

GRAND CENTRE URBAIN	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Cotonou	74%	80%	84%	87%	91%	93%	95%	97%	104%	107%	110%	112%	115%
Abomey-Calavi	37%	39%	41%	44%	45%	46%	48%	45%	50%	51%	52%	52%	52%
Sémé-Kpodji	11%	11%	13%	14%	16%	18%	19%	17%	19%	19%	20%	20%	21%
Abomey-Bohicon	34%	39%	40%	40%	42%	43%	46%	45%	47%	49%	55%	51%	55%
Porto Novo	59%	62%	67%	70%	75%	77%	80%	85%	87%	91%	93%	94%	95%
Parakou	64%	65%	66%	65%	66%	68%	69%	76%	71%	71%	72%	76%	79%

La valeur du « taux d'électrification étendu » peut être supérieure à 100% en raison du nombre d'abonnés BT qui peut dépasser le nombre de ménages comme c'est le cas à Cotonou depuis 2010.

La définition traditionnelle du taux d'électrification divise le nombre d'abonnés ménages par le nombre total de ménages. La valeur la plus élevée de cette définition est donc de 100%. Le consultant avait envisagé d'utiliser la définition traditionnelle mais cette approche a été abandonnée à cause du problème suivant : le consultant a obtenu de la SBEE des statistiques pour 2012 et 2013 qui montrent pour tous les centres de la SBEE le nombre d'abonnés « Particuliers » par catégorie tarifaire.

La SBEE a informé le consultant que la grande majorité des abonnés BT1 de ces statistiques sont des ménages sauf ceux qui ont un compteur de prépaiement. Il y a des statistiques qui montrent pour les

centres le nombre total des abonnés qui ont un compteur de prépaiement. Il est vrai que ces abonnés ne sont pas tous des ménages mais on ne fait probablement pas une grande erreur si on suppose que tous soient des ménages.

Une estimation grossière du nombre d'abonnés ménages est donc possible pour les années 2012 et 2013. Les statistiques susmentionnées sur les « Particuliers » montrent aussi les ventes par centre et par catégorie tarifaire. Le problème est que le consultant n'a pas reçu des statistiques qui montrent les ventes prépayés par centre. Il n'est donc pas possible d'estimer la consommation spécifique des abonnés ménages, or ce paramètre est nécessaire pour utiliser un modèle faisant la distinction entre les abonnés BT ménages et d'autres abonnés BT.

Encadré 4.1 : Taux d'électrification dans la définition traditionnelle

Le taux d'électrification dans la définition traditionnelle est obtenu en divisant le nombre d'abonnés ménages par le nombre total de ménages.

Cotonou : Le calcul donne pour Cotonou un taux d'électrification de (presque) 100% en 2013. Le résultat suppose que tous abonnées BT1 des « Particuliers » (123 738) et tous abonnés prépayés (39 543) furent des ménages. Cela donne avec l'estimation de 157 510 ménages à Cotonou en 2013 un taux d'électrification de 104%.

Le calcul correspondant pour les autres GCU donne pour 2013 : Abomey-Calavi 49%, Sémé-Kpodji 15%, Abomey-Bohicon 47%, Porto Novo 87% et Parakou 69%.

4.2.2 Ventes BT

Les statistiques de la SBEE ont seulement permis de calculer les ventes BT dans les années 2011 – 2013. Pour les autres années, le consultant n'a pas pu obtenir les ventes par centre.

2011 2014 GRAND CENTRE URBAIN 2012 2013 276,502 281,640 Cotonou 277,676 273,437 Abomey-Calavi 96,794 77,805 85,019 93,975 Sémé-Kpodji 14,626 12,385 12,633 14,200 Abomey-Bohicon 20,919 24,201 23,537 24,243 Porto Novo 50,186 50,181 49,190 50,666 Parakou 25,327 26,158 26,942 27,750 Total 464,298 474,695 481,281 495,719

Tableau 7 Ventes BT dans les années 2011 - 2014 (MWh)

Sources

- 2011 2013 : Calculé à partir des ventes BT par centre montrées dans les documents « Rapport Annuel » de la SBEE.
- 2014 : Estimation du consultant

La consommation spécifique calculée à partir des ventes facturées est présentée dans le tableau cidessous. Pour obtenir la vraie consommation spécifique, il faudrait ajouter les pertes non-techniques aux ventes facturées.

Tableau 8 : Ventes spécifiques des abonnés BT dans les années 2011 - 2014* (kWh par abonné BT par mois)

GRAND CENTRE URBAIN	2011	2012	2013	2014
Cotonou	138	134	129	130
Abomey-Calavi	105	106	109	103
Sémé-Kpodji	132	122	126	116
Abomey-Bohicon	74	74	75	70
Porto Novo	88	84	81	81
Parakou	100	96	90	86

^{*} Ne tient pas compte des pertes non-techniques. 2014 : Basé sur l'estimation des ventes.

4.3 Modèle pour les scénarios

4.3.1 Développement du taux d'électrification étendu

Le développement du taux d'électrification étendu dépend des décisions politiques et du développement de l'économie. Plus le taux de croissance du PIB réel est élevé, plus le gouvernement aura les moyens pour l'électrification. Le modèle calcule avec les hypothèses suivantes le taux en 2035.

Tableau 9 Taux d'électrification étendu dans l'année 2035 en fonction du scénario

Grand Centre Urbain	2014	2035 Scénario Haut	2035 Scénario Moyen	2035 Scénario Faible
Cotonou	115%	160%	155%	145%
Abomey-Calavi	52%	105%	95%	85%
Sémé-Kpodji	21%	95%	85%	75%
Abomey-Bohicon	55%	105%	95%	85%
Porto Novo	95%	130%	120%	110%
Parakou	79%	105%	95%	85%

L'évolution entre 2014 et 2035 n'est pas linéaire mais le taux est supposé augmenter jusqu'à 2020 de moins en moins vite, avec une tendance à baisser ensuite. Cette tendance tient compte du phénomène où plus le taux est élevé, plus les coûts d'augmentation sont élevés ce qui freine le développement.

Il se peut que l'algorithme qui calcule le développement du taux d'électrification étendu atteigne la valeur de 2035 avant 2035. Dans ce cas, le taux reste à partir de cette année au niveau du taux cible jusqu'à 2035.

L'accroissement des abonnés BT à Cotonou est largement dû aux abonnés BT autres que les ménages. Comme décrite dans le paragraphe 2.1, (presque) tous ménages à Cotonou sont déjà raccordés et l'accroissement de la population est supposé être très faible avec en moyenne 0,2% par an (données INSAE).

4.3.2 Demande spécifique en 2014

Ni le nombre d'abonnés BT, ni les ventes BT en 2014 ne sont encore connues (fin mars 2015). Cela ne permet pas de calculer les consommations spécifiques à partir des ventes facturées. L'estimation grossière est présentée dans le tableau ci-dessous. Pour obtenir la demande des abonnés en 2014, il faut tenir compte des pertes non-techniques et des pertes à cause de délestages. Les pertes non-techniques sont estimées à 9,3% des ventes facturées ; les pertes dues aux délestages à 5%.

Tableau 10 Estimation de la demande BT spécifique en 2014

Grand Centre Urbain	Ventes spécifiques	Consommation spécifique	Demande spécifique
	kW	h par abonné BT par	mois
Cotonou	130	142	148
Abomey-Calavi	103	113	118
Sémé-Kpodji	116	127	133
Abomey-Bohicon	70	76	80
Porto Novo	81	89	93
Parakou	86	94	98

Le Tableau 10 présente l'estimation de la demande spécifique en 2014 qui en résulte. Cette demande constitue le point de départ pour le modèle qui calcule l'évolution de la demande spécifique.

Encadré 4.2 : Pertes non-techniques

Les pertes totales étaient élevées dans le passé. En 2013, elles s'élevaient à 21,31% de l'énergie injectée dans le réseau aux postes sources ; en 2012 à 21,70% et en 2011 à 21,76%.

Le réseau de la SBEE est vétuste et beaucoup de transformateurs sont surchargés. Les pertes techniques sont donc élevées. Le consultant a pris contact avec la SBEE pour obtenir une estimation des pertes techniques afin de permettre l'estimation des pertes non-techniques comme la différence entre les pertes totales et les pertes techniques. La réponse était que la SBEE n'est actuellement pas en position d'avancer une estimation. La SBEE envisage de mener une étude en 2015 qui permettra d'évaluer les pertes techniques.

L'estimation grossière du consultant est que les pertes techniques sont dans l'ordre de 16% de l'énergie injectée dans le réseau de distribution. Pour un bon réseau de distribution on doit compter avec des pertes en puissance de l'ordre de 2 à 3% en MT et de 3 à 8% en BT à la pointe. Comme les pertes en énergie sont l'intégrale des pertes instantanées en puissance sur le temps et que ces pertes varient, elles sont donc inférieures et peuvent être de l'ordre de 1 à 2% en MT et de 2 à 5% en BT. Pour un mauvais réseau, les pertes en puissances à la pointe peuvent dépasser les 6% en MT et 15% en BT. En pertes d'énergie cela peut évoluer vers les 4% en MT et jusqu'à 12% en BT. En faisant le calcul avec 14% (MT+BT) et en considérant que les pertes techniques plus non-techniques sont de l'ordre de 22% de l'énergie injectée dans le réseau de distribution, cela donne des pertes non-techniques de 8% au niveau de l'injection et de 9,3% au niveau des consommateurs.

Encadré 4.3 : Pertes à cause d'interruptions de fourniture d'électricité

L'estimation des pertes à cause de délestages et d'autres d'interruptions est basée sur l'évaluation des statistiques d'interruptions de fourniture d'électricité; voir le tableau en bas. La valeur moyenne du temps d'interruptions est de 6% de l'année. La valeur de 5% est utilisée comme demande qui n'était pas satisfaite à cause de délestages et d'autres interruptions.

Interruptions de fourniture d'électricité (en % du temps de l'année)

Poste	2012	2012	2012	2012	2013	2013	2013	2013
	Déclench.	Travaux	Délestages	Total	Déclench.	Travaux	Délestages	Total
Védoko	1%	8%	3%	12%	0%	7%	?	7%
Akpakba	2%	3%	3%	8%		pas de d	onnées	
Gbégamey	2%	0%	1%	3%	2%	0%	?	2%
Maria-Gléta	4%	1%	0%	4%	9%	2%	?	11%
Sémé	1%	1%	1%	4%	2%	4%	?	6%

Source : calculé à partir des données du Rapport Annuel 2012 et 2013 de la SBEE. Délestage pas mentionné comme catégorie d'interruption dans le rapport 2013.

4.3.3 Evolution de la demande spécifique

La majorité des abonnés BT sont les ménages dont la variation de la demande spécifique dépend notamment de leurs revenus. L'évolution du PIB réel par capita est utilisée comme indicateur du développement des revenus.

Les autres abonnés BT comprennent une multitude d'activités: commerçants, petites industries, artisans, soudeurs, restaurants, hôtels, banques, églises, mosquées, écoles, infrastructures administratives, éclairage publique, etc. Les facteurs qui déterminent leur demande varient sans doute d'un abonné à l'autre. Mais on peut aussi s'attendre à ce que les développements démographique et économique soient les facteurs qui aient un impact important sur la demande de chacun de ces abonnés. Dans une approche qui fait la projection de la demande pour l'ensemble de ces abonnées, il est raisonnable de lier la demande seulement aux développements démographique et économique. Dans le présent modèle, la demande est une fonction du PIB réel par capita. Cette variable tient compte des développements démographique et économique.

Sur la période 2002 – 2013, le taux de croissance du PIB réel par capita variait entre -1,06% (2010) et 1,79% (2013). Pour cinq des 11 années, la croissance était négative. En moyenne, la croissance était cependant légèrement positive (0,28% par an) et on s'attendrait donc à ce que la consommation spécifique ait aussi augmenté. Tenant compte que (i) la consommation spécifique augmente normalement plus que les revenus (élasticité > 1) jusqu'à ce que la possession d'appareils électriques ait atteint un niveau de saturation et (ii) que la consommation spécifique ne se réduit normalement pas si les revenus réels baissent, on s'attend à une augmentation d'au moins de 5%. Cela n'était pas le cas. En 2013, la consommation des tous les abonnés BT de la SBEE était en moyenne de 104 kWh/mois; en 2002, elle était de 102 kWh/mois.

Encadré 4.4 : Elasticité

L'élasticité est la relation entre le taux de variation de deux variables. Dans le modèle qui calcule la demande BT dans les GCU, les variables sont la demande spécifique et le PIB réel par capita. Exemple : L'élasticité de 2,0 signifie que la croissance de la demande spécifique est le double de la croissance du PIB réel par capita. Si le PIB réel par capita augmente de 2,5%, la demande spécifique augmente de 5%.

Une explication possible est que la consommation des abonnés qui existaient en 2012 avait augmenté. Mais dans chaque année de la période 2003 – 2013 la SBEE avait raccordé de nouveaux abonnés BT (en moyenne 21 750 par an). La consommation spécifique d'un nouvel abonné est normalement au début plus faible que celle des abonnés existants. Elle augmente plus vite mais n'atteint en général pas le niveau des abonnés existants parce que les nouveaux abonnés ont tendance à être moins aisés que les abonnés existants. Dans ce schéma, la consommation spécifique moyenne peut encore augmenter (elle peut aussi baisser) mais les nouveaux abonnés exercent un impact à la baisse.

Un tel modèle est utilisé pour la projection de l'évolution de la demande spécifique des abonnés BT. Dans le modèle, la demande spécifique des abonnés BT à la fin de 2014 augmente en fonction du PIB

réel par capita avec une élasticité qui est en 2015 de 1,7 et se réduit à 1,0 en 2035. Les nouveaux abonnés BT commencent avec une demande spécifique qui est de 20% plus faible que celle des abonnés BT qui étaient raccordés à la fin de 2014. La demande des nouveaux abonnés augmente ensuite en fonction du PIB réel par capita mais avec une plus haute élasticité, qui est de 2,0 en 2015 et de 1,2 en 2035⁵.

Le modèle décrit en haut est utilisé pour les GCU sauf Cotonou et Porto-Novo.

Cotonou présente un cas spécial. Le taux de croissance de la population est très faible dans le modèle (0,2% par an). Cette hypothèse est basée sur les résultats des recensements de 2002 et de 2013. L'explication pour le faible taux de croissance est qu'il y a très peu d'espace vide dans le grand centre de Cotonou. Un pourcentage important de la population qui travaille à Cotonou habite déjà dans le centre urbain Abomey-Calavi et ce pourcentage augmentera dans le futur. Il est donc attendu que la majorité des nouveaux abonnés BT à Cotonou soient d'autres abonnés BT que des ménages. La demande initiale des autres abonnés BT est supposée être identique à celle des abonnés BT existants à la fin de 2014. Signalons dans ce contexte qu'un autre abonné BT consomme typiquement nettement plus d'électricité qu'un ménage. Concernant l'évolution de la demande spécifique, le modèle calcule avec les mêmes élasticités que pour les autres GCU.

Porto-Novo présente les mêmes caractéristiques que Cotonou mais atténuées. Un très haut pourcentage de la population est déjà approvisionné par la SBEE et le taux de croissance de la population est relativement faible. Dans le modèle, il baisse de 1,4% en 2014 à 1,0% en 2035. L'accroissement de la demande BT sera donc dû aux autres abonnés BT (autres que les ménages). Leur demande spécifique est plus élevée par rapport à celle des ménages. C'est pour cette raison que le modèle suppose que la demande initiale des nouveaux abonnés BT soit identique à la demande en 2014. La projection de l'accroissement de la demande spécifique utilise les mêmes élasticités que pour les autres GCU.

Encadré 4.5 : Impact des tarifs sur la demande

Le tableau ci-dessous montre les ventes en kWh et en FCFA dans les années 2005 – 2013. Les ventes en FCFA comprennent les ventes BT et MT. Les ventes en FCFA qui distinguent BT et MT étaient seulement fournies pour 2012 et 2013.

-

⁵ Les données de la période 2002 – 2013 ont été utilisées pour obtenir une idée des résultats que le modèle aurait donné si on l'avait utilisé pour projeter l'évolution de la consommation spécifique de tous abonnés BT dans cette période. Des relativement bons résultats ont été obtenus en faisant le calcul avec les valeurs suivantes : (1) La consommation initiale des nouveaux abonnés BT est de 10% plus faible que celle des abonnés existants à la fin de 2002. (2) L'élasticité des abonnés existants s'est réduite de 2,2 en 2003 à 1,7 en 2013. Nouveaux abonnées : 2,5 en 2003 et 2,0 en 2013. Dans les années où la croissance du PIB/capita était négative, la consommation spécifique de l'année précédente a été gardée. Résultats : Dans sept des 11 années de la période 2003 – 2013, la différence entre les valeurs observées et celle du modèle est entre -5% et +2%. Dans les années 2008 – 2010, la différence est entre -8% et -12% (sous-estimation). Dans ces années, le niveau de la consommation spécifique était plus élevé (moins d'interruptions ?).

107.3

108.9

110.0

130.5

133.7

133.7

		Ventes et pr	ix moyens da	ins la periode	e 2005 – 201	3		
	Ventes (millions FCFA, BT+MT)		,	Ventes en <mark>kW</mark> ł	1	Prix moyen (FCFA/kWh)		
	hors taxes	ventes TTC	BT	MT	BT + MT	hors taxes	πс	
2005	45,239	53,596	379,704,741	126,910,934	506,615,675	89.3	105.8	
2006	46,619	55,208	390,396,966	143,207,935	533,604,901	87.4	103.5	
2007	48,976	58,026	424,339,650	155,741,932	580,081,582	84.4	100.0	
2008	56,103	66,530	497,227,716	173,524,004	670,751,720	83.6	99.2	
2009	65,378	78,735	522,970,194	190,095,199	713,065,393	91.7	110.4	
2010	81,974	99,803	572,496,439	197,891,690	770,388,129	106.4	129.5	

213,650,286

242,422,516

796,241,428

840,546,644

852,480,000

582,591,142

598,124,128

Dans la période 2005 – 2013, le prix moyen TTC a augmenté significativement sur deux années : en 2009 de 11,3% et en 2010 de 17,3%. Sur les autres années, le changement du prix moyen TTC était faible (entre -2,2% et + 2,4%). Les ventes totales augmentaient toujours. En moyenne de 6,7% par an. En 2009, l'augmentation de 6,3% était légèrement inférieure à la moyenne. L'augmentation en 2010 de 8,0% était supérieure.

621,283,000 231,197,000

La conclusion tirée de ces résultats est que dans la période 2005 – 2013, les tarifs n'ont pas eu un impact sur la consommation.

Il est peu probable que les analyses plus détaillées – ventes BT et prix BT, ventes MT et prix MT – donnent des résultats différents. Comme mentionné en haut, des analyses plus détaillées n'étaient pas possible parce que les ventes BT et MT en FCFA étaient seulement fournies pour 2012 et 2013.

4.4 Résultats

2011

2012

2013

85,463

91,533

93,731

103,903

112,357

114,009

La demande dans les trois scénarios est présentée dans le tableau ci-dessous. On constate que :

- Le taux de croissance est le plus élevé dans le GCU de **Sémé-Kpodji**. Cela est notamment dû à l'augmentation du taux d'électrification. Le taux étendu est actuellement de l'ordre de 20%. Dans les autres GCU, le taux varie entre 52% et 115%. En 2035, Sémé-Kpodji n'atteint pas encore le niveau des autres GCU mais la différence se réduit beaucoup. Cela et la forte croissance de la population en moyenne de 5,0% par an entre 2014 et 2035 ont pour conséquence que la demande BT à Sémé-Kpodji, qui était en 2014 la plus faible des six GCU, prend en 2035 la troisième position après Cotonou et Abomey-Calavi.
- Cotonou est toujours le plus grand « abonné BT » mais la croissance de la demande est la plus faible de tous GCU. Les raisons principales pour le relativement faible taux de croissance sont que (presque) 100% de la population de la ville sont déjà électrifiés et que la population n'augmente que de 0,2% par an. Que le nombre d'abonnés BT augmente plus que 0,2% par an est dû à l'hypothèse que les activités économiques continuent d'évoluer. La demande spécifique de ces abonnés est nettement plus élevée que celle des abonnés ménages et implique que Cotonou constate dans le modèle la plus forte augmentation de la demande spécifique de tous GCU.

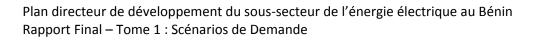

- La demande BT d'Abomey-Calavi approche la demande de Cotonou. La croissance de la population et la forte augmentation du taux d'électrification sont à l'origine de ce développement. Dans le modèle, la population dans le GCU d'Abomey-Calavi s'accroit en moyenne de 5,4% par an entre 2013 et 2035. Abomey-Calavi devient la « cité dortoir » de Cotonou. Le taux d'électrification étendu augmente de 52% en 2014 à 105% en 2035 (Scénario Haut); dans le Scénario Moyen à 95% et dans le Scénario Faible à 85%.
- Abomey-Bohicon: La croissance de la demande dans le GCU d'Abomey-Bohicon prend la troisième place après Sémé-Kpodji et Abomey-Calavi. Les facteurs principaux pour l'accroissement de la demande sont les mêmes que pour Abomey-Calavi: la croissance de la population et la forte augmentation du taux d'électrification étendu. Le fait que la croissance de la demande soit plus faible par rapport à Abomey-Calavi est dû à un accroissement de la population plus faible: en moyenne 3,4% par an par rapport au 5,4% dans le GCU d'Abomey-Calavi.
- Porto Novo: Le taux de croissance de population de Porto-Novo est faible; en moyenne 1,2% par an dans la période 2014 2035. La nette augmentation de la demande est due à l'hypothèse que la grande majorité des nouveaux abonnés BT à Porto-Novo soient des autres abonnés BT (petites industries, commerçants, banques, assurances, hôtels, restaurants, artisans, écoles, infrastructures administratives, etc.). Leur demande est plus élevée que celle des abonnés BT ménages.
- **Parakou**: L'accroissement de la population en moyenne de 4,1% par an entre 2014 et 2035 est le facteur principal de l'accroissement de la demande.

Tableau 11 Résultats des GCU pour les scénarios Haut Moyen Faible

Ventes facturées Demande Demande Demande Demande Demande Croissance GCU 2015-2035 **GWh** GWh GWh GWh GWh GWh **GWh GWh GWh** % par an Cotonou 5.4% Abomey-Calavi 10.6% Sémé-Kpodji 13.7% Abomey-Bohicon 8.7% Porto Novo 6.2% Parakou 7.9% Total 1,341 1,945 2,678 7.7%

Scénario Haut

Scénario Moyen

		Ven	tes f	acturé	ées	Demande	Demande	Demande	Demande	Demande	Croissance
GCU		2011	2012	2013	2014	2015	2020	2025	2030	2035	2015-2035
		GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	% par an
Cotonou		278	277	273	282	333	386	477	574	671	3.6%
Abomey-C	alavi	78	85	94	97	121	186	307	471	666	8.9%
Sémé-Kpo	dji	12	13	14	15	19	36	73	125	191	12.2%
Abomey-B	ohicon	21	24	24	24	29	39	58	82	112	6.9%
Porto Novo	0	50	50	49	51	60	72	92	115	137	4.2%
Parakou		25	26	27	28	34	44	62	84	108	6.0%
Total		464	475	481	496	597	764	1,069	1,451	1,885	5.9%

Scénario Faible

	Ver	ites f	acture	ées	Demande	Demande	Demande	Demande	Demande	Croissance
GCU	2011	2012	2013	2014	2015	2020	2025	2030	2035	2015-2035
	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	% par an
Cotonou	278	277	273	282	328	364	431	500	565	2.8%
Abomey-Calavi	78	85	94	97	119	173	274	407	559	8.0%
Sémé-Kpodji	12	13	14	15	19	33	64	107	159	11.3%
Abomey-Bohicon	21	24	24	24	29	37	52	71	93	6.0%
Porto Novo	50	50	49	51	59	67	83	99	114	3.3%
Parakou	25	26	27	28	33	41	55	72	90	5.1%
Total	464	475	481	496	588	716	959	1,255	1,581	5.1%

5 DEMANDE MT

Ce chapitre décrit la méthode utilisée pour estimer la demande MT dans les grands centres urbains. Cette méthode est aussi utilisée pour l'estimation de la demande MT dans des centres de la SBEE qui sont en dehors des GCU mais où il y a déjà des abonnées MT. Il s'agit des centres de Ouidah, Allada, Sékou, Attagan, Lokossa et Natitingou. La présentation des résultats se limite à la demande MT dans les GCU. Les résultats pour les autres centres sont présentés dans le Chapitre 6.

5.1 Evolution des ventes MT dans le passé

L'évolution des ventes MT dans la période 2002 - 2014 est présentée dans le tableau ci-dessous. Le développement du nombre d'abonnés se trouve dans l'Annexe 1.

Région SBEE 2002 2003 2004 2005 2006 2007 Littoral 1 Littoral 2 Atlantique 95,895,901 107,029,415 90,539,335 85,877,738 104,273,476 107,777,666 Oueme 12,080,069 12,729,119 9,784,354 10,515,143 11,399,133 11,169,115 Mono 9,324,626 7,193,046 9,583,438 7,358,678 11,729,213 8,924,128 Zou 13,583,846 12,712,155 11,154,270 14,050,985 12,493,120 14,781,716 Borgou 5,246,405 5,953,989 3,656,392 4,789,186 5,795,861 8,264,848 3,252,171 2,054,957 2,094,444 Atacora 2,820,580 1,887,667 2,019,374 Total SBEE 138,951,427 150,600,977 124,382,354 126,910,934 143,207,935 155,741,932 SCB Lafarge 50,039,000 44,693,000 54,644,000 54,645,000 56,203,000 54,067,974 Total Bénin 188,990,427 195,293,977 179,026,354 181,555,934 199,410,935 209,809,906

Tableau 12 Ventes MT dans la période 2002 - 2014 (kWh)

Région SBEE	2008	2009	2010	2011	2012	2013	2014
Littoral 1					109,309,005	113,728,052	122,323,404
Littoral 2					34,130,023	41,910,751	41,854,771
Atlantique	116,140,975	135,661,454	144,266,412	149,110,492	16,321,756	15,015,690	19,997,440
Oueme	11,277,478	12,732,702	14,105,830	16,752,442	23,575,087	25,824,702	23,999,532
Mono	13,556,174	12,227,260	9,333,183	12,390,479	17,788,671	17,230,503	17,404,734
Zou	20,449,043	18,377,822	18,808,934	22,089,812	26,184,370	29,428,564	28,941,326
Borgou	9,102,987	9,700,938	9,770,515	10,961,766	12,272,888	13,577,379	11,490,327
Atacora	2,997,347	1,395,023	1,606,816	2,345,295	2,840,716	2,822,292	3,271,841
Total SBEE	173,524,004	190,095,199	197,891,690	213,650,286	242,422,516	259,537,933	269,283,375
SCB Lafarge	50,537,786	57,688,848	59,467,508	p.d.	59,754,000	58,856,000	p.d.
Total Bénin	224,061,790	247,784,047	257,359,198		302,176,516	318,393,933	

Sources

- 2002 2011 : SBEE, Rapport Annuel 2011, Tableau 46.
- 2012 2013 : SBEE, Rapport Annuel 2013, Tableau 23 et 46.
- 2014 : Valeurs provisoires ; basées sur des statistiques reçues de la SBEE.
- p.d.: pas disponible. SCB Lafarge est approvisionné par la CEB.

Les ventes de la SBEE comprennent les ventes dans les grands centres urbains et les ventes dans d'autres centres qui sont déjà électrifiées. Les grands centres urbains et les autres centres sont indiqués ci-dessous.

Région	Grand Centre Urbain	Autres Centres .
Littoral 1	Cotonou	
Littoral 2	Cotonou	
Atlantique	Abomey-Calavi	Ouidah, Allada, Sékou, Attagan
Ouémé-Plateau	Porto-Novo	
Mono-Couffo	-	Lokossa
Zou-Collines	Abomey-Bohicon	
Borgou-Alibori	Parakou	
Atacora-Donga	-	Natitingou

Le GCU de Sémé-Kpodji n'apparait pas sur la liste parce qu'il n'y avait pas d'abonnés MT à Sémé-Kpodji jusqu'à fin 2014.

En 2002 et 2003, les ventes MT de la SBEE comptaient pour 32% des ventes totales (ventes BT + MT). En 2004, il y a eu une forte réduction des ventes MT dont la raison n'est pas connue, avec pour conséquence la réduction du pourcentage aux ventes totales. Entre 2004 et 2011, le pourcentage variait entre 25% et 27% avant d'augmenter en 2012 à 29% et en 2013 à 30%.

La répartition par région était relativement stable entre 2002 et 2013. Jusqu'en 2011, la région Atlantique comptait toujours pour la grande partie des ventes MT; environ 70% des ventes MT étaient réalisées dans la région d'Atlantique. En 2012, la région était coupée en trois régions. Depuis, c'est la région Littoral 1 qui est la plus importante avec environ 45% des ventes totales, suivi de Littoral 2 avec environ 15%. Ces deux régions constituent dans le modèle de demande la grande zone urbaine de Cotonou. Deux autres régions importantes sont Ouème-Plateau et Zou-Collines avec environ 10% chacune.

Grands clients MT: Il était prévu de traiter les grands consommateurs MT séparément. Un grand consommateur MT compte pour au moins 3% de la consommation MT totale. Le consultant avait demandé à la SBEE de lui fournir la liste des abonnés MT qui étaient les plus importants en 2012 et 2013 en termes de ventes. Le consultant a reçu une liste pour le mois d'août 2014. Sur ce mois, les abonnés qui consommaient le plus étaient : le Port Autonome de Cotonou, la Compagnie Béninoise DES, la cimenterie CIM-Bénin, la brasserie SOBREBA et SCB Usine (cimenterie). Ces données ne permettent pas de calculer combien de MWh les plus grands clients MT ont consommé dans l'année. Le consultant a donc répété la requête d'information mais n'a pas reçu de réponse.

5.2 Scénarios de Demande MT

5.2.1 Demande en 2014

La demande MT en 2014 constitue le point de départ. Les ventes en 2014 ne reflètent pas la demande. Trois phénomènes sont à considérer pour l'estimation de la demande :

- a) Pertes non-techniques
- b) Délestages
- c) Autoproduction

<u>Pertes non-techniques</u>: L'estimation grossière du consultant est que les pertes non-techniques sont de l'ordre de 9,3% des ventes ; voir l'Encadré 3.2.

<u>Délestages</u>: L'analyse des statistiques des minutes perdues à cause de déclenchements, travaux et délestages des postes sources indique que la consommation perdue était en 2012 de l'ordre de 5% des ventes ; voir l'Encadré 3.3.

<u>Autoproduction</u>: L'autoproduction est répandue au Bénin à cause du manque de capacité de production et de transport pour satisfaire la demande⁶. Ni la capacité installée ni la production annuelle n'est cependant connue.

Le rapport « SIE Bénin 2010 » contient des estimations de l'autoproduction au Bénin dans les années 1997 – 2010. Les estimations reflètent les informations obtenues de plusieurs grandes entreprises à caractère industriel⁷ et l'autoproduction de quelques grands hôtels. Le chiffre pour 2010 est de 26 607 MWh (page 61 du rapport) ce qui correspondait à 3% de l'offre totale. Le rapport montre aussi que l'autoproduction variait beaucoup (minimum 8 614 MWh en 1997; maximum 38 249 MWh en 2007) sans qu'une tendance soit visible.

Un autre document obtenu par le consultant en février 2015 de la DGE montre l'autoproduction par société. L'autoproduction dans les grands centres urbains est présentée en bas ; l'autoproduction en dehors des GCU dans le Chapitre 6.

⁶ Le document « Perspectives économiques en Afrique «, BAfD/OECD de 2008, mentionne sur la page 166 que l'incapacité de la SBEE de satisfaire la demande a conduit le Gouvernement a accordé des avantages fiscaux aux opérateurs privés pour les inciter à se doter d'unités d'autoproduction.

⁷ Le rapport mentionne les entreprises suivantes : SCB, SCB-LAFARGE, CIMBENIN, SITEX, SOBETEX, COTEB, SOBEBRA, GMB, IBCG, SOCIA-BENIN, les usines de SODECO, les usines de CCB, Label coton du Bénin, Société cotonnière du Bénin, TRANSACIER.

Tableau 13 Autoproduction dans les grands centres urbains

Centre	Autoproduction en 2014 (MWh)	Auto-producteurs
Cotonou	10 000	SOBREBA, CIM Bénin, Sociétés des Ciments du
		Bénin, TRANSACIER, Hôtel du Port, Bénin Marina
Abomey-Calavi	-	
Sémé-Kpodji	100	Société Industrielle d'Acier du Bénin
Abomey-Bohicon	700	SODECO, Société FLUFOR Bénin
Porto-Novo	-	
Parakou	400	SODECO

Commentaire : Il s'agit d'estimations grossières. L'analyse de la consommation spécifique donne pour quelques sociétés des valeurs qui sont en dehors de l'intervalle raisonnable. Il se peut aussi que les estimations ne couvrent pas la même période (2014).

Les auto-producteurs dont les données sont présentées dans le Tableau 5.2 sont considérés comme des candidats pour le raccordement MT ce qui donne pour 2014 une demande MT de 11,2 GWh. En fait, plusieurs auto-producteurs sont déjà des abonnés MT de la SBEE. Ils utilisent l'autoproduction en cas de délestages ou durant les heures de pointe.

Au total, la demande MT en 2014 est estimée à 329 GWh. Cette demande est le résultat des ventes (269 GWh) plus pertes non-techniques (9,3% des ventes), plus délestages (5% des ventes), plus autoproduction dans les GCU (11,2 GWh) et autoproduction dans les centres en dehors des GCU (10,6 GWh; voir le paragraphe 6.5). La répartition de la demande de 329 GWh entre GCU et centres en dehors des GCU est: GCU – 291 GWh; autres centres – 38 GWh.

5.2.2 Méthode utilisée pour estimer la demande MT dans les années 2015 - 2035

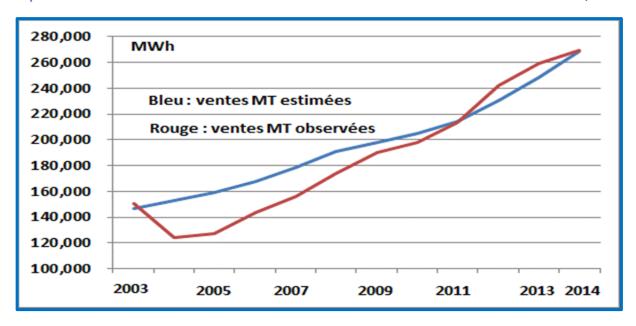
La demande MT suit normalement le développement économique. Elle augmente généralement plus que le PIB réel. Par conséquent, l'élasticité, qui est la relation entre le taux de croissance de la demande et le taux de croissance du PIB réel, est supérieure à 1,0. Au Bénin, c'était le cas sur la période 2002 – 2014. Dans cette période, les ventes MT de la SBEE ont en moyenne augmenté de 5,7% par an⁸, nettement plus que l'accroissement du PIB réel dans la période qui était de 4,0% par an. Cela donne une élasticité de 1,40. L'Encadré 5.1 montre que cette élasticité n'est pas loin des valeurs observées ailleurs si on fait l'abstraction des valeurs extrêmes.

Le Graphique 5.1 compare les ventes MT observées dans la période 2003 – 2014 avec les résultats d'un modèle qui calcule avec une élasticité de 1,4. La formule de calcul est :

Les valeurs du taux de croissance du PIB réel sont celles indiquées dans le Tableau 2.1.

_

⁸ Le taux de croissance n'inclut pas les ventes de la CEB à SCB Lafarge.


On constate que le calcul aurait produit une bonne estimation des ventes en 2003 et des ventes dans les années 2009 - 2014. Dans ces années, la différence ne dépasse pas \pm 5%. Les mauvais résultats dans les années 2004 - 2008 sont dus à la chute des ventes en 2004. Entre 2004 et 2006, les ventes étaient inférieures aux ventes en 2003.

Encadré 5.1 : Elasticité des ventes MT par rapport au PIB réel dans quelques pays / grandes villes`

Pays / Ville	Période	Croissance	Croissance	Elasticité	Commentaire
		Ventes	PIB réel		
Bénin	2002 – 2014	5,7% par an	4,0% par an	1,4	
Mali	2001 – 2013	7,6% par an	4,2% par an	1,8	
Bamako	2001 – 2013	7,2% par an	4,2% par an	1,7	PIB Mali
Mauritanie	2000 – 2012	8,9% par an	4,3% par an	2,1	
Ouagadougou	2000 – 2010	8,1% par an	5,5% par an	1,5	PIB Burkina Faso
Madagascar	2001 – 2013	1,4% par an	2,2% par an	0,7	

Sources : Différentes études faites par le consultant dans les dernières années.

Graphique 4 Comparaison des ventes MT observées dans la période 2003–2014 avec l'estimation à partir du modèle où les ventes sont une fct de la croissance du PIB réel avec l'élasticité de 1,4.

Le modèle utilisé pour les scénarios calcule la demande MT comme :

demande(t) = demande(t-1) * (1 + croissance du PIB réel(t)) * élasticité (t = 2015, ..., 2035)

Les hypothèses concernant la croissance du PIB réel sont présentées dans le Tableau 2.2. L'élasticité est de 1,5 en 2015, de 1,3 en 2035 et entre 2016 et 2034 le résultat de l'interpolation linéaire.

5.2.3 Répartition de la demande MT sur les régions et centres de la SBEE

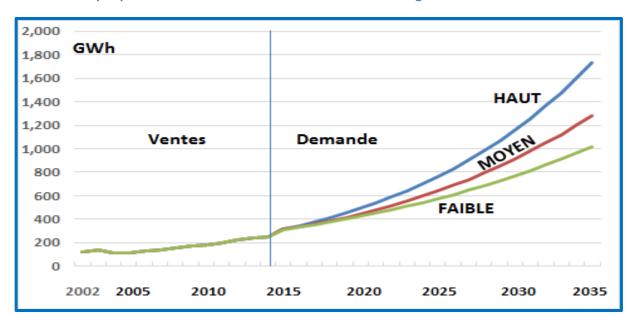
Dans la période 2002 – 2014, les ventes MT dans les régions de la SBEE comptaient pour à peu près le même pourcentage dans les ventes MT totales. Il n'y avait dans aucune région une tendance à la hausse ou à la baisse. Cela peut, bien sûr, changer dans le futur.

Le consultant a été informé que le GCU de Sémé-Kpodji est susceptible de voir l'installation des projets industriels dans le futur, y compris l'extension du port de Cotonou. Jusqu'en 2014, il n'y avait pas d'abonnés MT de la SBEE à Sémé-Kpodji. Le modèle tient compte de l'apparition future des abonnés MT en supposant que Sémé-Kpodji compte pour 2% de la demande MT totale en 2015 et que ce pourcentage augmente jusqu'à 10% en 2035.

Le Tableau 7 montre le développement dans les GCU et dans les centres en dehors des GCU qui sont déjà électrifiés et ont déjà des abonnés MT. Pour les centres sauf Cotonou, le développement entre 2015 et 2035 est calculé à partir de l'interpolation linéaire. Le pourcentage de Cotonou est calculé comme 100% moins la somme des pourcentages des autres centres.

On constate que Cotonou reste le centre qui compte pour la plus grande partie de la demande MT mais son importance diminue parce que quelques autres centres, notamment Sémé-Kpodji, deviennent plus importants.

Tableau 14 Répartition de la demande MT par centre en 2015 et 2035


Centre	Statut dans modèle	le	Demande MT en 2015 (en % de la demande totale MT)	Demande MT en 2035 (en % de la demande totale MT)					
Cotonou	GCU		60,0%	48,7%					
Abomey-Calavi	GCU		6,0%	6,0%					
Sémé-Kpodji	GCU		2,0%	10,0%					
Abomey-Bohicon	GCU		10,3%	10,3%					
Porto-Novo	GCU		9,0%	9,0%					
Parakou	GCU		4,5%	4,5%					
Ouidah	Centre	en	1,0%	2,0%					
Lokossa	dehors des G	CU	6,0%	6,0%					
Natitingou	mais d	léjà	1,0%	2,0%					
Allada	électrifié.		0,10%	0,50%					
Sékou	-		0,11%	0,50%					
Attagan			0,02%	0,50%					

5.3 Résultats - Demande MT dans les Grands Centres Urbains

Le Graphique 4 montre l'évolution de la demande MT dans les grands centres urbains selon les trois scénarios. Dans le Scénario Haut, le taux de croissance moyenne dans la période 2015 – 2035 est de 8,8% par an. La valeur correspondante dans le Scénario Moyen est de 7,3% par an et dans le Scénario Faible de 6,1% par an. L'Annexe 2 contient la répartition par grand centre.

La demande MT dans les centres de Ouidah, Lokossa, Natitingou, Allada, Sékou et Attagan qui ne sont pas des grands centres urbains dans le modèle mais où il y a déjà des abonnés MT fait partie de la demande qui est présentée dans le Chapitre 6 (Demande dans les localités en dehors des GCU et déjà électrifiées).

Graphique 5 Bénin - Scénarios de demande MT dans les grands centres urbains

Fichier de référence : Prévision, feuille MT, BO32

6 DEMANDE DANS LES LOCALITES EN DEHORS DES GCU ET DEJA ELECTRIFIEES

6.1 Nombre de localités

En 2014, il y avait 3230 localités en dehors des GCU dont 1123 localités qui étaient déjà électrifiées. Parmi ces dernières, on retrouve : 913 localités rurales, 135 localités urbaines, 45 localités semi ou périurbaines et 30 lacustres

Encadré 6.1 : Définition du terme « localité urbaine »

L'INSAE a catégorisé les localités du Bénin en 5 segments : (1) Rural, (2) Urbain, (3) Péri Urbain, (4) Semi Urbain, (5) Lacustre.

L'INSAE définit le milieu urbain comme « une zone hétérogène qui regroupe tout chef lieux de commune ayant au moins 10 000 habitants et au moins une des infrastructures ci-après : bureau de poste télécommunication, bureau de recette perception du trésor public, système d'adduction d'eau, électricité, centre de santé, collège d'enseignement général avec 2^{ème} cycle, d'une part et tout arrondissement ayant au moins quatre des infrastructures énumérées ci-dessus et au moins 10 000 habitants ». (Synthèse des analyses en bref – février 2002 – Troisième recensement Général de la population et de l'habitation)

6.2 Données disponibles

Les données disponibles sont :

Centre de la SBEE

- Population et nombre de ménages dans le centre
- Nombre d'abonnés BT dans le centre
- Ventes BT dans le centre
- Liste des localités urbaines, semi-urbaines et péri-urbaines dans le centre. Ces trois catégories constituent dans le modèle les localités urbaines.
- Liste des localités électrifiées et non-électrifiés dans le centre

Localités dans le centre

• Population et nombre de ménages de chaque localité

6.3 Approche pour estimer la demande BT

Le nombre d'abonnés BT dans les localités électrifiées et les ventes dans ces localités ne sont pas connus. Ces paramètres ont été estimés. Le nombre d'abonnés BT et les ventes BT dans le centre ont été répartis sur les localités électrifiées proportionnellement à la taille de la population. Etant donné un centre, le taux d'électrification est donc identique dans les localités électrifiées et la consommation spécifique des abonnés BT est également identique dans les localités électrifiées.

Si on compare les localités électrifiées situées dans différents centres, le taux d'électrification et la consommation spécifique sont différents.

L'estimation de l'évolution de la population dans les localités, qui est l'hypothèse principale concernant le développement du taux d'électrification, donne le nombre d'abonnés BT dans le futur.

En 2014, le taux d'électrification étendu au niveau des départements variait entre 3% et 15%, le taux moyen hors GCU était de 10% (21% en 2013 dans les localités électrifiées), le taux national était de 28% (GCU inclus). Le taux en 2035 est présenté dans le tableau ci-dessous. Une interpolation⁹ est utilisée pour calculer le développement entre 2013 et 2035.

Tableau 15 Taux d'électrification (étendu) en 2035

Scénario	Taux en 2035
Haut	75%
Moyen	66%
Bas	50%

En 2013, la consommation spécifique des abonnés BT variait entre 5,7-22,6 et 204-311 kWh/mois.

L'évolution de leur demande spécifique est dans le modèle une fonction de la variation du PIB réel par capita. Le modèle ne fait cependant pas la distinction entre abonnés existants et nouveaux abonnés comme c'est le cas dans le modèle utilisé pour les grands centres urbains. Le fait que la demande spécifique des nouveaux abonnés ait tendance à être plus faible que celle des abonnés existants, ce qui réduit l'augmentation de la demande spécifique moyenne (elle peut même baisser), est dû aux valeurs de l'élasticité. Elle est dans le Scénario Haut de 0,9 en 2015 et de 0,35 en 2035. Scénario Moyen: 0,7 et 0,35. Scénario Faible: 0,40 et 0,20¹⁰.

6.4 Approche pour estimer la demande MT

La demande MT est composée de trois éléments :

- 1. La demande MT dans les centres en dehors des GCU où il y a déjà des abonnés MT.
- 2. L'autoproduction en dehors des GCU.
- 3. La demande MT qui va se présenter dans certains centres en dehors des GCU qui n'ont pas encore d'abonnés MT.

-

⁹ De 2015 à 2020 la progression est linéaire mais plus lente que de 2021 à 2035.

Les valeurs ont été déterminées comme suit : Les modèles pour les GCU sauf Cotonou ont été calculés en supposant que la demande spécifique des abonnés existants et des nouveaux abonnés est identique. Ensuite des valeurs pour l'élasticité ont été déterminées tel que la croissance de la demande est proche du développement qui résulte des modèles GCU environ celle du modèle GCU.

Demande MT dans les centres en dehors des GCU où il y a déjà des abonnés MT

Comme précédemment mentionné dans le Chapitre 4, il y a déjà des abonnés MT dans quelques localités en dehors des GCU. Selon les statistiques de ventes de la SBEE, c'est le cas dans les centres de Ouidah, Allada, Sékou, Attagan, Lokossa et Natitingou. Les ventes MT totales dans ces centres en 2014 sont estimées à 24 GWh. Le calcul de la demande dans ces centres est décrit en haut dans le Chapitre 4.

Autoproduction en dehors des GCU

L'autoproduction est à prendre en compte dans l'estimation de la demande MT parce que l'approvisionnement par la SBEE coûte nettement moins chère et est donc souhaité par les autoproducteurs. Les données reçues de la DGE sur l'autoproduction en 2014 en dehors des GCU sont présentées dans le tableau ci-dessous. L'autoproduction totale était de 10,5 GWh. Tous les centres étaient en 2014 des centres électrifiés.

Tableau 16 Autoproduction en dehors des grands centres urbains

Centre	Autoproduction en 2014 (MWh)	Auto-producteur
Banikoara	700	SODECO
Dassa	5 600	Label Coton du Bénin
Savalou	100	SODECO
Bembérété	900	SODECO
Pehunco	900	Industrie Cotonnière Béninoise
Kandi	1 500	SODECO, Compagnie Cotonnière du Bénin
N'Dali	500	Société Cotonnière de N'Dali
Glazoué	200	SODECO
Kétou	150	IBECO Kétou

Commentaire : Il s'agit des estimations grossières. L'analyse de la consommation spécifique donne pour quelques sociétés des valeurs qui sont en dehors de l'intervalle raisonnable. Il se peut aussi que les estimations ne couvrent pas la même période (2014).

L'autoproduction se développe dans le modèle comme suit :

Autoproduction dans l'année t = Autoproduction dans l'année t-1 * (1 + taux de croissance du PIB réel * élasticité) (t = 2015, ..., 2035).

L'évolution du PIB réel est indiquée dans le Tableau 4. L'élasticité est celle utilisée dans le calcul de la demande MT, à savoir de 1,5 en 2015, de 1,3 en 2035 et le résultat de l'interpolation linéaire dans les années 2016 - 2034.

Demande MT dans les centres en dehors des GCU qui n'ont pas encore d'abonnés MT

On peut s'attendre à ce qu'il y ait des abonnés MT à partir d'une certaine taille de localité. Dans le modèle, c'est le cas à partir de 12 000 personnes. La demande des abonnés MT est estimée à 10% de la demande BT¹¹. Les estimations sont basées sur les données présentées dans l'Encadré 6.2.

Encadré 6.2 : Ventes MT en % des ventes BT dans quelques localités en Mauritanie

Le consultant dispose des statistiques de ventes de la SOMELEC (Mauritanie) qui couvrent la période 2006 – 2013. Dans cinq localités, des ventes MT commençaient dans cette période. Le tableau suivant présente la taille des localités dans la première année des ventes MT et la relation entre les ventes MT et les ventes BT.

Ventes MT dans cinq localités en Mauritanie – Première année d'apparition d'abonnés MT et évolution en % des ventes totales

Localité	1 ^{ère}	Population	2007	2008	2009	2010	2011	2012	2013
	année	1 ^{ère} année							
Boutilimit	2007	13 615	10%	13%	16%	16%	13%	13%	13%
Sélibabi	2007	15 609	3%	8%	9%	8%	8%	10%	9%
Aioun-	2010	13 622				1%	14%	13%	13%
Tidjikja	2011	10 994					7%	8%	8%
Aleg	2011	12 072					4%	17%	17%

Source : Statistiques de la SOMELEC. Population estimée par le consultant à partir des données démographiques fournies par l'Office Nationale de la Statistique.

6.5 Résultats

Le Tableau 17 présente les taux de croissance moyenne de la demande BT et MT dans la période 2015 – 2035. Les taux sont nettement plus élevés par rapport aux taux correspondants dans les GCU. La raison principal de cette évolution est l'accroissement du taux d'électrification. En 2014, le taux étendu était en moyenne de 21%. Dans le Scénario Haut, il atteint en 2035 partout 75%, dans le Scénario Moyen 66% et dans le Scénario Faible 50%.

Tableau 17 Taux de croissance moyenne de la demande BT et MT dans les localités

	Demande BT	Demande MT
Scénario Haut	11,5%	11,0%
Scénario Moyen	9,9%	9,4%
Scénario Faible	7,8%	8,1%

¹

¹¹ Le critère de 12 000 d'habitants n'est pas appliqué aux centres dans lesquels il y a déjà des abonnés MT ou des auto-producteurs. Ces centres sont ceux mentionnés en haut (Ouidah, Allada, Sékou, Attagan, Lokossa, Natitingou, Banikoara, Dassa, Savalou, Bembérété, Pehunco, Kandi, N'Dali, Glazoué et Kétou.

La demande totale en GWh par Direction Régionale de la SBEE est indiquée dans le tableau cidessous. La croissance est globalement homogène d'une région à l'autre à l'exception de la DR de Borgou-Allibori. Tiré par la forte croissance démographique, cette DR devient la plus importante, suivi de la DR de Ouémé-Plateau.

Signalons que les scénarios n'incluent pas la demande de la cimenterie SCB Lafarge ainsi que la demande de la cimenterie NOCIBE. Les cimenteries sont en dehors des grands centres urbains.

L'usine de Lafarge est située à Onigbolo dans la commune de Kétou (département Ouémé-Plateau). SCB Lafarge est approvisionnée par la CEB. Les projections de la CEB supposent que la demande de la cimenterie soit entre 62 et 73 GWh/an.

L'usine de NOCIBE se trouve à Massé dans la commune d'Adja-Ouéré (département Ouémé-Plateau). La production a commencé en 2014. Le plan est de produire près de 1,3 millions de tonnes de ciment par an. En 2014, NOCIBE a satisfait son besoin en électricité par autoproduction¹². Il est prévu de raccorder NOCIBE au réseau en 2015. La cimenterie sera ensuite approvisionnée par la CEB qui estime la demande entre 116 et 132 GWh/an.

¹² La source http://www.gouv.bj/actualites/marina/nouvelle-cimenterie-du-benin-le-president-boni-yayi-constate-lavancement-des-travaux mentionne que NOCIBE envisage d'installer 26 MW en capacité d'autoproduction.

Tableau 18 Demande des localités en dehors des GCU mais déjà électrifiées en 2014 (GWh)

scénario Haut	V	entes		Demande (GWh)									Wh)												
Direction régionale	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Atlantique	17	20	18	26	33	36	39	43	47	52	60	68	78	88	99	110	123	136	150	166	182	199	217	236	256
Oueme-Plateau	23	23	25	29	37	41	45	50	55	60	72	85	100	115	132	150	169	189	211	234	258	284	311	340	370
Mono-Couffo	29	28	28	33	41	44	47	51	55	59	68	77	86	96	107	119	131	144	158	172	187	203	219	236	254
Zou-Collines	17	17	19	23	29	32	35	38	42	46	55	65	75	87	99	112	126	140	156	172	189	207	226	245	265
Borgou-Alibori	12	15	14	14	19	22	26	30	34	39	51	64	79	95	113	133	154	177	202	229	258	289	323	358	395
Atacora-Donga	20	22	21	35	43	46	49	53	57	61	69	77	86	95	105	116	127	140	152	166	180	195	211	227	245
Total	118	123	124	160	201	220	242	266	291	317	374	436	504	576	655	739	830	926	1029	1 139	1 255	1378	1507	1642	1785
scénario moyen	٧	entes	5)eman	de (G	Wh)									
Direction régionale	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Atlantique	17	20	18	26	32	35	37	40	43	47	53	59	66	73	81	89	98	107	117	127	138	150	162	175	188
Oueme-Plateau	23	23	25	29	36	39	42	46	49	53	63	72	83	94	106	119	133	147	162	179	195	213	232	252	272
Mono-Couffo	29	28	28	33	40	42	45	47	50	53	59	66	73	80	88	96	104	113	122	132	142	153	164	175	187
Zou-Collines	17	17	19	23	29	31	33	35	38	41	48	55	63	71	80	89	99	109	120	131	143	155	168	182	196
Borgou-Alibori	12	15	14	14	19	21	24	27	31	34	44	54	65	77	90	105	120	137	155	174	195	217	240	265	291
Atacora-Donga	20	22	21	35	42	45	47	50	52	55	61	67	73	80	86	94	102	110	119	128	137	147	158	169	180
Total	118	123	124	160	198	213	229	246	264	284	327	373	422	475	531	591	655	723	795	871	951	1035	1 124	1 217	1315
scénario faible	٧	entes)eman	de (G	Wh)									
Direction régionale	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Atlantique	17	20	18	26	32	34	36	38	41	43	47	51	55	60	64	69	75	80	86	91	97	104	110	117	124
Oueme-Plateau	23	23	25	29	35	38	40	43	45	48	54	61	67	74	82	90	98	107	116	125	135	146	157	168	180
Mono-Couffo	29	28	28	33	39	41	43	45	47	49	53	57	61	65	69	74	79	84	89	94	100	105	111	117	123
Zou-Collines	17	17	19	23	28	30	31	33	35	37	41	46	51	56	61	67	73	79	85	92	99	106	113	121	129
Borgou-Alibori	12	15	14	14	18	20	22	25	27	30	36	43	51	59	68	77	87	98	109	121	134	147	161	176	192
Atacora-Donga	20	22	21	35	42	43	45	47	49	51	55	58	62	65	69	73	78	82	87	92	97	102	107	113	119
Total	118	123	124	160	194	206	218	231	244	258	286	315	347	379	414	451	489	529	571	616	662	710	760	812	867

7 DEMANDE CREEE PAR LE PROGRAMME D'ELECTRIFICATION

7.1 Sélection provisoire des localités à électrifier

Comme présenté plus haut, la demande BT a été segmentée en 3 catégories : Grands Centres Urbains, localités déjà électrifiées, et autres localités.

Parmi les autres localités, un seuil de population doit être fixé pour déterminer quelles sont les localités qui seront électrifiées par raccordement réseau. Le seuil dépend du scénario, au vu de la répartition de la population dans les localités à électrifier les seuils de 1000 ; 1500 et 2000 habitants en 2035 ont été proposés. Cette répartition permet de prendre la quasi-totalité de la population du Bénin : seuls 0,5% ; 1,9% ou 4,3% de la population Béninoise vivraient alors dans des localités non électrifiée par le réseau national. La répartition de la population est illustrée dans le graphe cidessous.

Graphique 6 Population totale suivant la taille des localités

Le traitement des localités encore non électrifiées a été réalisé avec GEOSIM, suivant les scénarios il concerne entre environ 1500 et 2000 localités :

Tableau 19 Nombre de localité non électrifiées en 2015 et programme d'électrification

Population	Nombre de	e localités
	2015	Nombre en 2035
	(non électrifiées)	si non électrifiées
< 1000	483	176
1000 - < 1500	495	221
1500 - < 2000	346	276
2000 - < 5000	720	989
5000 - < 10000	100	388
>= 10000	18	112
Localités électrifiées ju	squ'en 2035	
Scénario Haut (localité	s >= 1000 en 2035)	1986
Scénario Moyen (loc 2035)	alités >= 1500 en	1765
Scénario Faible (localit	és >= 2000 en 2035)	1489

Les localités à raccorder sont prises en compte dans la prévision de la demande à raison de 100, 90 et 80 localités par an suivant les scénarios. De ce fait, toutes les localités sont raccordées en 2035.

L'ordre de prise en compte est dans le présent modèle :

1/ Localités en projet

2/ Distance au réseau MT existant

Cette méthode de sélection n'est pas la méthode finale qui sera adoptée dans le plan directeur distribution. Ce volet de l'étude permettra de définir plus finement quelles localités seront électrifiées quand. L'ordre de raccordement sera légèrement différent de celui considéré ici mais l'impact sur la demande sera minime.

7.2 Estimation de la demande

La demande pour les localités à électrifier est calculée par GEOSIM selon les mêmes principes que les autres segments de la demande :

1/ Estimation des taux de raccordement

2/ Estimation des consommations spécifiques

Application du modèle à chaque localité suivant l'évolution de sa démographie : nombre d'habitant en année de raccordement.

Les tableaux ci-dessous présentent les principales hypothèses de calcul par scénario.

Tableau 20 Taux de connexion dans les localités qui seront électrifiées

Année		haut		moyen		faible	
	1		30%		20%		10%
	5		50%		40%		25%
	20		75%		66%		50%

Ces taux sont également plus faibles que pour les localités déjà raccordées pour la même raison qu'évoquée précédemment.

Tableau 21 Demande spécifique (kWh/mois) dans les localités qui seront électrifiées

	conso spécifique BT									
	déjà élec	à électrifier								
Atlantique	101	30								
Oueme-Plateau	117	35								
Mono-Couffo	91	27								
Zou-Collines	98	29								
Borgou-Alibori	117	35								
Atacora-Donga	106	32								

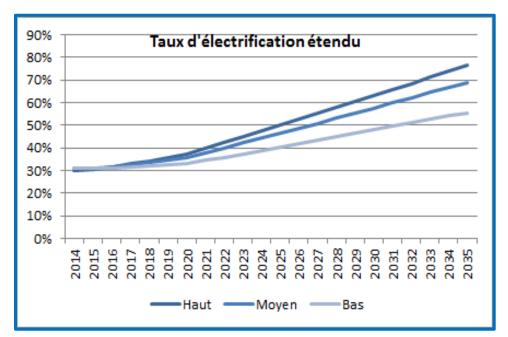
Les demandes spécifiques ont été prises à 30% de la consommation spécifique des zones déjà électrifiées pour refléter le fait que les localités restant à raccorder sont les localités les moins développées économiquement. Par conséquent leurs habitants ont moins de ressources disponibles pour la consommation électrique.

Le pourcentage de 30% a été appliqué aux ventes spécifiques aux abonnés « Particuliers, BT1 » dans les centres de la SBEE en 2013. Les centres où les ventes spécifiques étaient les plus faibles étaient : Niaouli (34), Aplahoue (35), Djakotome (35), Cana (36), Bopa (37), Dogbo (38) et Tokuilin (38).

Tableau 22 Croissance de la demande spécifique (% par an)

croissance conso spécifique	haut	moyen	faible
An 1-5	6%	4%	2%
an 5-20	3%	2%	1%

Les taux de croissances dans les cinq premières années correspondent à une élasticité par rapport aux PIB réel par capita d'environ 2,0 et dans les années suivantes d'environ 1,0.


9 DEMANDE D'ENERGIE ELECTRIQUE ET DE PUISSANCE DANS LE RESEAU INTERCONNECTE

9.1 Taux d'électrification

Le taux de couverture (= nombre de localités électrifiées par raccordement au réseau interconnecté divisé par le nombre total de localités) est en 2035 de 92% dans le Scénario Haut, de 86% dans le Scénario Moyen et de 79% dans le Scénario Faible.

Le taux de desserte (= population vivant dans des localités électrifiées par raccordement au réseau interconnecté divisé par la population totale) est en 2035 de 99% dans le Scénario Haut, de 98% dans le Scénario Moyen et de 96% dans le Scénario Faible.

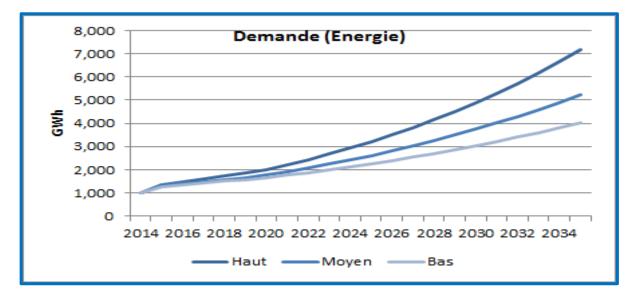
Le taux d'électrification étendu qui était en 2014 d'environ 30% varie en 2035 entre 55% (Scénario Faible) et 77% (Scénario Haut). Le taux est la relation entre les abonnés BT approvisionnés par le réseau interconnecté et le nombre de ménages au Bénin.

Graphique 7 Développement du taux d'électrification étendu

9.2 Demande d'énergie électrique

Le Tableau 23 présente l'évolution de la demande par segment.

La croissance moyenne entre 2015 et 2035 de la demande totale sans SCB Lafarge et NOCIBE est de 9,3% par an dans le Scénario Haut ; de 7,7% par an dans le Scénario Moyen et de 6,3% par an dans le Scénario Faible. Les valeurs correspondantes avec les deux cimenteries sont de 8,8%, 7,2% et 6,0%.



La répartition entre les différents segments change. La contribution de la demande dans les GCU qui, en termes de ventes, comptait en 2014 pour environ 79% de la demande totale (sans ventes à SCB Lafarge), se réduit jusqu'en 2035 à 63% (Scénario Haut) - 68% (Scénario Faible). La demande dans les localités en dehors des GCU mais déjà électrifiées en 2014 augmente de 21% en 2014 à 28% (Scénario Faible) - 31% (Scénario Haut) en 2035. La contribution des localités qui seront électrifiées est toujours faible ; en 2035 entre 5,0% (Scénario Faible) et 6,0% (Scénario Haut).

Tableau 23 Demande totale en énergie

	Ventes D	emande -)																			
Scénario Haut	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
GCUBT	496	607	650	702	757	817	881	962	1,048	1,140	1,238	1,341	1,450	1,565	1,686	1,812	1,945	2,083	2,227	2,375	2,528	2,678
Déjà élec. 2014 et dehors GCU	160	201	220	242	266	291	317	374	436	504	576	655	739	830	926	1,029	1,139	1,255	1,378	1,507	1,642	1,785
GCUMT	245	319	347	380	415	454	496	541	590	644	701	764	831	904	983	1,068	1,160	1,258	1,365	1,479	1,602	1,734
Autres MT	35	41	45	50	56	63	70	77	86	96	107	120	133	148	163	181	200	221	244	270	299	329
Programme d'électrification	0	0	6	13	22	32	43	56	71	86	103	121	141	163	187	214	243	276	310	350	394	443
Grands cimenteries (SCB + NOCIBE)	60	163	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205
Total	996	1,331	1,474	1,592	1,721	1,860	2,011	2,216	2,437	2,675	2,931	3,206	3,500	3,814	4,150	4,509	4,892	5,299	5,729	6,186	6,670	7,173
	Ventes D		_	25.075.03		20.00	- AND	027220			10500	200,000	U SVECIE			00000	Various	1273797	-	T-VALSOUS		
Scénario Moyen	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
GCUBT	496	597	626	657	689	724	764	819	877	938	1,002	1,069	1,139	1,212	1,289	1,368	1,451	1,535	1,622	1,711	1,801	1,885
Déjà élec. 2014 et dehors GCU	160	198	213	229	246	264	284	327	373	422	475	531	591	655	723	795	871	951	1,035	1,124	1,217	1,315
GCU MT	245	316	338	361	386	412	444	478	515	554	596	641	689	739	794	852	913	979	1,048	1,122	1,201	1,285
Autres MT	35	40	44	48	52	57	62	68	75	83	91	100	110	120	131	144	157	172	187	205	223	243
Programme d'électrification	0	0	3	8	14	21	29	39	49	59	71	84	98	113	130	149	170	192	216	243	273	306
Grands cimenteries (SCB + NOCIBE)	60	159	195	195	195	195	195	195	195	195	195	195	195	195	195	195	195	195	195	195	195	195
Total	996	1,310	1,419	1,497	1,582	1,673	1,778	1,926	2,083	2,251	2,430	2,620	2,822	3,036	3,262	3,502	3,756	4,023	4,304	4,600	4,911	5,229
	Ventes D	emande -)																			
Scénario Faible	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
GCU BT	496	588	610	634	659	686	716	760	806	854	905	959	1,013	1,070	1,130	1,191	1,255	1,319	1,385	1,452	1,519	1,581
Déjà élec. 2014 et dehors GCU	160	194	206	218	231	244	258	286	315	347	379	414	451	489	529	571	616	662	710	760	812	867
GCUMT	245	312	333	354	377	401	427	453	482	512	543	576	611	648	687	727	770	815	862	912	964	1,018
Autres MT	35	40	43	47	51	55	60	65	70	76	82	89	96	104	112	121	130	141	151	163		189
Programme d'électrification	0	0	2	4	7	11	16	21	26	33	39	47	55	64	74	85	98	111	125	141	158	175
Grands cimenteries (SCB + NOCIBE)	60	120	178	178	178	178	178	178	178	178	_	178			_	178	_	_	_			17
Total	996	1,254	1,371	1,435	1,503	1,576	1,654	1.762	1.877	1,999	2,127	2,263	2,404	2,553	2,710	2,874	3,046	3,225	3,412	3,606	3,808	4,00

Graphique 8 Evolution de la demande d'énergie au niveau de facturation

9.3 Pointes annuelles dans le réseau interconnecté

9.3.1 Demande au niveau de l'injection

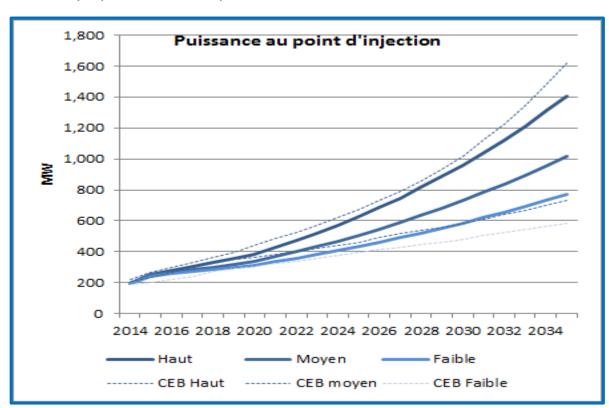
La pointe annuelle dans le réseau interconnecté est la pointe au niveau des postes sources. La demande d'énergie qui est présentée dans le paragraphe 7.1 est la demande au niveau des consommateurs. Les pertes techniques de transport sont à ajouter afin d'obtenir une estimation de la demande au niveau de l'injection.

Les pertes techniques ne sont pas connues. L'estimation du consultant est qu'elles étaient en 2014 de 14% de l'énergie injectée dans le réseau au niveau des postes sources. Il est supposé que les pertes diminuent en continu pour atteindre 10% en 2035 ; voir l'Encadré 3.2.

9.3.2 Facteurs de charge et de coïncidence

L'estimation de la pointe annuelle à partir de la demande d'énergie est faite avec les facteurs de charge suivants :

Demande BT dans les grands centres urbains	0,55
Demande BT dans les localités urbaines en dehors des GCU	0,55
Demande BT créée par le programme d'électrification	0,45
Demande MT dans les GCU	0,75
Demande MT dans d'autres centres	0,70
Les facteurs de coïncidence sont : demande BT 0,90, demande	MT 0.80.


9.3.3 Pointes annuelles

Les pointes annuelles qui en résultent sont indiquées dans le graphique ci-dessous ainsi que les projections de la CEB pour le réseau de la SBEE.

Dans le Scénario Haut, la pointe atteint 1402 MW en 2035. Les pointes correspondantes dans les autres scénarios sont de 1014 MW (Scénario Moyen) et de 768 MW (Scénario Faible). Les taux de croissance sont légèrement plus faibles pour rapport aux taux de croissance de la demande d'énergie électrique parce que les pertes techniques sont supposées diminuer de 14% en 2014 à 10% en 2035.

On constate que le Scénario Haut est toujours au-dessous du Scénario Haut de la CEB mais la différence est jusqu'à 2030 relativement faible; maximum 14% (2020), minimum 4% (2015). Les projections des Scénarios Moyen et Faible du présent modèle sont cependant nettement plus élevés que celles de la CEB. Même les pointes du Scénario Faible sont à partir de 2030 supérieure à celles du Scénario Moyen de la CEB.

La pointe annuelle par catégorie de consommateur est présentée en annexe 3.

Graphique 9 Evolution des pointes annuelles dans le réseau interconnecté du Bénin

10 DEMANDE DE LA CEET

Le plan d'expansion de la capacité de production n'est pas indépendant de la demande au Togo parce que la CEB approvisionne le Bénin et le Togo.

Le tableau ci-dessous montre trois scénarios pour la demande de la CEET que le consultant a obtenu de la CEB en octobre 2014. Les taux de croissance annuelle moyenne dans la période 2015 – 2035 sont :

Scénario Haut 8,2% par an,
 Scénario Moyen 5,5% par an,
 Scénario Faible 3,8% par an.

Tableau 24 Scénarios de la demande d'énergie et des pointes annuelles de la CEET

	DEMAND	E D'ENERG	SIE (GWh	au niveau	d'injection	on)					
	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh
Scénario Haut	1,528	1,685	1,832	1,981	2,146	2,327	2,526	2,745	2,986	3,252	3,543
Scénario Moyen	1,404	1,553	1,700	1,848	1,995	2,142	2,290	2,437	2,584	2,732	2,87
Scénario Faible	1,229	1,357	1,449	1,521	1,759	1,818	1,880	1,945	2,012	2,064	2,13
	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh
Scénario Haut	3,919	4,272	4,586	4,925	5,292	5,689	6,118	6,581	7,082	7,624	8,21
Scénario Moyen	3,096	3,243	3,391	3,485	3,580	3,727	3,875	4,022	4,186	4,357	4,53
Scénario Faible	2,210	2,268	2,328	2,390	2,453	2,519	2,586	2,656	2,725	2,795	2,86
	POINTE A	NNUELLE	(MW)								
	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW
Scénario Haut	242	267	290	314	340	369	401	435	473	516	56
Scénario Moyen	223	246	270	293	316	340	363	386	410	433	45
Scénario Faible	195	215	230	241	279	288	298	308	319	327	33
	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW
Scénario Haut	621	677	727	781	839	902	970	1,043	1,123	1,209	1,30
Scénario Moyen	491	514	538	553	568	591	614	638	664	691	71
Scénario Faible	350	360	369	379	389	399	410	421	432	443	45

Source: CEB, octobre 2014 (fichier « CEB Prévisions 2015 – 2035 »).

ANNEXES

- ANNEXE 1 Evolution du nombre d'abonnés MT dans les régions de la SBEE dans la période 2002 2014
- ANNEXE 2 Scénarios de demande MT dans les GCU et les centres en dehors des GCU qui ont déjà des abonnés MT
- ANNEXE 3 Puissance appelée au point d'injection durant la pointe annuelle (MW)

ANNEXE 1 : Evolution du nombre d'abonnés MT dans les régions de la SBEE dans la période 2002 – 2014

Région SBEE	2002	2003	2004	2005	2006	2007
Littoral 1						
Littoral 2						
Atlantique	347	312	327	343	368	393
Oueme	45	39	43	46	49	51
Mono	15	15	17	18	18	19
Zou	38	20	25	31	34	35
Borgou	28	21	21	23	26	30
Atacora	17	12	15	18	22	20
Total SBEE	490	419	448	479	517	548

Région SBEE	2008	2009	2010	2011	2012	2013	2014
Littoral 1				312	323	331	350
Littoral 2				103	108	112	116
Atlantique	413	438	450	73	79	98	113
Oueme	50	56	61	68	75	83	88
Mono	20	23	23	25	26	30	32
Zou	40	42	51	57	60	61	68
Borgou	35	46	58	58	64	71	73
Atacora	21	21	24	35	37	40	43
Total SBEE	579	626	667	731	772	826	883

Statistique élec, feuille MT, D41

Sources: 2002 – 2013 Rapports Annuels de la SBEE. 2014 Estimation.

ANNEXE 2 : Scénarios de demande MT dans les GCU et les centres en dehors des GCU qui ont déjà des abonnés MT

Tableau A2.1 : Demande MT dans le Scénario Haut

		Ventes	Ventes	Demande	Demande	Demande	Demande	Demande
Centre		2013	2014	2015	2020	2025	2030	2035
		MWh	MWh	MWh	MWh	MWh	MWh	MWh
Cotonou	GCU	155,639	164,178	208,624	311,667	460,756	669,290	954,927
Littoral 1	GCU Coton.	113,728	122,323	153,701	229,616	339,456	493,090	703,529
Littoral 2	GCU Coton.	41,911	41,855	54,923	82,051	121,300	176,200	251,397
Atlantique								
Ouidah		2,514	2,511	3,477	6,813	12,712	22,720	39,187
Abomey-Calavi	GCU	11,886	16,591	20,862	32,701	50,848	77,895	117,560
Allada		267	895	358	1,102	2,555	5,202	9,797
Sékou		297		398	1,149	2,603	5,240	9,797
Attagan		52	-	69	763	2,203	4,933	9,797
Ouémé-Plateau								
Porto-Novo	GCU	25,825	24,000	31,294	49,052	76,272	116,843	176,340
Mono-Couffo								
Lokossa		17,231	17,405	20,862	32,701	50,848	77,895	117,560
Zou-Collines								
Abomey-Bohicor	GCU	29,429	28,941	35,684	55,934	86,974	133,237	201,083
Borgou-Alibori								
Parakou	GCU	13,577	11,490	15,647	24,526	38,136	58,422	88,170
Atacora-Donga								
Natitingou		2,822	3,272	3,477	6,813	12,712	22,720	39,187
Sémé-Kpodji								
Sémé-Kpodji	GCU	-		6,954	21,801	50,848	103,861	195,934
TOTAL		259,538	269,283	347,707	545,022	847,467	1,298,258	1,959,338
Total GCU		234,476	245,201	319,066	495,681	763,833	1,159,548	1,734,014

Tableau A2.2 : Demande MT dans le Scénario Moyen

		Ventes	Ventes	Demande	Demande	Demande	Demande	Demande
Centre		2013	2014	2015	2020	2025	2030	2035
		MWh	MWh	MWh	MWh	MWh	MWh	MWh
Cotonou	GCU	155,639	164,178	206,327	279,151	386,549	527,058	707,383
Littoral 1	GCU Coton.	113,728	122,323	152,009	205,661	284,785	388,303	521,155
Littoral 2	GCU Coton.	41,911	41,855	54,318	73,490	101,764	138,755	186,228
Atlantique								
Ouidah		2,514	2,511	3,439	6,102	10,665	17,891	29,028
Abomey-Calavi	GCU	11,886	16,591	20,633	29,290	42,659	61,342	87,085
Allada		267	895	354	987	2,143	4,097	7,257
Sékou		297	-	393	1,029	2,184	4,126	7,257
Attagan		52	-	69	683	1,848	3,885	7,257
Ouémé-Plateau								
Porto-Novo	GCU	25,825	24,000	30,949	43,934	63,988	92,013	130,628
Mono-Couffo								
Lokossa		17,231	17,405	20,633	29,290	42,659	61,342	87,085
Zou-Collines								
Abomey-Bohicon	GCU	29,429	28,941	35,292	50,099	72,966	104,923	148,956
Borgou-Alibori								
Parakou	GCU	13,577	11,490	15,475	21,967	31,994	46,006	65,314
Atacora-Donga								
Natitingou		2,822	3,272	3,439	6,102	10,665	17,891	29,028
Sémé-Kpodji								
Sémé-Kpodji	GCU	-	-	6,878	19,526	42,659	81,789	145,142
TOTAL		259,538	269,283	343,879	488,160	710,979	1,022,363	1,451,422
Total GCU		234,476	234,476	315,553	443,967	640,815	913,131	1,284,508

Tableau A2.3 : Demande MT dans le Scénario Faible

		Ventes	Ventes	Demande	Demande	Demande	Demande	Demande
Centre		2013	2014	2015	2020	2025	2030	2035
		MWh						
Cotonou	GCU	155,639	164,178	204,318	268,239	347,614	444,538	560,810
Littoral 1	GCU Coton.	113,728	122,323	150,528	197,622	256,100	327,508	413,170
Littoral 2	GCU Coton.	41,911	41,855	53,789	70,618	91,514	117,031	147,641
Atlantique								
Ouidah		2,514	2,511	3,405	5,863	9,590	15,090	23,014
Abomey-Calavi	GCU	11,886	16,591	20,432	28,145	38,362	51,738	69,041
Allada		267	895	350	948	1,927	3,455	5,753
Sékou		297	-	390	989	1,964	3,480	5,753
Attagan		52	-	68	657	1,662	3,277	5,753
Oueme-Plateau								
Porto-Novo	GCU	25,825	24,000	30,648	42,217	57,543	77,607	103,561
Mono-Couffo								
Lokossa		17,231	17,405	20,432	28,145	38,362	51,738	69,041
Zou-Collines								
Abomey-Bohicon	GCU	29,429	28,941	34,948	48,141	65,617	88,495	118,092
Borgou-Alibori								
Parakou	GCU	13,577	11,490	15,324	21,109	28,771	38,803	51,781
Atacora-Donga								
Natitingou		2,822	3,272	3,405	5,863	9,590	15,090	23,014
Sémé-Kpodji								
Sémé-Kpodji	GCU	-		6,811	18,763	38,362	68,984	115,068
TOTAL		259,538	269,283	340,529	469,079	639,366	862,295	1,150,682
Total GCU		234,476	245,201	312,479	426,614	576,269	770,165	1,018,354

Commentaires (Scénario Haut, Moyen et Faible)

Ventes en 2014 : Estimation basée sur des statistiques reçues de la SBEE. Les statistiques ne montrent pas de ventes MT dans les centres de Sékou et d'Attagan. Probablement incluses dans les ventes dans autres centres.

ANNEXE 3 : Puissance appelée au point d'injection durant la pointe annuelle par catégorie de client

Puissance appelée au point d'injection durant la pointe annuelle (MW)

Scénario Haut	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
GCU BT	114	139	148	160	172	185	199	217	236	256	278	300	324	349	375	402	431	460	491	523	555	587
Déjà élec. 2014 et dehors GCU	37	46	50	55	60	66	72	85	98	113	129	147	165	185	206	228	252	277	304	332	361	391
GCU MT	35	45	49	53	58	64	69	75	82	89	97	106	115	124	135	146	159	172	186	201	217	235
Autres MT	5	6	7	8	8	9	10	12	13	14	16	18	19	22	24	26	29	32	35	39	43	47
Programme d'électrification	0	0	2	4	6	9	12	16	20	24	28	33	38	44	51	58	66	74	84	94	106	119
Grands Industriels (SCB + NOCIBE)	7	19	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
Total	197	255	279	303	329	356	386	428	472	520	572	626	685	747	814	884	960	1 039	1 123	1 211	1 305	1 401

Scénario Moyen	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
GCU BT	114	137	143	150	157	164	173	185	197	211	225	239	254	270	287	304	321	339	358	376	395	413
Déjà élec. 2014 et dehors GCU	37	45	49	52	56	60	64	74	84	95	107	119	132	146	161	176	193	210	228	247	267	288
GCU MT	35	45	48	51	54	58	62	67	72	77	83	89	95	102	109	117	125	134	143	152	163	174
Autres MT	5	6	7	7	8	8	9	10	11	12	13	15	16	18	19	21	23	25	27	29	32	35
Programme d'électrification	0	0	1	2	4	6	8	11	13	16	20	23	27	31	35	40	46	52	58	65	73	82
Grands Industriels (SCB + NOCIBE)	7	18	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
Total	197	251	269	284	301	318	339	368	400	433	469	507	547	589	633	680	730	782	836	893	953	1 014

Scénario Faible	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
GCU BT	114	134	139	144	150	156	162	171	182	192	203	215	226	239	251	264	278	292	305	320	334	346
Déjà élec. 2014 et dehors GCU	37	44	47	50	52	55	58	65	71	78	85	93	101	109	118	127	136	146	157	167	178	190
GCU MT	35	44	47	50	53	56	60	63	67	71	75	80	84	89	94	100	105	111	117	124	131	138
Autres MT	5	6	7	7	8	8	9	10	10	11	12	13	14	15	16	18	19	21	22	24	26	27
Programme d'électrification	0	0	0	1	2	3	4	6	7	9	11	13	15	17	20	23	26	30	34	38	42	47
Grands Industriels (SCB + NOCIBE)	7	14	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Total	197	243	260	272	285	299	314	335	358	382	407	433	461	490	520	552	585	620	655	693	731	768

Plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

DAEM - MERPMEDER

Tome 1 Scénarios de Demande

Rapport Final - Aout 2015

RAPPORT Final

Plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

Tome 1:

Scénarios de Demande

Références du contrat : DAEM : 206/MEF/MERPMEDER/DNCMP/SP

IED: 2014/007

Client IDA

Consultant IED Innovation Energie Développement

2 chemin de la Chauderaie 69340 Francheville, France Tel: +33 (0)4 72 59 13 20 Fax: +33 (0)4 72 59 13 39

Site web: www.ied-sa.fr

Rédaction du document

	VERSION 1	VERSION 2	VERSION 3
Date	Avril 2015	Aout 2015	
Rédaction	CA/HP	CA/HP	
Relecture	CA/HP/PS	CA/HP/PS/UA	
Validation	HP	HP	

Ce rapport a été rédigé par IED dans le cadre du contrat Elaboration du plan directeur de développement du sous-secteur de l'énergie électrique au Bénin à parti des informations collectées au cours des missions effectuées au Bénin et des échanges avec les personnes rencontrées. Il ne reflète pas nécessairement les opinions de la Banque Mondiale, du Ministère de l'Energie du Bénin, de la SBEE, de l'ABERME.

PLAN DIRECTEUR DE DEVELOPPEMENT DU SOUS-SECTEUR DE L'ENERGIE ELECTRIQUE AU BENIN

LISTE DES TOMES:

TOME 0 : RESUME EXECUTIF

TOME 1: SCENARIOS DE DEMANDE

TOME 2: PLAN D'EXPANSION DES MOYENS DE PRODUCTION

TOME 3 : DEVELOPPEMENT DU RESEAU

TOME 4: ELECTRIFICATION RURALE

TOME 5 : ANALYSE FINANCIERE

TOME 6: PLAN D'ACTION

TOME 1 - TABLE DES MATIERES

1	INTRODUCTION	7
2	DEVELOPPEMENT DEMOGRAPHIQUE	8
3	DEVELOPPEMENT ECONOMIQUE	11
3.1	Période 1991 – 2014	11
3.2	Scénarios pour la période 2015 - 2035	13
4	DEMANDE BT DANS LES GRANDS CENTRES URBAINS	14
4.1	Carte des grands centres urbains	14
4.2	Développement des abonnés BT et des ventes MT dans le passé	15
4.2.1	Abonnés BT et taux d'électrification étendu	15
4.2.2	Ventes BT	16
4.3	Modèle pour les scénarios	17
4.3.1	Développement du taux d'électrification étendu	17
4.3.2	Demande spécifique en 2014	18
4.3.3	B Développement de la demande spécifique	20
4.4	Résultats	22
5	DEMANDE MT	25
5.1	Développement des ventes MT dans le passé	25
5.2	Scénarios de Demande MT	27
5.2.1	Demande en 2014	27
5.2.2	Méthode utilisée pour estimer la demande MT dans les années 2015 - 2035	28
5.2.3	Répartition de la demande MT sur les régions et centres de la SBEE	30
5.3	Résultats – Demande MT dans les Grands Centres Urbains	31

6	DEMANDE DANS LES LOCALITES EN DEHORS DES GCU ET DEJA ELECTRIFIEES 32
6.1	Nombre de localités
6.2	Données disponibles
6.3	Approche pour estimer la demande BT32
6.4	Approche pour estimer la demande MT33
6.5	Résultats35
7	DEMANDE CREEE PAR LE PROGRAMME D'ELECTRIFICATION
7.1	Sélection provisoire des localités à électrifier38
7.2	Estimation de la demande39
9	D'ENERGIE ELECTRIQUE ET DE PUISSANCE DANS LE RESEAU INTERCONNECTE 41
9.1	Taux d'électrification41
9.2	Demande d'énergie électrique41
9.3	Pointes annuelles dans le réseau interconnecté43
9.3.1	Demande au niveau de l'injection
9.3.2	2 Facteurs de charge et de coïncidence
9.3.3	Pointes annuelles
10	DEMANDE DE LA CEET
	NNEXE 1 : EVOLUTION DU NOMBRE D'ABONNES MT DANS LES REGIONS DE LA SBEE DANS LA 10DE 2002 – 2014
	NNEXE 2 : Scenarios de demande MT dans les GCU et les centres en dehors des GCU ont deja des abonnes MT
ANI	NEXE 3 : Puissance appelee au point d'injection durant la pointe annuelle (MW) 50

TABLE DES ILLUSTRATIONS

Liste des tableaux

Tableau 1 Définition des grands centres urbains en termes de centres de la SBEE	
Tableau 2 Scénario démographique	. 9
Tableau 3 Taux de croissance du PIB réel dans la période 1991-2014 (aux prix constants de 1985)	11
Tableau 4 Scénarios de la croissance du PIB réel du Bénin dans la période 2015 - 2035 (% par an)	13
Tableau 5 Nombre d'abonnés BT dans les grands centres urbains dans la période 2002 - 2014	15
Tableau 6 Taux d'électrification étendu dans les GCU dans la période 2002 - 2014	15
Tableau 7 Ventes BT dans les années 2011 - 2014 (MWh)	16
Tableau 8 : Ventes spécifiques des abonnés BT dans les années 2011 - 2014* (kWh par abonné BT p	oar
mois)	17
Tableau 9 Taux d'électrification étendu dans l'année 2035 en fonction du scénario	17
Tableau 10 Estimation de la demande BT spécifique en 2014	18
Tableau 11 Résultats des GCU pour les scénarios Haut Moyen Faible	23
Tableau 12 Ventes MT dans la période 2002 - 2014 (kWh)	25
Tableau 13 Autoproduction dans les grands centres urbains	28
Tableau 14 Répartition de la demande MT par centre en 2015 et 2035	30
Tableau 15 Taux d'électrification (étendu) en 2035	33
Tableau 16 Autoproduction en dehors des grands centres urbains	34
Tableau 17 Taux de croissance moyenne de la demande BT et MT dans les localités	35
Tableau 18 Demande des localités en dehors des GCU mais déjà électrifiées en 2014 (GWh)	37
Tableau 19 Nombre de localité non électrifiées en 2015 et programme d'électrification	39
Tableau 20 Taux de connexion dans les localités qui seront électrifiées	40
Tableau 21 Demande spécifique (kWh/mois) dans les localités qui seront électrifiées	
Tableau 22 Croissance de la demande spécifique (% par an)	40
Tableau 23 Demande totale en énergie	42
Tableau 24 Scénarios de la demande d'énergie et des pointes annuelles de la CEET	45
Liste des graphiques	
Graphique 1 Scénarios d'évolution de la demande d'énergie électrique au Bénin	6
Graphique 2 Evolution de la population du bénin	
Graphique 3 Evolution de la production cotonnière au bénin ; campagnes 2000/1 - 2011/12	
Graphique 4 Comparaison des ventes MT observées dans la période 2003–2014 avec l'estimation	
partir du modèle où les ventes sont une fct de la croissance du PIB réel avec l'élasticité de 1,4	
Graphique 5 Bénin - Scénarios de demande MT dans les grands centres urbains	
Graphique 6 Population totale suivant la taille des localités	
Graphique 7 Développement du taux d'électrification étendu	
Graphique 8 Evolution de la demande d'énergie au niveau de facturation	
Graphique 9 Evolution des pointes annuelles dans le réseau interconnecté du Bénin	

Liste des acronymes :

BT : Basse Tension

CEB : Communauté Electrique du Bénin

CEET: Compagnie Energie Electrique du Togo

DGE :Direction Générale de l'Energie

FCFA: Franc CFA

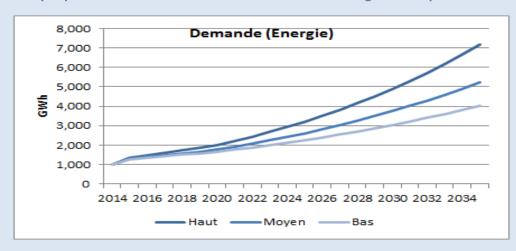
FMI: Fonds Monétaire International

GCU: Grands Centres Urbains

IED : Innovation Energie Développement

MT : Moyenne Tension
PIB : Produit Intérieur Brut

SBEE : Société Béninoise d'Energie Electrique


TTC : Toute Taxe Comprise

1 € = 1,10 USD 1€ = 655 FCFA

RESUME

Le Graphique 1 montre les projections de la demande d'énergie à satisfaire par le réseau interconnecté du Bénin dans la période 2015 – 2035 (les données de 2014 reflètent l'estimation des ventes en 2014).

Graphique 1 Scénarios d'évolution de la demande d'énergie électrique au Bénin

Dans le Scénario Haut, la demande augmente en moyenne de 9,3% par an entre 2015 et 2035 ; Scénario Moyen 7,7% ; Scénario Faible 6,3%. Ces taux n'incluent pas la demande des cimenteries de SCB Lafarge et de NOCIBE qui sont alimentées par la CEB.

La pointe annuelle, qui était en 2014 d'environ 200 MW, atteint dans le Scénario Haut 1402 MW en 2035 ; 1014 MW dans le Scénario Moyen et 768 MW dans le Scénario Faible.

Les déterminantes principales de la demande sont le taux d'accroissement de la population (en moyenne 3,3% par an dans la période 2015 – 2035), le taux de croissance du PIB réel et la politique d'électrification. La croissance moyenne du PIB réel est de 6,5% par an dans le dans le Scénario Haut, de 5,4% par an dans le Scénario Moyen et de 4,5% par an dans le Scénario Faible.

Le programme d'électrification sous forme de raccordement des localités au réseau interconnecté est ambitieux dans chacun des scénarios. Actuellement, environ 50% des localités au Bénin sont raccordées au réseau. En 2035, le taux est de 92% dans le Scénario Haut, de 86% dans le Scénario Moyen et de 79% dans le Scénario Faible.

La politique d'expansion de l'électrification se reflète aussi dans les hypothèses concernant le développement du taux d'électrification étendu¹ dans les localités qui sont déjà raccordées au réseau (densification). Le taux est actuellement de l'ordre de 47%. Il est en 2035 de 93% dans le Scénario Haut, de 84% dans le Scénario Moyen et de 71% dans le Scénario Faible.

¹ Le taux d'électrification étendu est la relation entre le nombre d'abonnés BT et le nombre de ménages. L'application de la définition standard du taux d'électrification – nombre d'abonnés ménages divisé par le nombre total de ménages – n'était pas possible parce que les statistiques de la SBEE n'ont pas permis de séparer les abonnés ménages des abonnés BT.

1 INTRODUCTION

Le présent rapport décrit les modèles qui sont utilisés pour produire des scénarios de demande et présente les résultats.

Les scénarios sont produits pour :

- La demande BT dans six Grands Centres Urbains (GCU): Cotonou, Abomey-Calavi, Sémé-Kpodji, Abomey-Bohicon, Porto Novo, Parakou; voir le Tableau 1.
- La demande MT dans les six GCU.
- La demande BT et MT dans les localités qui sont en dehors des grands centres urbains mais déjà électrifiées.
- La demande dans les localités qui ne sont pas encore électrifiées mais qui seront électrifiées dans le Plan Directeur d'ici 2035 par raccordement au réseau interconnecté.

Tableau 1 Définition des grands centres urbains en termes de centres de la SBEE

NOM DU GRAND CENTRE URBAIN	CENTRES DE LA SBEE DANS LE GRAND CENTRE
Cotonou	Littoral 1, Littoral 2
Abomey-Calavi	Godomey, Abomey-Calavi, Zinvie, Cocotomey
Sémé-Kpodji	Sémé-Kpodji, Djrégbé
Abomey-Bohicon	Abomey, Bohicon
Porto Novo	Porto Novo, Adjarra, Avrankou, Missérété
Parakou	Parakou

Trois scénarios, appelés Haut, Moyen et Faible, sont préparés pour la période 2015 – 2035. La croissance de la population, le développement de l'économie du Bénin et la politique d'électrification sont dans chaque scénario les déterminantes principales de la demande d'électricité. La croissance de la population est identique dans chaque scénario. Ils se distinguent donc notamment par les hypothèses concernant le développement économique et la politique d'électrification.

Pour établir ce plan directeur, il est indispensable d'avoir connaissance de la demande totale sur les années de la période 2015 – 2035 ainsi que sa répartition géographique. Etant donné la demande, la manière dont elle a été estimée n'a pas d'impact sur le plan d'expansion de production et le plan d'expansion des réseaux de transport et de distribution. Cela n'implique pas que le modèle qui est choisi pour estimer la demande n'est pas important. Le modèle doit bien refléter la tendance d'un développement « si tout va bien » ainsi que la tendance d'un développement où on est seulement « prudemment optimiste ».

Dans les modèles utilisés dans la présente étude, des scénarios de demande sont préparés pour plusieurs catégories d'abonnés et beaucoup de zones géographiques (6 grands centres urbains et 77 centres en dehors des GCU). Les modèles permettent notamment de tenir compte de la politique d'électrification (augmentation du taux d'électrification et dimension régionale de l'augmentation) et des tendances attendues concernant la répartition géographique des grands consommateurs (abonnés MT).

2 DEVELOPPEMENT DEMOGRAPHIQUE

L'objectif de la prévision démographique est d'estimer le nombre d'habitant par plus petite unité d'étude disponible pour la durée de planification : 2015-2035. Les données démographiques sont disponibles par localité pour le recensement de 2002 (3817 localités). Le recensement de 2002 donne également le nombre de personnes par ménage et par département.

Les données du recensement qui a eu lieu en 2013 sont toujours en cours de traitement. Seule des données provisoires connue : le nombre d'habitants dans les communes.

Le calcul de la population de chaque localité en 2013 a été effectué en appliquant le taux de croissance intercensitaire 2002-2013 de la commune de rattachement. Ce calcul abouti à une population totale légèrement supérieure aux résultats communiqués par l'INSAE. Pour être cohérent avec les résultats provisoires de l'INSAE, une normalisation au niveau communal a été réalisée. C'est-à-dire que les résultats en terme de population de la base de donnée sur laquelle la prévision de la demande a été faite est exactement la même que les résultats de l'INSAE.

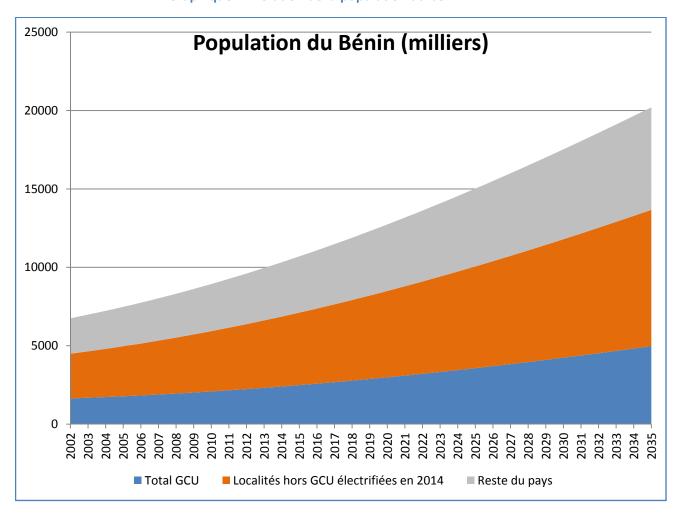
Afin de calculer les taux d'électrification réels de 2002 à aujourd'hui il a été nécessaire de calculer les populations pour toutes les années intermédiaires. Cette étape a été réalisée en calculant le taux de croissance moyen par localité sur la période 2002-2013.

Pour la période 2013-2035 deux approches différentes ont été suivies, une pour les grands centres urbains, une pour le reste du pays. Dans les deux cas il a été choisi de faire varier les taux de croissances 2002-2013 vers des valeurs plus faibles afin de modéliser la baisse du taux de croissance de la population.

- Grands centres urbains: le taux final 2034-2035 a été fixé comme hypothèse, une interpolation linéaire a permis de calculer les taux 2013-2034.
- Reste du pays: pour toutes les communes du Bénin, le taux 2034-2035 a été pris 33% plus faible que le taux moyen 2002-2013, les taux intermédiaires ont été calculé sur la base d'une extrapolation linéaire.

Une fois les résultats consolidés sur les zones suivantes : Grand Centres Urbains, localités électrifiées, localités non électrifiées, on constate que les hypothèses prises donnent des taux de croissance de population plus forts dans les grands centres urbains que dans le reste du pays, traduisant notamment l'exode rural.

Tableau 2 Scénario démographique


	Population (milliers)	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
GCU		1636	1683	1731	1783	1837	1895	1956	2020	2088	2161	2237	2318	2403
	lités électrifiées 014 hors GCU	2866	2972	3083	3198	3318	3443	3573	3709	3850	3998	4151	4311	4471
Rest	e du pays	2267	2349	2433	2520	2611	2706	2804	2906	3011	3121	3236	3354	3475
Tota	l Bénin	6769	7004	7247	7501	7766	8044	8333	8635	8949	9280	9624	9983	10349
	GCU		2,80%	2,90%	3,00%	3,10%	3,10%	3,20%	3,30%	3,40%	3,50%	3,50%	3,60%	3,60%
croissance	Localités électrifiées en 2014 hors GCU		3,70%	3,70%	3,70%	3,80%	3,80%	3,80%	3,80%	3,80%	3,80%	3,80%	3,90%	3,70%
	Reste du pays		3,60%	3,60%	3,60%	3,60%	3,60%	3,60%	3,60%	3,60%	3,70%	3,70%	3,70%	3,60%
Ĭ.	Total Bénin		3,47%	3,47%	3,50%	3,53%	3,58%	3,59%	3,62%	3,64%	3,70%	3,71%	3,73%	3,67%

	Population (milliers)	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
GCL	J	2491	2583	2678	2777	2880	2986	3096	3209	3327	3447	3571
	alités électrifiées 2014 hors GCU	4636	4804	4977	5153	5334	5519	5707	5900	6096	6296	6500
Rest	te du pays	3598	3724	3853	3984	4118	4254	4393	4535	4678	4825	4973
Tota	al Bénin	10725	11111	11508	11914	12332	12759	13196	13644	14101	14568	15044
	GCU	3,70%	3,70%	3,70%	3,70%	3,70%	3,70%	3,70%	3,70%	3,70%	3,60%	3,60%
croissance	Localités électrifiées en 2014 hors GCU	3,70%	3,60%	3,60%	3,50%	3,50%	3,50%	3,40%	3,40%	3,30%	3,30%	3,20%
	Reste du pays	3,50%	3,50%	3,50%	3,40%	3,40%	3,30%	3,30%	3,20%	3,20%	3,10%	3,10%
ř	Total Bénin	3,63%	3,60%	3,57%	3,53%	3,51%	3,46%	3,43%	3,39%	3,35%	3,31%	3,27%

	Population (milliers)	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
GCU		3699	3830	3964	4100	4240	4383	4528	4675	4824	4975
Localité 2014 ho	és électrifiées en ors GCU	6707	6918	7131	7348	7568	7791	8016	8244	8474	8706
Reste d	u pays	5123	5276	5430	5586	5744	5903	6064	6226	6389	6553
Total B	énin	15529	16024	16525	17034	17552	18077	18608	19145	19687	20234
a	GCU	3,60%	3,50%	3,50%	3,50%	3,40%	3,40%	3,30%	3,30%	3,20%	3,10%
Croissance	Loc. électrifiées 2014 hors GCU	3,20%	3,10%	3,10%	3,00%	3,00%	2,90%	2,90%	2,80%	2,80%	2,70%
	Reste du pays	3,00%	3,00%	2,90%	2,90%	2,80%	2,80%	2,70%	2,70%	2,60%	2,60%
ř	Total Bénin	3,22%	3,19%	3,13%	3,08%	3,04%	2,99%	2,94%	2,89%	2,83%	2,78%

Graphique 2 Evolution de la population du bénin

3 DEVELOPPEMENT ECONOMIQUE²

3.1 Période 1991 - 2014

Le Tableau 3 montre l'évolution du PIB réel dans la période 1991 – 2014.

Tableau 3 Taux de croissance du PIB réel dans la période 1991-2014 (aux prix constants de 1985)

1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
4,2	3,0	5,8	2,0	6,0	4,3	5,7	4,0	5,3	4,9	6,2	4,4
2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
3,9	3,1	2,9	3,8	4,6	5,0	2,7	2,6	3,3	5,4	5,6	5,7

Sources

- 1991 2012 INSAE sauf pour 2011 où la valeur d'INSAE de 3,5% a été remplacée par la valeur de 3,3% indiquée dans le document du Gouvernement « Projet de Loi de Finances, Document de la Programmation Budgétaire et Economique Pluriannuelle 2015 2017 »
- 2013 et 2014 Document du Gouvernement cité ci-dessus.

En moyenne, le taux de croissance du PIB réel était sur la période 1991 – 2014 de 4,4% par an.

Les raisons principales de l'évolution économique jusqu'en 2014

Dans les années 90, de nombreuses réformes macro-économiques ont été mises en œuvre, notamment dans le cadre des Programmes d'Ajustement Structurels signés avec le FMI et la Banque Mondiale. Les réformes ont permis à l'économie de retrouver le sentier de la croissance entre 1995 et 2001. Le relâchement dans la mise en œuvre des réformes structurelles, les délestages de 2004 et l'interdiction de réexportations que le Nigéria avait imposée entre 2003 et 2005 expliquent la tendance à la baisse observée entre 2002 et 2005. Les bonnes campagnes agricoles, la modernisation du port de Cotonou, la fin des restrictions imposées par le Nigéria dans les relations commerciales et la poursuite des réformes sont mentionnées comme raisons pour la croissance dans les années 2006 – 2008. Le ralentissement dans la période 2009 – 2011 est intervenu à la suite de divers chocs dont la crise financière mondiale de 2008 ainsi que les inondations de 2010 qui ont détruit une grande partie des récoltes agricoles et contribué au mauvais rendement de la filière coton (voir le Graphique 3.1). L'accélération de croissance depuis 2012 provient notamment de la hausse de la production du coton et de la bonne performance du commerce.

• République du Bénin, Document de la Programmation Budgétaire et Economique Pluriannuelle 2015 – 2017.

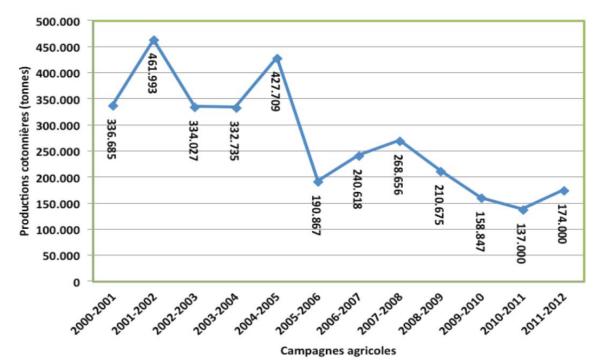
² Ce chapitre est basé sur les renseignements de M. Aristide Medenou, Directeur dans le Ministère de l'Economie et des Finances, et la revue des documents suivants :

[•] CAPOD, Politiques Macroéconomiques au Bénin: Progrès, Limites et Perspectives, Septembre 2010. BAfD/OCDE, Perspectives économiques en Afrique – Bénin, 2008.

[•] BAD, Bénin – Document de Stratégie Pays 2012 – 2016, Juin 2012.

[•] FMI, Rapport No. 14/150, Juin 2014.

[•] INSAE, Note sur les comptes nationaux de 2012, Février 2013.


Importance des secteurs économiques

L'économie béninoise est dominée par l'agriculture et les services. L'industrie demeure un secteur peu développé.

L'agriculture représente environ 22% du PIB et occupe 50% - 60% de la population active. Le produit principal du secteur est le coton. Les exportations du coton participent à hauteur de 80% à la constitution des recettes d'exportations. Le Graphique 2 montre la production cotonnière dans les années 2000/1 – 2011/12. Autres produits du secteur, les cultures vivrières (manioc, haricot, igname, sorgho, mais, mil, riz), l'huile de palme, l'anacarde et l'ananas. Le secteur agricole reste tributaire des pluies et il est peu compétitif du fait des coûts des intrants élevés et de sa faible mécanisation.

Le secteur secondaire est encore embryonnaire au Bénin. Sa contribution au PIB est de l'ordre de 13%. La production industrielle est dominée par l'industrie textile, les cimenteries et l'industrie alimentaire. L'agro-industrie n'est rien d'autre que la transformation artisanale qui souffre de manque d'équipements et ne produit pas à grande échelle.

Le secteur tertiaire compte pour environ 50% du PIB. Les activités du secteur reposent essentiellement sur le commerce qui reste largement tributaire des relations avec le Nigéria.

Graphique 3 Evolution de la production cotonnière au bénin ; campagnes 2000/1 - 2011/12

Source: La Filière Coton Tisse Sa Toile Au Bénin, SNV Bénin (Organisation Néerlandaise de Développement), KIT Publishers 2013, p.18. Le Rapport No. 14/150 du FMI (Juin 2014) mentionne sur page 26 que la production cotonnière était en 2012/13 de 240 000 tonnes. En 2013/14, elle était de 307 355 tonnes selon le document « Projet de Loi de Finances, Document de la Programmation Budgétaire et Economique Pluriannuelle 2015 – 2017 » du Gouvernement (p.12).

3.2 Scénarios pour la période 2015 - 2035

Le FMI considère les perspectives économiques dans l'ensemble favorables (Rapport 14/150 de juin 2014). L'amélioration du climat des affaires pour accroitre l'investissement privé et l'augmentation des investissements dans les infrastructures de base, y compris dans le secteur de l'électricité, sont deux conditions principales pour réussir. Le Gouvernement est conscient de ces conditions. La politique économique du Gouvernement jusqu'à 2017 sera axée sur le développement de l'entreprise et de l'initiative privée. La politique prévoit à cet effet notamment la poursuite des réformes structurelles³, des investissements publics dans l'infrastructure et l'augmentation du degré de mécanisation dans le secteur de l'agriculture.

La réalisation des bonnes perspectives dépend aussi de facteurs en dehors du contrôle du Gouvernement. Il s'agit notamment de la politique commercial du Nigéria, des conditions météorologiques et du prix du coton sur le marché mondial.

Les scénarios de demande sont basés sur trois scénarios de développement économique.

Tableau 4 Scénarios de la croissance du PIB réel du Bénin dans la période 2015 - 2035 (% par an)

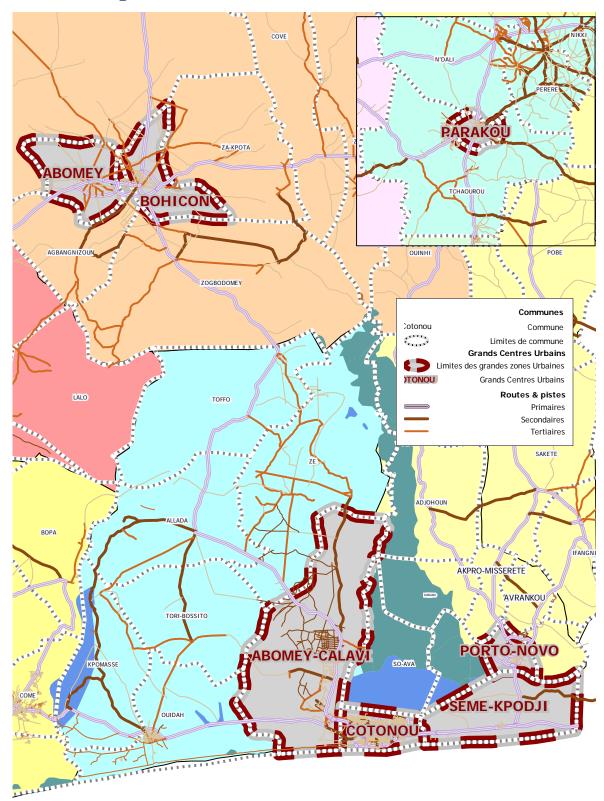
Scénario	2015	2016	2017	2018	2019	2020	 2035
Haut	6,0	6,0	6,5	6,5	6,5	6,5	 6,5
Moyen	5,2	4,8	4,8	4,8	4,8	5,5	 5,5
Faible	4,5	4,5	4,5	4,5	4,5	4,5	 4,5

Sources

• Scénario Haut: Projection du Gouvernement jusqu'en 2017; ensuite estimation du consultant.

Scénario Moyen: Projection du FMI jusqu'en 2019⁴; ensuite estimation du consultant.

• Scénario Faible : Estimation du consultant.


³ Les réformes porteront aussi sur la SBEE. Le document « Projet de Loi de Finances, Document de la Programmation Budgétaire et Economique Pluriannuelle 2015 – 2017 » mentionne « la réforme du secteur de l'énergie par l'assainissement de la SBEE et la création d'une société publique de patrimoine chargée de réaliser les investissements et de les entretenir ainsi que d'une société mixte de gestion, chargée de la distribution et dont le capital social sera cédé à hauteur de 51% » (p. 21 et 22).

⁴ Source: FMI, Sixième Revue de l'Accord au Titre de la Facilité Elargie de Crédit. Rapport 14/150, Juin 2014, p.15. http://www.imf.org/external/french/pubs/ft/scr/2014/cr14150f.pdf

4 DEMANDE BT DANS LES GRANDS CENTRES URBAINS

4.1 Carte des grands centres urbains

4.2 Evolution des abonnés BT et des ventes MT dans le passé

4.2.1 Abonnés BT et taux d'électrification étendu

L'évolution des abonnés BT dans la période 2002 - 2014 est présentée dans le tableau ci-dessous.

Tableau 5 Nombre d'abonnés BT dans les grands centres urbains dans la période 2002 - 2014

GRAND CENTRE URBAIN	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Cotonou	114,815	122,984	129,521	135,483	140,889	144,632	148,283	151,404	162,469	167,306	172,177	177,127	181,000
Abomey-Calavi	24,203	27,434	30,852	34,806	38,319	42,209	47,220	47,079	56,670	61,893	66,857	72,027	78,000
Sémé-Kpodji	2,539	2,819	3,454	4,093	4,746	5,659	6,448	5,984	7,488	7,835	8,596	9,357	10,500
Abomey-Bohicon	12,712	14,637	15,524	16,280	17,325	18,427	20,249	20,637	21,950	23,417	27,422	25,994	29,000
Porto Novo	27,455	29,417	31,918	33,870	36,856	38,368	40,262	43,362	45,127	47,736	49,858	50,904	52,000
Parakou	12,260	13,095	13,994	14,508	15,499	16,757	17,896	20,525	20,220	21,185	22,598	24,857	27,000

Source

- SBEE. 2014 : Estimation du consultant.
- Sémé-Kpodji 2012 : moyenne des valeurs de 2011 et de 2013. Le nombre dans les statistiques de la SBEE est de 7258.

La division du nombre d'abonnés BT par le nombre de ménages donne les « taux d'électrification étendu » présentés ci-dessous. On constate que le taux a presque toujours augmenté.

Tableau 6 Taux d'électrification étendu dans les GCU dans la période 2002 - 2014

GRAND CENTRE URBAIN	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Cotonou	74%	80%	84%	87%	91%	93%	95%	97%	104%	107%	110%	112%	115%
Abomey-Calavi	37%	39%	41%	44%	45%	46%	48%	45%	50%	51%	52%	52%	52%
Sémé-Kpodji	11%	11%	13%	14%	16%	18%	19%	17%	19%	19%	20%	20%	21%
Abomey-Bohicon	34%	39%	40%	40%	42%	43%	46%	45%	47%	49%	55%	51%	55%
Porto Novo	59%	62%	67%	70%	75%	77%	80%	85%	87%	91%	93%	94%	95%
Parakou	64%	65%	66%	65%	66%	68%	69%	76%	71%	71%	72%	76%	79%

La valeur du « taux d'électrification étendu » peut être supérieure à 100% en raison du nombre d'abonnés BT qui peut dépasser le nombre de ménages comme c'est le cas à Cotonou depuis 2010.

La définition traditionnelle du taux d'électrification divise le nombre d'abonnés ménages par le nombre total de ménages. La valeur la plus élevée de cette définition est donc de 100%. Le consultant avait envisagé d'utiliser la définition traditionnelle mais cette approche a été abandonnée à cause du problème suivant : le consultant a obtenu de la SBEE des statistiques pour 2012 et 2013 qui montrent pour tous les centres de la SBEE le nombre d'abonnés « Particuliers » par catégorie tarifaire.

La SBEE a informé le consultant que la grande majorité des abonnés BT1 de ces statistiques sont des ménages sauf ceux qui ont un compteur de prépaiement. Il y a des statistiques qui montrent pour les

centres le nombre total des abonnés qui ont un compteur de prépaiement. Il est vrai que ces abonnés ne sont pas tous des ménages mais on ne fait probablement pas une grande erreur si on suppose que tous soient des ménages.

Une estimation grossière du nombre d'abonnés ménages est donc possible pour les années 2012 et 2013. Les statistiques susmentionnées sur les « Particuliers » montrent aussi les ventes par centre et par catégorie tarifaire. Le problème est que le consultant n'a pas reçu des statistiques qui montrent les ventes prépayés par centre. Il n'est donc pas possible d'estimer la consommation spécifique des abonnés ménages, or ce paramètre est nécessaire pour utiliser un modèle faisant la distinction entre les abonnés BT ménages et d'autres abonnés BT.

Encadré 4.1 : Taux d'électrification dans la définition traditionnelle

Le taux d'électrification dans la définition traditionnelle est obtenu en divisant le nombre d'abonnés ménages par le nombre total de ménages.

Cotonou : Le calcul donne pour Cotonou un taux d'électrification de (presque) 100% en 2013. Le résultat suppose que tous abonnées BT1 des « Particuliers » (123 738) et tous abonnés prépayés (39 543) furent des ménages. Cela donne avec l'estimation de 157 510 ménages à Cotonou en 2013 un taux d'électrification de 104%.

Le calcul correspondant pour les autres GCU donne pour 2013 : Abomey-Calavi 49%, Sémé-Kpodji 15%, Abomey-Bohicon 47%, Porto Novo 87% et Parakou 69%.

4.2.2 Ventes BT

Les statistiques de la SBEE ont seulement permis de calculer les ventes BT dans les années 2011 – 2013. Pour les autres années, le consultant n'a pas pu obtenir les ventes par centre.

2011 2014 GRAND CENTRE URBAIN 2012 2013 276,502 281,640 Cotonou 277,676 273,437 Abomey-Calavi 96,794 77,805 85,019 93,975 Sémé-Kpodji 14,626 12,385 12,633 14,200 Abomey-Bohicon 20,919 24,201 23,537 24,243 Porto Novo 50,186 50,181 49,190 50,666 Parakou 25,327 26,158 26,942 27,750 Total 464,298 474,695 481,281 495,719

Tableau 7 Ventes BT dans les années 2011 - 2014 (MWh)

Sources

- 2011 2013 : Calculé à partir des ventes BT par centre montrées dans les documents « Rapport Annuel » de la SBEE.
- 2014 : Estimation du consultant

La consommation spécifique calculée à partir des ventes facturées est présentée dans le tableau cidessous. Pour obtenir la vraie consommation spécifique, il faudrait ajouter les pertes non-techniques aux ventes facturées.

Tableau 8 : Ventes spécifiques des abonnés BT dans les années 2011 - 2014* (kWh par abonné BT par mois)

GRAND CENTRE URBAIN	2011	2012	2013	2014
Cotonou	138	134	129	130
Abomey-Calavi	105	106	109	103
Sémé-Kpodji	132	122	126	116
Abomey-Bohicon	74	74	75	70
Porto Novo	88	84	81	81
Parakou	100	96	90	86

^{*} Ne tient pas compte des pertes non-techniques. 2014 : Basé sur l'estimation des ventes.

4.3 Modèle pour les scénarios

4.3.1 Développement du taux d'électrification étendu

Le développement du taux d'électrification étendu dépend des décisions politiques et du développement de l'économie. Plus le taux de croissance du PIB réel est élevé, plus le gouvernement aura les moyens pour l'électrification. Le modèle calcule avec les hypothèses suivantes le taux en 2035.

Tableau 9 Taux d'électrification étendu dans l'année 2035 en fonction du scénario

Grand Centre Urbain	2014	2035 Scénario Haut	2035 Scénario Moyen	2035 Scénario Faible
Cotonou	115%	160%	155%	145%
Abomey-Calavi	52%	105%	95%	85%
Sémé-Kpodji	21%	95%	85%	75%
Abomey-Bohicon	55%	105%	95%	85%
Porto Novo	95%	130%	120%	110%
Parakou	79%	105%	95%	85%

L'évolution entre 2014 et 2035 n'est pas linéaire mais le taux est supposé augmenter jusqu'à 2020 de moins en moins vite, avec une tendance à baisser ensuite. Cette tendance tient compte du phénomène où plus le taux est élevé, plus les coûts d'augmentation sont élevés ce qui freine le développement.

Il se peut que l'algorithme qui calcule le développement du taux d'électrification étendu atteigne la valeur de 2035 avant 2035. Dans ce cas, le taux reste à partir de cette année au niveau du taux cible jusqu'à 2035.

L'accroissement des abonnés BT à Cotonou est largement dû aux abonnés BT autres que les ménages. Comme décrite dans le paragraphe 2.1, (presque) tous ménages à Cotonou sont déjà raccordés et l'accroissement de la population est supposé être très faible avec en moyenne 0,2% par an (données INSAE).

4.3.2 Demande spécifique en 2014

Ni le nombre d'abonnés BT, ni les ventes BT en 2014 ne sont encore connues (fin mars 2015). Cela ne permet pas de calculer les consommations spécifiques à partir des ventes facturées. L'estimation grossière est présentée dans le tableau ci-dessous. Pour obtenir la demande des abonnés en 2014, il faut tenir compte des pertes non-techniques et des pertes à cause de délestages. Les pertes non-techniques sont estimées à 9,3% des ventes facturées ; les pertes dues aux délestages à 5%.

Tableau 10 Estimation de la demande BT spécifique en 2014

Grand Centre Urbain	Ventes spécifiques	Consommation spécifique	Demande spécifique
	kW	h par abonné BT par	mois
Cotonou	130	142	148
Abomey-Calavi	103	113	118
Sémé-Kpodji	116	127	133
Abomey-Bohicon	70	76	80
Porto Novo	81	89	93
Parakou	86	94	98

Le Tableau 10 présente l'estimation de la demande spécifique en 2014 qui en résulte. Cette demande constitue le point de départ pour le modèle qui calcule l'évolution de la demande spécifique.

Encadré 4.2 : Pertes non-techniques

Les pertes totales étaient élevées dans le passé. En 2013, elles s'élevaient à 21,31% de l'énergie injectée dans le réseau aux postes sources ; en 2012 à 21,70% et en 2011 à 21,76%.

Le réseau de la SBEE est vétuste et beaucoup de transformateurs sont surchargés. Les pertes techniques sont donc élevées. Le consultant a pris contact avec la SBEE pour obtenir une estimation des pertes techniques afin de permettre l'estimation des pertes non-techniques comme la différence entre les pertes totales et les pertes techniques. La réponse était que la SBEE n'est actuellement pas en position d'avancer une estimation. La SBEE envisage de mener une étude en 2015 qui permettra d'évaluer les pertes techniques.

L'estimation grossière du consultant est que les pertes techniques sont dans l'ordre de 16% de l'énergie injectée dans le réseau de distribution. Pour un bon réseau de distribution on doit compter avec des pertes en puissance de l'ordre de 2 à 3% en MT et de 3 à 8% en BT à la pointe. Comme les pertes en énergie sont l'intégrale des pertes instantanées en puissance sur le temps et que ces pertes varient, elles sont donc inférieures et peuvent être de l'ordre de 1 à 2% en MT et de 2 à 5% en BT. Pour un mauvais réseau, les pertes en puissances à la pointe peuvent dépasser les 6% en MT et 15% en BT. En pertes d'énergie cela peut évoluer vers les 4% en MT et jusqu'à 12% en BT. En faisant le calcul avec 14% (MT+BT) et en considérant que les pertes techniques plus non-techniques sont de l'ordre de 22% de l'énergie injectée dans le réseau de distribution, cela donne des pertes non-techniques de 8% au niveau de l'injection et de 9,3% au niveau des consommateurs.

Encadré 4.3 : Pertes à cause d'interruptions de fourniture d'électricité

L'estimation des pertes à cause de délestages et d'autres d'interruptions est basée sur l'évaluation des statistiques d'interruptions de fourniture d'électricité; voir le tableau en bas. La valeur moyenne du temps d'interruptions est de 6% de l'année. La valeur de 5% est utilisée comme demande qui n'était pas satisfaite à cause de délestages et d'autres interruptions.

Interruptions de fourniture d'électricité (en % du temps de l'année)

Poste	2012	2012	2012	2012	2013	2013	2013	2013
	Déclench.	Travaux	Délestages	Total	Déclench.	Travaux	Délestages	Total
Védoko	1%	8%	3%	12%	0%	7%	?	7%
Akpakba	2%	3%	3%	8%		pas de données		
Gbégamey	2%	0%	1%	3%	2%	0%	?	2%
Maria-Gléta	4%	1%	0%	4%	9%	2%	?	11%
Sémé	1%	1%	1%	4%	2%	4%	?	6%

Source : calculé à partir des données du Rapport Annuel 2012 et 2013 de la SBEE. Délestage pas mentionné comme catégorie d'interruption dans le rapport 2013.

4.3.3 Evolution de la demande spécifique

La majorité des abonnés BT sont les ménages dont la variation de la demande spécifique dépend notamment de leurs revenus. L'évolution du PIB réel par capita est utilisée comme indicateur du développement des revenus.

Les autres abonnés BT comprennent une multitude d'activités: commerçants, petites industries, artisans, soudeurs, restaurants, hôtels, banques, églises, mosquées, écoles, infrastructures administratives, éclairage publique, etc. Les facteurs qui déterminent leur demande varient sans doute d'un abonné à l'autre. Mais on peut aussi s'attendre à ce que les développements démographique et économique soient les facteurs qui aient un impact important sur la demande de chacun de ces abonnés. Dans une approche qui fait la projection de la demande pour l'ensemble de ces abonnées, il est raisonnable de lier la demande seulement aux développements démographique et économique. Dans le présent modèle, la demande est une fonction du PIB réel par capita. Cette variable tient compte des développements démographique et économique.

Sur la période 2002 – 2013, le taux de croissance du PIB réel par capita variait entre -1,06% (2010) et 1,79% (2013). Pour cinq des 11 années, la croissance était négative. En moyenne, la croissance était cependant légèrement positive (0,28% par an) et on s'attendrait donc à ce que la consommation spécifique ait aussi augmenté. Tenant compte que (i) la consommation spécifique augmente normalement plus que les revenus (élasticité > 1) jusqu'à ce que la possession d'appareils électriques ait atteint un niveau de saturation et (ii) que la consommation spécifique ne se réduit normalement pas si les revenus réels baissent, on s'attend à une augmentation d'au moins de 5%. Cela n'était pas le cas. En 2013, la consommation des tous les abonnés BT de la SBEE était en moyenne de 104 kWh/mois; en 2002, elle était de 102 kWh/mois.

Encadré 4.4 : Elasticité

L'élasticité est la relation entre le taux de variation de deux variables. Dans le modèle qui calcule la demande BT dans les GCU, les variables sont la demande spécifique et le PIB réel par capita. Exemple : L'élasticité de 2,0 signifie que la croissance de la demande spécifique est le double de la croissance du PIB réel par capita. Si le PIB réel par capita augmente de 2,5%, la demande spécifique augmente de 5%.

Une explication possible est que la consommation des abonnés qui existaient en 2012 avait augmenté. Mais dans chaque année de la période 2003 – 2013 la SBEE avait raccordé de nouveaux abonnés BT (en moyenne 21 750 par an). La consommation spécifique d'un nouvel abonné est normalement au début plus faible que celle des abonnés existants. Elle augmente plus vite mais n'atteint en général pas le niveau des abonnés existants parce que les nouveaux abonnés ont tendance à être moins aisés que les abonnés existants. Dans ce schéma, la consommation spécifique moyenne peut encore augmenter (elle peut aussi baisser) mais les nouveaux abonnés exercent un impact à la baisse.

Un tel modèle est utilisé pour la projection de l'évolution de la demande spécifique des abonnés BT. Dans le modèle, la demande spécifique des abonnés BT à la fin de 2014 augmente en fonction du PIB

réel par capita avec une élasticité qui est en 2015 de 1,7 et se réduit à 1,0 en 2035. Les nouveaux abonnés BT commencent avec une demande spécifique qui est de 20% plus faible que celle des abonnés BT qui étaient raccordés à la fin de 2014. La demande des nouveaux abonnés augmente ensuite en fonction du PIB réel par capita mais avec une plus haute élasticité, qui est de 2,0 en 2015 et de 1,2 en 2035⁵.

Le modèle décrit en haut est utilisé pour les GCU sauf Cotonou et Porto-Novo.

Cotonou présente un cas spécial. Le taux de croissance de la population est très faible dans le modèle (0,2% par an). Cette hypothèse est basée sur les résultats des recensements de 2002 et de 2013. L'explication pour le faible taux de croissance est qu'il y a très peu d'espace vide dans le grand centre de Cotonou. Un pourcentage important de la population qui travaille à Cotonou habite déjà dans le centre urbain Abomey-Calavi et ce pourcentage augmentera dans le futur. Il est donc attendu que la majorité des nouveaux abonnés BT à Cotonou soient d'autres abonnés BT que des ménages. La demande initiale des autres abonnés BT est supposée être identique à celle des abonnés BT existants à la fin de 2014. Signalons dans ce contexte qu'un autre abonné BT consomme typiquement nettement plus d'électricité qu'un ménage. Concernant l'évolution de la demande spécifique, le modèle calcule avec les mêmes élasticités que pour les autres GCU.

Porto-Novo présente les mêmes caractéristiques que Cotonou mais atténuées. Un très haut pourcentage de la population est déjà approvisionné par la SBEE et le taux de croissance de la population est relativement faible. Dans le modèle, il baisse de 1,4% en 2014 à 1,0% en 2035. L'accroissement de la demande BT sera donc dû aux autres abonnés BT (autres que les ménages). Leur demande spécifique est plus élevée par rapport à celle des ménages. C'est pour cette raison que le modèle suppose que la demande initiale des nouveaux abonnés BT soit identique à la demande en 2014. La projection de l'accroissement de la demande spécifique utilise les mêmes élasticités que pour les autres GCU.

Encadré 4.5 : Impact des tarifs sur la demande

Le tableau ci-dessous montre les ventes en kWh et en FCFA dans les années 2005 – 2013. Les ventes en FCFA comprennent les ventes BT et MT. Les ventes en FCFA qui distinguent BT et MT étaient seulement fournies pour 2012 et 2013.

-

⁵ Les données de la période 2002 – 2013 ont été utilisées pour obtenir une idée des résultats que le modèle aurait donné si on l'avait utilisé pour projeter l'évolution de la consommation spécifique de tous abonnés BT dans cette période. Des relativement bons résultats ont été obtenus en faisant le calcul avec les valeurs suivantes : (1) La consommation initiale des nouveaux abonnés BT est de 10% plus faible que celle des abonnés existants à la fin de 2002. (2) L'élasticité des abonnés existants s'est réduite de 2,2 en 2003 à 1,7 en 2013. Nouveaux abonnées : 2,5 en 2003 et 2,0 en 2013. Dans les années où la croissance du PIB/capita était négative, la consommation spécifique de l'année précédente a été gardée. Résultats : Dans sept des 11 années de la période 2003 – 2013, la différence entre les valeurs observées et celle du modèle est entre -5% et +2%. Dans les années 2008 – 2010, la différence est entre -8% et -12% (sous-estimation). Dans ces années, le niveau de la consommation spécifique était plus élevé (moins d'interruptions ?).

110.0

133.7

	Ventes et prix moyens dans la période 2005 – 2013								
	Ventes (millions FCFA, BT+MT)		1	Ventes en kWh	1	Prix moyen (FCFA/kWh)			
	hors taxes	ventes TTC	BT	MT	BT + MT	hors taxes	ттс		
2005	45,239	53,596	379,704,741	126,910,934	506,615,675	89.3	105.8		
2006	46,619	55,208	390,396,966	143,207,935	533,604,901	87.4	103.5		
2007	48,976	58,026	424,339,650	155,741,932	580,081,582	84.4	100.0		
2008	56,103	66,530	497,227,716	173,524,004	670,751,720	83.6	99.2		
2009	65,378	78,735	522,970,194	190,095,199	713,065,393	91.7	110.4		
2010	81,974	99,803	572,496,439	197,891,690	770,388,129	106.4	129.5		
2011	85,463	103,903	582,591,142	213,650,286	796,241,428	107.3	130.5		
2012	91,533	112,357	598,124,128	242,422,516	840,546,644	108.9	133.7		

Dans la période 2005 – 2013, le prix moyen TTC a augmenté significativement sur deux années : en 2009 de 11,3% et en 2010 de 17,3%. Sur les autres années, le changement du prix moyen TTC était faible (entre -2,2% et + 2,4%). Les ventes totales augmentaient toujours. En moyenne de 6,7% par an. En 2009, l'augmentation de 6,3% était légèrement inférieure à la moyenne. L'augmentation en 2010 de 8,0% était supérieure.

114,009 | 621,283,000 | 231,197,000 | 852,480,000

La conclusion tirée de ces résultats est que dans la période 2005 – 2013, les tarifs n'ont pas eu un impact sur la consommation.

Il est peu probable que les analyses plus détaillées – ventes BT et prix BT, ventes MT et prix MT – donnent des résultats différents. Comme mentionné en haut, des analyses plus détaillées n'étaient pas possible parce que les ventes BT et MT en FCFA étaient seulement fournies pour 2012 et 2013.

4.4 Résultats

2013

93,731

La demande dans les trois scénarios est présentée dans le tableau ci-dessous. On constate que :

- Le taux de croissance est le plus élevé dans le GCU de **Sémé-Kpodji**. Cela est notamment dû à l'augmentation du taux d'électrification. Le taux étendu est actuellement de l'ordre de 20%. Dans les autres GCU, le taux varie entre 52% et 115%. En 2035, Sémé-Kpodji n'atteint pas encore le niveau des autres GCU mais la différence se réduit beaucoup. Cela et la forte croissance de la population en moyenne de 5,0% par an entre 2014 et 2035 ont pour conséquence que la demande BT à Sémé-Kpodji, qui était en 2014 la plus faible des six GCU, prend en 2035 la troisième position après Cotonou et Abomey-Calavi.
- Cotonou est toujours le plus grand « abonné BT » mais la croissance de la demande est la plus faible de tous GCU. Les raisons principales pour le relativement faible taux de croissance sont que (presque) 100% de la population de la ville sont déjà électrifiés et que la population n'augmente que de 0,2% par an. Que le nombre d'abonnés BT augmente plus que 0,2% par an est dû à l'hypothèse que les activités économiques continuent d'évoluer. La demande spécifique de ces abonnés est nettement plus élevée que celle des abonnés ménages et implique que Cotonou constate dans le modèle la plus forte augmentation de la demande spécifique de tous GCU.

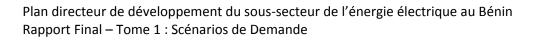

- La demande BT d'Abomey-Calavi approche la demande de Cotonou. La croissance de la population et la forte augmentation du taux d'électrification sont à l'origine de ce développement. Dans le modèle, la population dans le GCU d'Abomey-Calavi s'accroit en moyenne de 5,4% par an entre 2013 et 2035. Abomey-Calavi devient la « cité dortoir » de Cotonou. Le taux d'électrification étendu augmente de 52% en 2014 à 105% en 2035 (Scénario Haut); dans le Scénario Moyen à 95% et dans le Scénario Faible à 85%.
- Abomey-Bohicon: La croissance de la demande dans le GCU d'Abomey-Bohicon prend la troisième place après Sémé-Kpodji et Abomey-Calavi. Les facteurs principaux pour l'accroissement de la demande sont les mêmes que pour Abomey-Calavi: la croissance de la population et la forte augmentation du taux d'électrification étendu. Le fait que la croissance de la demande soit plus faible par rapport à Abomey-Calavi est dû à un accroissement de la population plus faible: en moyenne 3,4% par an par rapport au 5,4% dans le GCU d'Abomey-Calavi.
- Porto Novo: Le taux de croissance de population de Porto-Novo est faible; en moyenne 1,2% par an dans la période 2014 2035. La nette augmentation de la demande est due à l'hypothèse que la grande majorité des nouveaux abonnés BT à Porto-Novo soient des autres abonnés BT (petites industries, commerçants, banques, assurances, hôtels, restaurants, artisans, écoles, infrastructures administratives, etc.). Leur demande est plus élevée que celle des abonnés BT ménages.
- **Parakou**: L'accroissement de la population en moyenne de 4,1% par an entre 2014 et 2035 est le facteur principal de l'accroissement de la demande.

Tableau 11 Résultats des GCU pour les scénarios Haut Moyen Faible

Ventes facturées Demande Demande Demande Demande Demande Croissance GCU 2015-2035 **GWh** GWh GWh GWh GWh GWh **GWh GWh GWh** % par an Cotonou 5.4% Abomey-Calavi 10.6% Sémé-Kpodji 13.7% Abomey-Bohicon 8.7% Porto Novo 6.2% Parakou 7.9% Total 1,341 1,945 2,678 7.7%

Scénario Haut

Scénario Moyen

		Ven	tes f	acturé	ées	Demande	Demande Demande		Demande	Demande	Croissance
GCU	2011 2012 2013 2	2014	2015	2015 2020	2025	2030	2035	2015-2035			
		GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	% par an
Cotonou		278	277	273	282	333	386	477	574	671	3.6%
Abomey-C	alavi	78	85	94	97	121	186	307	471	666	8.9%
Sémé-Kpo	dji	12	13	14	15	19	36	73	125	191	12.2%
Abomey-B	ohicon	21	24	24	24	29	39	58	82	112	6.9%
Porto Novo	0	50	50	49	51	60	72	92	115	137	4.2%
Parakou		25	26	27	28	34	44	62	84	108	6.0%
Total		464	475	481	496	597	764	1,069	1,451	1,885	5.9%

Scénario Faible

	Ver	ites f	acture	ées	Demande	Demande	Demande Demande		Demande Demande	
GCU	2011	2012	2013	2014	2015	2020	2025	2030	2035	2015-2035
	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	% par an
Cotonou	278	277	273	282	328	364	431	500	565	2.8%
Abomey-Calavi	78	85	94	97	119	173	274	407	559	8.0%
Sémé-Kpodji	12	13	14	15	19	33	64	107	159	11.3%
Abomey-Bohicon	21	24	24	24	29	37	52	71	93	6.0%
Porto Novo	50	50	49	51	59	67	83	99	114	3.3%
Parakou	25	26	27	28	33	41	55	72	90	5.1%
Total	464	475	481	496	588	716	959	1,255	1,581	5.1%

5 DEMANDE MT

Ce chapitre décrit la méthode utilisée pour estimer la demande MT dans les grands centres urbains. Cette méthode est aussi utilisée pour l'estimation de la demande MT dans des centres de la SBEE qui sont en dehors des GCU mais où il y a déjà des abonnées MT. Il s'agit des centres de Ouidah, Allada, Sékou, Attagan, Lokossa et Natitingou. La présentation des résultats se limite à la demande MT dans les GCU. Les résultats pour les autres centres sont présentés dans le Chapitre 6.

5.1 Evolution des ventes MT dans le passé

L'évolution des ventes MT dans la période 2002 - 2014 est présentée dans le tableau ci-dessous. Le développement du nombre d'abonnés se trouve dans l'Annexe 1.

Région SBEE 2002 2003 2004 2005 2006 2007 Littoral 1 Littoral 2 Atlantique 95,895,901 107,029,415 90,539,335 85,877,738 104,273,476 107,777,666 Oueme 12,080,069 12,729,119 9,784,354 10,515,143 11,399,133 11,169,115 Mono 9,324,626 7,193,046 9,583,438 7,358,678 11,729,213 8,924,128 Zou 13,583,846 12,712,155 11,154,270 14,050,985 12,493,120 14,781,716 Borgou 5,246,405 5,953,989 3,656,392 4,789,186 5,795,861 8,264,848 3,252,171 2,054,957 2,094,444 Atacora 2,820,580 1,887,667 2,019,374 Total SBEE 138,951,427 150,600,977 124,382,354 126,910,934 143,207,935 155,741,932 SCB Lafarge 50,039,000 44,693,000 54,644,000 54,645,000 56,203,000 54,067,974 Total Bénin 188,990,427 195,293,977 179,026,354 181,555,934 199,410,935 209,809,906

Tableau 12 Ventes MT dans la période 2002 - 2014 (kWh)

Région SBEE	2008	2009	2010	2011	2012	2013	2014
Littoral 1					109,309,005	113,728,052	122,323,404
Littoral 2					34,130,023	41,910,751	41,854,771
Atlantique	116,140,975	135,661,454	144,266,412	149,110,492	16,321,756	15,015,690	19,997,440
Oueme	11,277,478	12,732,702	14,105,830	16,752,442	23,575,087	25,824,702	23,999,532
Mono	13,556,174	12,227,260	9,333,183	12,390,479	17,788,671	17,230,503	17,404,734
Zou	20,449,043	18,377,822	18,808,934	22,089,812	26,184,370	29,428,564	28,941,326
Borgou	9,102,987	9,700,938	9,770,515	10,961,766	12,272,888	13,577,379	11,490,327
Atacora	2,997,347	1,395,023	1,606,816	2,345,295	2,840,716	2,822,292	3,271,841
Total SBEE	173,524,004	190,095,199	197,891,690	213,650,286	242,422,516	259,537,933	269,283,375
SCB Lafarge	50,537,786	57,688,848	59,467,508	p.d.	59,754,000	58,856,000	p.d.
Total Bénin	224,061,790	247,784,047	257,359,198		302,176,516	318,393,933	

Sources

- 2002 2011 : SBEE, Rapport Annuel 2011, Tableau 46.
- 2012 2013 : SBEE, Rapport Annuel 2013, Tableau 23 et 46.
- 2014 : Valeurs provisoires ; basées sur des statistiques reçues de la SBEE.
- p.d.: pas disponible. SCB Lafarge est approvisionné par la CEB.

Les ventes de la SBEE comprennent les ventes dans les grands centres urbains et les ventes dans d'autres centres qui sont déjà électrifiées. Les grands centres urbains et les autres centres sont indiqués ci-dessous.

Région	Grand Centre Urbain	Autres Centres .
Littoral 1	Cotonou	
Littoral 2	Cotonou	
Atlantique	Abomey-Calavi	Ouidah, Allada, Sékou, Attagan
Ouémé-Plateau	Porto-Novo	
Mono-Couffo	-	Lokossa
Zou-Collines	Abomey-Bohicon	
Borgou-Alibori	Parakou	
Atacora-Donga	-	Natitingou

Le GCU de Sémé-Kpodji n'apparait pas sur la liste parce qu'il n'y avait pas d'abonnés MT à Sémé-Kpodji jusqu'à fin 2014.

En 2002 et 2003, les ventes MT de la SBEE comptaient pour 32% des ventes totales (ventes BT + MT). En 2004, il y a eu une forte réduction des ventes MT dont la raison n'est pas connue, avec pour conséquence la réduction du pourcentage aux ventes totales. Entre 2004 et 2011, le pourcentage variait entre 25% et 27% avant d'augmenter en 2012 à 29% et en 2013 à 30%.

La répartition par région était relativement stable entre 2002 et 2013. Jusqu'en 2011, la région Atlantique comptait toujours pour la grande partie des ventes MT; environ 70% des ventes MT étaient réalisées dans la région d'Atlantique. En 2012, la région était coupée en trois régions. Depuis, c'est la région Littoral 1 qui est la plus importante avec environ 45% des ventes totales, suivi de Littoral 2 avec environ 15%. Ces deux régions constituent dans le modèle de demande la grande zone urbaine de Cotonou. Deux autres régions importantes sont Ouème-Plateau et Zou-Collines avec environ 10% chacune.

Grands clients MT: Il était prévu de traiter les grands consommateurs MT séparément. Un grand consommateur MT compte pour au moins 3% de la consommation MT totale. Le consultant avait demandé à la SBEE de lui fournir la liste des abonnés MT qui étaient les plus importants en 2012 et 2013 en termes de ventes. Le consultant a reçu une liste pour le mois d'août 2014. Sur ce mois, les abonnés qui consommaient le plus étaient : le Port Autonome de Cotonou, la Compagnie Béninoise DES, la cimenterie CIM-Bénin, la brasserie SOBREBA et SCB Usine (cimenterie). Ces données ne permettent pas de calculer combien de MWh les plus grands clients MT ont consommé dans l'année. Le consultant a donc répété la requête d'information mais n'a pas reçu de réponse.

5.2 Scénarios de Demande MT

5.2.1 Demande en 2014

La demande MT en 2014 constitue le point de départ. Les ventes en 2014 ne reflètent pas la demande. Trois phénomènes sont à considérer pour l'estimation de la demande :

- a) Pertes non-techniques
- b) Délestages
- c) Autoproduction

<u>Pertes non-techniques</u>: L'estimation grossière du consultant est que les pertes non-techniques sont de l'ordre de 9,3% des ventes ; voir l'Encadré 3.2.

<u>Délestages</u>: L'analyse des statistiques des minutes perdues à cause de déclenchements, travaux et délestages des postes sources indique que la consommation perdue était en 2012 de l'ordre de 5% des ventes ; voir l'Encadré 3.3.

<u>Autoproduction</u>: L'autoproduction est répandue au Bénin à cause du manque de capacité de production et de transport pour satisfaire la demande⁶. Ni la capacité installée ni la production annuelle n'est cependant connue.

Le rapport « SIE Bénin 2010 » contient des estimations de l'autoproduction au Bénin dans les années 1997 – 2010. Les estimations reflètent les informations obtenues de plusieurs grandes entreprises à caractère industriel⁷ et l'autoproduction de quelques grands hôtels. Le chiffre pour 2010 est de 26 607 MWh (page 61 du rapport) ce qui correspondait à 3% de l'offre totale. Le rapport montre aussi que l'autoproduction variait beaucoup (minimum 8 614 MWh en 1997; maximum 38 249 MWh en 2007) sans qu'une tendance soit visible.

Un autre document obtenu par le consultant en février 2015 de la DGE montre l'autoproduction par société. L'autoproduction dans les grands centres urbains est présentée en bas ; l'autoproduction en dehors des GCU dans le Chapitre 6.

⁶ Le document « Perspectives économiques en Afrique «, BAfD/OECD de 2008, mentionne sur la page 166 que l'incapacité de la SBEE de satisfaire la demande a conduit le Gouvernement a accordé des avantages fiscaux aux opérateurs privés pour les inciter à se doter d'unités d'autoproduction.

⁷ Le rapport mentionne les entreprises suivantes : SCB, SCB-LAFARGE, CIMBENIN, SITEX, SOBETEX, COTEB, SOBEBRA, GMB, IBCG, SOCIA-BENIN, les usines de SODECO, les usines de CCB, Label coton du Bénin, Société cotonnière du Bénin, TRANSACIER.

Tableau 13 Autoproduction dans les grands centres urbains

Centre	Autoproduction en 2014 (MWh)	Auto-producteurs
Cotonou	10 000	SOBREBA, CIM Bénin, Sociétés des Ciments du
		Bénin, TRANSACIER, Hôtel du Port, Bénin Marina
Abomey-Calavi	-	
Sémé-Kpodji	100	Société Industrielle d'Acier du Bénin
Abomey-Bohicon	700	SODECO, Société FLUFOR Bénin
Porto-Novo	-	
Parakou	400	SODECO

Commentaire : Il s'agit d'estimations grossières. L'analyse de la consommation spécifique donne pour quelques sociétés des valeurs qui sont en dehors de l'intervalle raisonnable. Il se peut aussi que les estimations ne couvrent pas la même période (2014).

Les auto-producteurs dont les données sont présentées dans le Tableau 5.2 sont considérés comme des candidats pour le raccordement MT ce qui donne pour 2014 une demande MT de 11,2 GWh. En fait, plusieurs auto-producteurs sont déjà des abonnés MT de la SBEE. Ils utilisent l'autoproduction en cas de délestages ou durant les heures de pointe.

Au total, la demande MT en 2014 est estimée à 329 GWh. Cette demande est le résultat des ventes (269 GWh) plus pertes non-techniques (9,3% des ventes), plus délestages (5% des ventes), plus autoproduction dans les GCU (11,2 GWh) et autoproduction dans les centres en dehors des GCU (10,6 GWh; voir le paragraphe 6.5). La répartition de la demande de 329 GWh entre GCU et centres en dehors des GCU est: GCU – 291 GWh; autres centres – 38 GWh.

5.2.2 Méthode utilisée pour estimer la demande MT dans les années 2015 - 2035

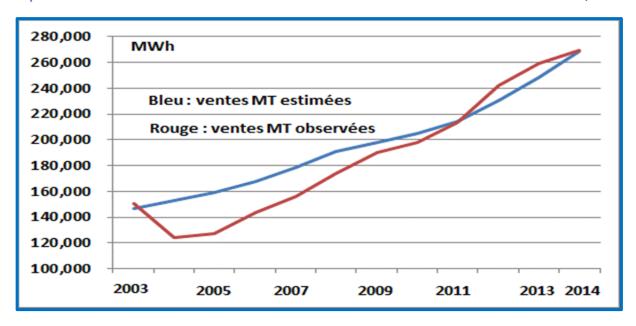
La demande MT suit normalement le développement économique. Elle augmente généralement plus que le PIB réel. Par conséquent, l'élasticité, qui est la relation entre le taux de croissance de la demande et le taux de croissance du PIB réel, est supérieure à 1,0. Au Bénin, c'était le cas sur la période 2002 – 2014. Dans cette période, les ventes MT de la SBEE ont en moyenne augmenté de 5,7% par an⁸, nettement plus que l'accroissement du PIB réel dans la période qui était de 4,0% par an. Cela donne une élasticité de 1,40. L'Encadré 5.1 montre que cette élasticité n'est pas loin des valeurs observées ailleurs si on fait l'abstraction des valeurs extrêmes.

Le Graphique 5.1 compare les ventes MT observées dans la période 2003 – 2014 avec les résultats d'un modèle qui calcule avec une élasticité de 1,4. La formule de calcul est :

Les valeurs du taux de croissance du PIB réel sont celles indiquées dans le Tableau 2.1.

_

⁸ Le taux de croissance n'inclut pas les ventes de la CEB à SCB Lafarge.


On constate que le calcul aurait produit une bonne estimation des ventes en 2003 et des ventes dans les années 2009 - 2014. Dans ces années, la différence ne dépasse pas \pm 5%. Les mauvais résultats dans les années 2004 - 2008 sont dus à la chute des ventes en 2004. Entre 2004 et 2006, les ventes étaient inférieures aux ventes en 2003.

Encadré 5.1 : Elasticité des ventes MT par rapport au PIB réel dans quelques pays / grandes villes`

Pays / Ville	Période	Croissance	Croissance	Elasticité	Commentaire
		Ventes	PIB réel		
Bénin	2002 – 2014	5,7% par an	4,0% par an	1,4	
Mali	2001 – 2013	7,6% par an	4,2% par an	1,8	
Bamako	2001 – 2013	7,2% par an	4,2% par an	1,7	PIB Mali
Mauritanie	2000 – 2012	8,9% par an	4,3% par an	2,1	
Ouagadougou	2000 – 2010	8,1% par an	5,5% par an	1,5	PIB Burkina Faso
Madagascar	2001 – 2013	1,4% par an	2,2% par an	0,7	

Sources : Différentes études faites par le consultant dans les dernières années.

Graphique 4 Comparaison des ventes MT observées dans la période 2003–2014 avec l'estimation à partir du modèle où les ventes sont une fct de la croissance du PIB réel avec l'élasticité de 1,4.

Le modèle utilisé pour les scénarios calcule la demande MT comme :

demande(t) = demande(t-1) * (1 + croissance du PIB réel(t)) * élasticité (t = 2015, ..., 2035)

Les hypothèses concernant la croissance du PIB réel sont présentées dans le Tableau 2.2. L'élasticité est de 1,5 en 2015, de 1,3 en 2035 et entre 2016 et 2034 le résultat de l'interpolation linéaire.

5.2.3 Répartition de la demande MT sur les régions et centres de la SBEE

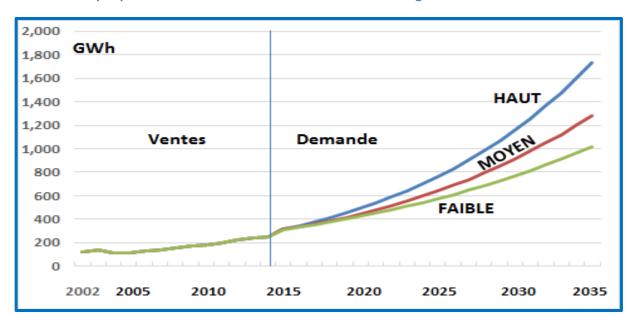
Dans la période 2002 – 2014, les ventes MT dans les régions de la SBEE comptaient pour à peu près le même pourcentage dans les ventes MT totales. Il n'y avait dans aucune région une tendance à la hausse ou à la baisse. Cela peut, bien sûr, changer dans le futur.

Le consultant a été informé que le GCU de Sémé-Kpodji est susceptible de voir l'installation des projets industriels dans le futur, y compris l'extension du port de Cotonou. Jusqu'en 2014, il n'y avait pas d'abonnés MT de la SBEE à Sémé-Kpodji. Le modèle tient compte de l'apparition future des abonnés MT en supposant que Sémé-Kpodji compte pour 2% de la demande MT totale en 2015 et que ce pourcentage augmente jusqu'à 10% en 2035.

Le Tableau 7 montre le développement dans les GCU et dans les centres en dehors des GCU qui sont déjà électrifiés et ont déjà des abonnés MT. Pour les centres sauf Cotonou, le développement entre 2015 et 2035 est calculé à partir de l'interpolation linéaire. Le pourcentage de Cotonou est calculé comme 100% moins la somme des pourcentages des autres centres.

On constate que Cotonou reste le centre qui compte pour la plus grande partie de la demande MT mais son importance diminue parce que quelques autres centres, notamment Sémé-Kpodji, deviennent plus importants.

Tableau 14 Répartition de la demande MT par centre en 2015 et 2035


Centre	Statut dans modèle	le	Demande MT en 2015 (en % de la demande totale MT)	Demande MT en 2035 (en % de la demande totale MT)
Cotonou	GCU		60,0%	48,7%
Abomey-Calavi	GCU		6,0%	6,0%
Sémé-Kpodji	GCU		2,0%	10,0%
Abomey-Bohicon	GCU		10,3%	10,3%
Porto-Novo	GCU		9,0%	9,0%
Parakou	GCU		4,5%	4,5%
Ouidah	Centre	en	1,0%	2,0%
Lokossa	dehors des G	CU	6,0%	6,0%
Natitingou	mais d	léjà	1,0%	2,0%
Allada	électrifié.		0,10%	0,50%
Sékou	-		0,11%	0,50%
Attagan			0,02%	0,50%

5.3 Résultats - Demande MT dans les Grands Centres Urbains

Le Graphique 4 montre l'évolution de la demande MT dans les grands centres urbains selon les trois scénarios. Dans le Scénario Haut, le taux de croissance moyenne dans la période 2015 – 2035 est de 8,8% par an. La valeur correspondante dans le Scénario Moyen est de 7,3% par an et dans le Scénario Faible de 6,1% par an. L'Annexe 2 contient la répartition par grand centre.

La demande MT dans les centres de Ouidah, Lokossa, Natitingou, Allada, Sékou et Attagan qui ne sont pas des grands centres urbains dans le modèle mais où il y a déjà des abonnés MT fait partie de la demande qui est présentée dans le Chapitre 6 (Demande dans les localités en dehors des GCU et déjà électrifiées).

Graphique 5 Bénin - Scénarios de demande MT dans les grands centres urbains

Fichier de référence : Prévision, feuille MT, BO32

6 DEMANDE DANS LES LOCALITES EN DEHORS DES GCU ET DEJA ELECTRIFIEES

6.1 Nombre de localités

En 2014, il y avait 3230 localités en dehors des GCU dont 1123 localités qui étaient déjà électrifiées. Parmi ces dernières, on retrouve : 913 localités rurales, 135 localités urbaines, 45 localités semi ou périurbaines et 30 lacustres

Encadré 6.1 : Définition du terme « localité urbaine »

L'INSAE a catégorisé les localités du Bénin en 5 segments : (1) Rural, (2) Urbain, (3) Péri Urbain, (4) Semi Urbain, (5) Lacustre.

L'INSAE définit le milieu urbain comme « une zone hétérogène qui regroupe tout chef lieux de commune ayant au moins 10 000 habitants et au moins une des infrastructures ci-après : bureau de poste télécommunication, bureau de recette perception du trésor public, système d'adduction d'eau, électricité, centre de santé, collège d'enseignement général avec 2^{ème} cycle, d'une part et tout arrondissement ayant au moins quatre des infrastructures énumérées ci-dessus et au moins 10 000 habitants ». (Synthèse des analyses en bref – février 2002 – Troisième recensement Général de la population et de l'habitation)

6.2 Données disponibles

Les données disponibles sont :

Centre de la SBEE

- Population et nombre de ménages dans le centre
- Nombre d'abonnés BT dans le centre
- Ventes BT dans le centre
- Liste des localités urbaines, semi-urbaines et péri-urbaines dans le centre. Ces trois catégories constituent dans le modèle les localités urbaines.
- Liste des localités électrifiées et non-électrifiés dans le centre

Localités dans le centre

• Population et nombre de ménages de chaque localité

6.3 Approche pour estimer la demande BT

Le nombre d'abonnés BT dans les localités électrifiées et les ventes dans ces localités ne sont pas connus. Ces paramètres ont été estimés. Le nombre d'abonnés BT et les ventes BT dans le centre ont été répartis sur les localités électrifiées proportionnellement à la taille de la population. Etant donné un centre, le taux d'électrification est donc identique dans les localités électrifiées et la consommation spécifique des abonnés BT est également identique dans les localités électrifiées.

Si on compare les localités électrifiées situées dans différents centres, le taux d'électrification et la consommation spécifique sont différents.

L'estimation de l'évolution de la population dans les localités, qui est l'hypothèse principale concernant le développement du taux d'électrification, donne le nombre d'abonnés BT dans le futur.

En 2014, le taux d'électrification étendu au niveau des départements variait entre 3% et 15%, le taux moyen hors GCU était de 10% (21% en 2013 dans les localités électrifiées), le taux national était de 28% (GCU inclus). Le taux en 2035 est présenté dans le tableau ci-dessous. Une interpolation⁹ est utilisée pour calculer le développement entre 2013 et 2035.

Tableau 15 Taux d'électrification (étendu) en 2035

Scénario	Taux en 2035
Haut	75%
Moyen	66%
Bas	50%

En 2013, la consommation spécifique des abonnés BT variait entre 5,7-22,6 et 204-311 kWh/mois.

L'évolution de leur demande spécifique est dans le modèle une fonction de la variation du PIB réel par capita. Le modèle ne fait cependant pas la distinction entre abonnés existants et nouveaux abonnés comme c'est le cas dans le modèle utilisé pour les grands centres urbains. Le fait que la demande spécifique des nouveaux abonnés ait tendance à être plus faible que celle des abonnés existants, ce qui réduit l'augmentation de la demande spécifique moyenne (elle peut même baisser), est dû aux valeurs de l'élasticité. Elle est dans le Scénario Haut de 0,9 en 2015 et de 0,35 en 2035. Scénario Moyen: 0,7 et 0,35. Scénario Faible: 0,40 et 0,20¹⁰.

6.4 Approche pour estimer la demande MT

La demande MT est composée de trois éléments :

- 1. La demande MT dans les centres en dehors des GCU où il y a déjà des abonnés MT.
- 2. L'autoproduction en dehors des GCU.
- 3. La demande MT qui va se présenter dans certains centres en dehors des GCU qui n'ont pas encore d'abonnés MT.

-

⁹ De 2015 à 2020 la progression est linéaire mais plus lente que de 2021 à 2035.

Les valeurs ont été déterminées comme suit : Les modèles pour les GCU sauf Cotonou ont été calculés en supposant que la demande spécifique des abonnés existants et des nouveaux abonnés est identique. Ensuite des valeurs pour l'élasticité ont été déterminées tel que la croissance de la demande est proche du développement qui résulte des modèles GCU environ celle du modèle GCU.

Demande MT dans les centres en dehors des GCU où il y a déjà des abonnés MT

Comme précédemment mentionné dans le Chapitre 4, il y a déjà des abonnés MT dans quelques localités en dehors des GCU. Selon les statistiques de ventes de la SBEE, c'est le cas dans les centres de Ouidah, Allada, Sékou, Attagan, Lokossa et Natitingou. Les ventes MT totales dans ces centres en 2014 sont estimées à 24 GWh. Le calcul de la demande dans ces centres est décrit en haut dans le Chapitre 4.

Autoproduction en dehors des GCU

L'autoproduction est à prendre en compte dans l'estimation de la demande MT parce que l'approvisionnement par la SBEE coûte nettement moins chère et est donc souhaité par les autoproducteurs. Les données reçues de la DGE sur l'autoproduction en 2014 en dehors des GCU sont présentées dans le tableau ci-dessous. L'autoproduction totale était de 10,5 GWh. Tous les centres étaient en 2014 des centres électrifiés.

Tableau 16 Autoproduction en dehors des grands centres urbains

Centre	Autoproduction en 2014 (MWh)	Auto-producteur
Banikoara	700	SODECO
Dassa	5 600	Label Coton du Bénin
Savalou	100	SODECO
Bembérété	900	SODECO
Pehunco	900	Industrie Cotonnière Béninoise
Kandi	1 500	SODECO, Compagnie Cotonnière du Bénin
N'Dali	500	Société Cotonnière de N'Dali
Glazoué	200	SODECO
Kétou	150	IBECO Kétou

Commentaire : Il s'agit des estimations grossières. L'analyse de la consommation spécifique donne pour quelques sociétés des valeurs qui sont en dehors de l'intervalle raisonnable. Il se peut aussi que les estimations ne couvrent pas la même période (2014).

L'autoproduction se développe dans le modèle comme suit :

Autoproduction dans l'année t = Autoproduction dans l'année t-1 * (1 + taux de croissance du PIB réel * élasticité) (t = 2015, ..., 2035).

L'évolution du PIB réel est indiquée dans le Tableau 4. L'élasticité est celle utilisée dans le calcul de la demande MT, à savoir de 1,5 en 2015, de 1,3 en 2035 et le résultat de l'interpolation linéaire dans les années 2016 - 2034.

Demande MT dans les centres en dehors des GCU qui n'ont pas encore d'abonnés MT

On peut s'attendre à ce qu'il y ait des abonnés MT à partir d'une certaine taille de localité. Dans le modèle, c'est le cas à partir de 12 000 personnes. La demande des abonnés MT est estimée à 10% de la demande BT¹¹. Les estimations sont basées sur les données présentées dans l'Encadré 6.2.

Encadré 6.2 : Ventes MT en % des ventes BT dans quelques localités en Mauritanie

Le consultant dispose des statistiques de ventes de la SOMELEC (Mauritanie) qui couvrent la période 2006 – 2013. Dans cinq localités, des ventes MT commençaient dans cette période. Le tableau suivant présente la taille des localités dans la première année des ventes MT et la relation entre les ventes MT et les ventes BT.

Ventes MT dans cinq localités en Mauritanie – Première année d'apparition d'abonnés MT et évolution en % des ventes totales

Localité	1 ^{ère}	Population	2007	2008	2009	2010	2011	2012	2013
	année	1 ^{ère} année							
Boutilimit	2007	13 615	10%	13%	16%	16%	13%	13%	13%
Sélibabi	2007	15 609	3%	8%	9%	8%	8%	10%	9%
Aioun-	2010	13 622				1%	14%	13%	13%
Tidjikja	2011	10 994					7%	8%	8%
Aleg	2011	12 072					4%	17%	17%

Source : Statistiques de la SOMELEC. Population estimée par le consultant à partir des données démographiques fournies par l'Office Nationale de la Statistique.

6.5 Résultats

Le Tableau 17 présente les taux de croissance moyenne de la demande BT et MT dans la période 2015 – 2035. Les taux sont nettement plus élevés par rapport aux taux correspondants dans les GCU. La raison principal de cette évolution est l'accroissement du taux d'électrification. En 2014, le taux étendu était en moyenne de 21%. Dans le Scénario Haut, il atteint en 2035 partout 75%, dans le Scénario Moyen 66% et dans le Scénario Faible 50%.

Tableau 17 Taux de croissance moyenne de la demande BT et MT dans les localités

	Demande BT	Demande MT
Scénario Haut	11,5%	11,0%
Scénario Moyen	9,9%	9,4%
Scénario Faible	7,8%	8,1%

¹¹ Le critère de 12 000 d'habitants n'est pas appliqué aux centres dans lesquels il y a déjà des abonnés MT ou des auto-producteurs. Ces centres sont ceux mentionnés en haut (Ouidah, Allada, Sékou, Attagan, Lokossa,

Natitingou, Banikoara, Dassa, Savalou, Bembérété, Pehunco, Kandi, N'Dali, Glazoué et Kétou.

La demande totale en GWh par Direction Régionale de la SBEE est indiquée dans le tableau cidessous. La croissance est globalement homogène d'une région à l'autre à l'exception de la DR de Borgou-Allibori. Tiré par la forte croissance démographique, cette DR devient la plus importante, suivi de la DR de Ouémé-Plateau.

Signalons que les scénarios n'incluent pas la demande de la cimenterie SCB Lafarge ainsi que la demande de la cimenterie NOCIBE. Les cimenteries sont en dehors des grands centres urbains.

L'usine de Lafarge est située à Onigbolo dans la commune de Kétou (département Ouémé-Plateau). SCB Lafarge est approvisionnée par la CEB. Les projections de la CEB supposent que la demande de la cimenterie soit entre 62 et 73 GWh/an.

L'usine de NOCIBE se trouve à Massé dans la commune d'Adja-Ouéré (département Ouémé-Plateau). La production a commencé en 2014. Le plan est de produire près de 1,3 millions de tonnes de ciment par an. En 2014, NOCIBE a satisfait son besoin en électricité par autoproduction¹². Il est prévu de raccorder NOCIBE au réseau en 2015. La cimenterie sera ensuite approvisionnée par la CEB qui estime la demande entre 116 et 132 GWh/an.

¹² La source http://www.gouv.bj/actualites/marina/nouvelle-cimenterie-du-benin-le-president-boni-yayi-constate-lavancement-des-travaux mentionne que NOCIBE envisage d'installer 26 MW en capacité d'autoproduction.

Tableau 18 Demande des localités en dehors des GCU mais déjà électrifiées en 2014 (GWh)

scénario Haut	V	entes)eman	de (G	Wh)									
Direction régionale	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Atlantique	17	20	18	26	33	36	39	43	47	52	60	68	78	88	99	110	123	136	150	166	182	199	217	236	256
Oueme-Plateau	23	23	25	29	37	41	45	50	55	60	72	85	100	115	132	150	169	189	211	234	258	284	311	340	370
Mono-Couffo	29	28	28	33	41	44	47	51	55	59	68	77	86	96	107	119	131	144	158	172	187	203	219	236	254
Zou-Collines	17	17	19	23	29	32	35	38	42	46	55	65	75	87	99	112	126	140	156	172	189	207	226	245	265
Borgou-Alibori	12	15	14	14	19	22	26	30	34	39	51	64	79	95	113	133	154	177	202	229	258	289	323	358	395
Atacora-Donga	20	22	21	35	43	46	49	53	57	61	69	77	86	95	105	116	127	140	152	166	180	195	211	227	245
Total	118	123	124	160	201	220	242	266	291	317	374	436	504	576	655	739	830	926	1029	1 139	1 255	1378	1507	1642	1785
scénario moyen	٧	entes	5)eman	de (G	Wh)									
Direction régionale	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Atlantique	17	20	18	26	32	35	37	40	43	47	53	59	66	73	81	89	98	107	117	127	138	150	162	175	188
Oueme-Plateau	23	23	25	29	36	39	42	46	49	53	63	72	83	94	106	119	133	147	162	179	195	213	232	252	272
Mono-Couffo	29	28	28	33	40	42	45	47	50	53	59	66	73	80	88	96	104	113	122	132	142	153	164	175	187
Zou-Collines	17	17	19	23	29	31	33	35	38	41	48	55	63	71	80	89	99	109	120	131	143	155	168	182	196
Borgou-Alibori	12	15	14	14	19	21	24	27	31	34	44	54	65	77	90	105	120	137	155	174	195	217	240	265	291
Atacora-Donga	20	22	21	35	42	45	47	50	52	55	61	67	73	80	86	94	102	110	119	128	137	147	158	169	180
Total	118	123	124	160	198	213	229	246	264	284	327	373	422	475	531	591	655	723	795	871	951	1035	1 124	1 217	1315
scénario faible	٧	entes)eman	de (G	Wh)									
Direction régionale	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Atlantique	17	20	18	26	32	34	36	38	41	43	47	51	55	60	64	69	75	80	86	91	97	104	110	117	124
Oueme-Plateau	23	23	25	29	35	38	40	43	45	48	54	61	67	74	82	90	98	107	116	125	135	146	157	168	180
Mono-Couffo	29	28	28	33	39	41	43	45	47	49	53	57	61	65	69	74	79	84	89	94	100	105	111	117	123
Zou-Collines	17	17	19	23	28	30	31	33	35	37	41	46	51	56	61	67	73	79	85	92	99	106	113	121	129
Borgou-Alibori	12	15	14	14	18	20	22	25	27	30	36	43	51	59	68	77	87	98	109	121	134	147	161	176	192
Atacora-Donga	20	22	21	35	42	43	45	47	49	51	55	58	62	65	69	73	78	82	87	92	97	102	107	113	119
Total	118	123	124	160	194	206	218	231	244	258	286	315	347	379	414	451	489	529	571	616	662	710	760	812	867

7 DEMANDE CREEE PAR LE PROGRAMME D'ELECTRIFICATION

7.1 Sélection provisoire des localités à électrifier

Comme présenté plus haut, la demande BT a été segmentée en 3 catégories : Grands Centres Urbains, localités déjà électrifiées, et autres localités.

Parmi les autres localités, un seuil de population doit être fixé pour déterminer quelles sont les localités qui seront électrifiées par raccordement réseau. Le seuil dépend du scénario, au vu de la répartition de la population dans les localités à électrifier les seuils de 1000 ; 1500 et 2000 habitants en 2035 ont été proposés. Cette répartition permet de prendre la quasi-totalité de la population du Bénin : seuls 0,5% ; 1,9% ou 4,3% de la population Béninoise vivraient alors dans des localités non électrifiée par le réseau national. La répartition de la population est illustrée dans le graphe cidessous.

Graphique 6 Population totale suivant la taille des localités

Le traitement des localités encore non électrifiées a été réalisé avec GEOSIM, suivant les scénarios il concerne entre environ 1500 et 2000 localités :

Tableau 19 Nombre de localité non électrifiées en 2015 et programme d'électrification

Population	Nombre de	e localités
	2015	Nombre en 2035
	(non électrifiées)	si non électrifiées
< 1000	483	176
1000 - < 1500	495	221
1500 - < 2000	346	276
2000 - < 5000	720	989
5000 - < 10000	100	388
>= 10000	18	112
Localités électrifiées ju	squ'en 2035	
Scénario Haut (localité	s >= 1000 en 2035)	1986
Scénario Moyen (loc 2035)	alités >= 1500 en	1765
Scénario Faible (localit	és >= 2000 en 2035)	1489

Les localités à raccorder sont prises en compte dans la prévision de la demande à raison de 100, 90 et 80 localités par an suivant les scénarios. De ce fait, toutes les localités sont raccordées en 2035.

L'ordre de prise en compte est dans le présent modèle :

1/ Localités en projet

2/ Distance au réseau MT existant

Cette méthode de sélection n'est pas la méthode finale qui sera adoptée dans le plan directeur distribution. Ce volet de l'étude permettra de définir plus finement quelles localités seront électrifiées quand. L'ordre de raccordement sera légèrement différent de celui considéré ici mais l'impact sur la demande sera minime.

7.2 Estimation de la demande

La demande pour les localités à électrifier est calculée par GEOSIM selon les mêmes principes que les autres segments de la demande :

1/ Estimation des taux de raccordement

2/ Estimation des consommations spécifiques

Application du modèle à chaque localité suivant l'évolution de sa démographie : nombre d'habitant en année de raccordement.

Les tableaux ci-dessous présentent les principales hypothèses de calcul par scénario.

Tableau 20 Taux de connexion dans les localités qui seront électrifiées

Année		haut		moyen		faible	
	1		30%		20%		10%
	5		50%		40%		25%
	20		75%		66%		50%

Ces taux sont également plus faibles que pour les localités déjà raccordées pour la même raison qu'évoquée précédemment.

Tableau 21 Demande spécifique (kWh/mois) dans les localités qui seront électrifiées

	conso spécifique BT					
	déjà élec	à électrifier				
Atlantique	101	30				
Oueme-Plateau	117	35				
Mono-Couffo	91	27				
Zou-Collines	98	29				
Borgou-Alibori	117	35				
Atacora-Donga	106	32				

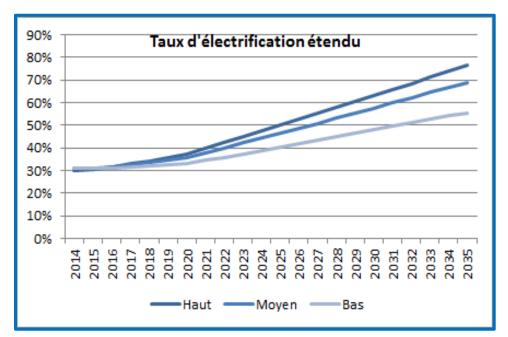
Les demandes spécifiques ont été prises à 30% de la consommation spécifique des zones déjà électrifiées pour refléter le fait que les localités restant à raccorder sont les localités les moins développées économiquement. Par conséquent leurs habitants ont moins de ressources disponibles pour la consommation électrique.

Le pourcentage de 30% a été appliqué aux ventes spécifiques aux abonnés « Particuliers, BT1 » dans les centres de la SBEE en 2013. Les centres où les ventes spécifiques étaient les plus faibles étaient : Niaouli (34), Aplahoue (35), Djakotome (35), Cana (36), Bopa (37), Dogbo (38) et Tokuilin (38).

Tableau 22 Croissance de la demande spécifique (% par an)

croissance conso spécifique	haut	moyen	faible
An 1-5	6%	4%	2%
an 5-20	3%	2%	1%

Les taux de croissances dans les cinq premières années correspondent à une élasticité par rapport aux PIB réel par capita d'environ 2,0 et dans les années suivantes d'environ 1,0.


9 DEMANDE D'ENERGIE ELECTRIQUE ET DE PUISSANCE DANS LE RESEAU INTERCONNECTE

9.1 Taux d'électrification

Le taux de couverture (= nombre de localités électrifiées par raccordement au réseau interconnecté divisé par le nombre total de localités) est en 2035 de 92% dans le Scénario Haut, de 86% dans le Scénario Moyen et de 79% dans le Scénario Faible.

Le taux de desserte (= population vivant dans des localités électrifiées par raccordement au réseau interconnecté divisé par la population totale) est en 2035 de 99% dans le Scénario Haut, de 98% dans le Scénario Moyen et de 96% dans le Scénario Faible.

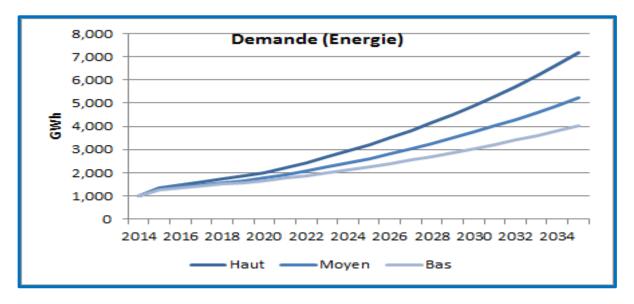
Le taux d'électrification étendu qui était en 2014 d'environ 30% varie en 2035 entre 55% (Scénario Faible) et 77% (Scénario Haut). Le taux est la relation entre les abonnés BT approvisionnés par le réseau interconnecté et le nombre de ménages au Bénin.

Graphique 7 Développement du taux d'électrification étendu

9.2 Demande d'énergie électrique

Le Tableau 23 présente l'évolution de la demande par segment.

La croissance moyenne entre 2015 et 2035 de la demande totale sans SCB Lafarge et NOCIBE est de 9,3% par an dans le Scénario Haut ; de 7,7% par an dans le Scénario Moyen et de 6,3% par an dans le Scénario Faible. Les valeurs correspondantes avec les deux cimenteries sont de 8,8%, 7,2% et 6,0%.



La répartition entre les différents segments change. La contribution de la demande dans les GCU qui, en termes de ventes, comptait en 2014 pour environ 79% de la demande totale (sans ventes à SCB Lafarge), se réduit jusqu'en 2035 à 63% (Scénario Haut) - 68% (Scénario Faible). La demande dans les localités en dehors des GCU mais déjà électrifiées en 2014 augmente de 21% en 2014 à 28% (Scénario Faible) - 31% (Scénario Haut) en 2035. La contribution des localités qui seront électrifiées est toujours faible ; en 2035 entre 5,0% (Scénario Faible) et 6,0% (Scénario Haut).

Tableau 23 Demande totale en énergie

	Ventes D	emande -)																			
Scénario Haut	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
GCUBT	496	607	650	702	757	817	881	962	1,048	1,140	1,238	1,341	1,450	1,565	1,686	1,812	1,945	2,083	2,227	2,375	2,528	2,678
Déjà élec. 2014 et dehors GCU	160	201	220	242	266	291	317	374	436	504	576	655	739	830	926	1,029	1,139	1,255	1,378	1,507	1,642	1,785
GCUMT	245	319	347	380	415	454	496	541	590	644	701	764	831	904	983	1,068	1,160	1,258	1,365	1,479	1,602	1,734
Autres MT	35	41	45	50	56	63	70	77	86	96	107	120	133	148	163	181	200	221	244	270	299	329
Programme d'électrification	0	0	6	13	22	32	43	56	71	86	103	121	141	163	187	214	243	276	310	350	394	443
Grands cimenteries (SCB + NOCIBE)	60	163	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205
Total	996	1,331	1,474	1,592	1,721	1,860	2,011	2,216	2,437	2,675	2,931	3,206	3,500	3,814	4,150	4,509	4,892	5,299	5,729	6,186	6,670	7,173
	Ventes D		_	25.075.03		20.00	- AND	027220		LUCKE S	10500	200,000	U SVESTE			00000	Various	1273797	-	T-VALSOUS		
Scénario Moyen	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
GCUBT	496	597	626	657	689	724	764	819	877	938	1,002	1,069	1,139	1,212	1,289	1,368	1,451	1,535	1,622	1,711	1,801	1,885
Déjà élec. 2014 et dehors GCU	160	198	213	229	246	264	284	327	373	422	475	531	591	655	723	795	871	951	1,035	1,124	1,217	1,315
GCU MT	245	316	338	361	386	412	444	478	515	554	596	641	689	739	794	852	913	979	1,048	1,122	1,201	1,285
Autres MT	35	40	44	48	52	57	62	68	75	83	91	100	110	120	131	144	157	172	187	205	223	243
Programme d'électrification	0	0	3	8	14	21	29	39	49	59	71	84	98	113	130	149	170	192	216	243	273	306
Grands cimenteries (SCB + NOCIBE)	60	159	195	195	195	195	195	195	195	195	195	195	195	195	195	195	195	195	195	195	195	195
Total	996	1,310	1,419	1,497	1,582	1,673	1,778	1,926	2,083	2,251	2,430	2,620	2,822	3,036	3,262	3,502	3,756	4,023	4,304	4,600	4,911	5,229
	Ventes D	emande -)																			
Scénario Faible	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
GCU BT	496	588	610	634	659	686	716	760	806	854	905	959	1,013	1,070	1,130	1,191	1,255	1,319	1,385	1,452	1,519	1,581
Déjà élec. 2014 et dehors GCU	160	194	206	218	231	244	258	286	315	347	379	414	451	489	529	571	616	662	710	760	812	867
GCUMT	245	312	333	354	377	401	427	453	482	512	543	576	611	648	687	727	770	815	862	912	964	1,018
Autres MT	35	40	43	47	51	55	60	65	70	76	82	89	96	104	112	121	130	141	151	163		189
Programme d'électrification	0	0	2	4	7	11	16	21	26	33	39	47	55	64	74	85	98	111	125	141	158	175
Grands cimenteries (SCB + NOCIBE)	60	120	178	178	178	178	178	178	178	178		178			_	178	_	_	_			17
Total	996	1,254	1,371	1,435	1,503	1,576	1,654	1.762	1.877	1,999	2,127	2,263	2,404	2,553	2,710	2,874	3,046	3,225	3,412	3,606	3,808	4,00

Graphique 8 Evolution de la demande d'énergie au niveau de facturation

9.3 Pointes annuelles dans le réseau interconnecté

9.3.1 Demande au niveau de l'injection

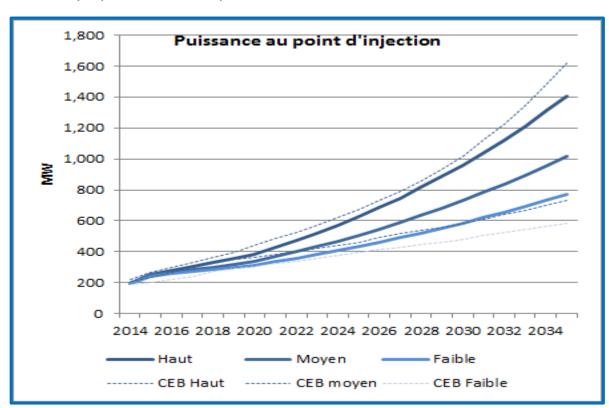
La pointe annuelle dans le réseau interconnecté est la pointe au niveau des postes sources. La demande d'énergie qui est présentée dans le paragraphe 7.1 est la demande au niveau des consommateurs. Les pertes techniques de transport sont à ajouter afin d'obtenir une estimation de la demande au niveau de l'injection.

Les pertes techniques ne sont pas connues. L'estimation du consultant est qu'elles étaient en 2014 de 14% de l'énergie injectée dans le réseau au niveau des postes sources. Il est supposé que les pertes diminuent en continu pour atteindre 10% en 2035 ; voir l'Encadré 3.2.

9.3.2 Facteurs de charge et de coïncidence

L'estimation de la pointe annuelle à partir de la demande d'énergie est faite avec les facteurs de charge suivants :

Demande BT dans les grands centres urbains	0,55
Demande BT dans les localités urbaines en dehors des GCU	0,55
Demande BT créée par le programme d'électrification	0,45
Demande MT dans les GCU	0,75
Demande MT dans d'autres centres	0,70
Les facteurs de coïncidence sont : demande BT 0,90, demande	MT 0.80.


9.3.3 Pointes annuelles

Les pointes annuelles qui en résultent sont indiquées dans le graphique ci-dessous ainsi que les projections de la CEB pour le réseau de la SBEE.

Dans le Scénario Haut, la pointe atteint 1402 MW en 2035. Les pointes correspondantes dans les autres scénarios sont de 1014 MW (Scénario Moyen) et de 768 MW (Scénario Faible). Les taux de croissance sont légèrement plus faibles pour rapport aux taux de croissance de la demande d'énergie électrique parce que les pertes techniques sont supposées diminuer de 14% en 2014 à 10% en 2035.

On constate que le Scénario Haut est toujours au-dessous du Scénario Haut de la CEB mais la différence est jusqu'à 2030 relativement faible; maximum 14% (2020), minimum 4% (2015). Les projections des Scénarios Moyen et Faible du présent modèle sont cependant nettement plus élevés que celles de la CEB. Même les pointes du Scénario Faible sont à partir de 2030 supérieure à celles du Scénario Moyen de la CEB.

La pointe annuelle par catégorie de consommateur est présentée en annexe 3.

Graphique 9 Evolution des pointes annuelles dans le réseau interconnecté du Bénin

10 DEMANDE DE LA CEET

Le plan d'expansion de la capacité de production n'est pas indépendant de la demande au Togo parce que la CEB approvisionne le Bénin et le Togo.

Le tableau ci-dessous montre trois scénarios pour la demande de la CEET que le consultant a obtenu de la CEB en octobre 2014. Les taux de croissance annuelle moyenne dans la période 2015 – 2035 sont :

Scénario Haut 8,2% par an,
 Scénario Moyen 5,5% par an,
 Scénario Faible 3,8% par an.

Tableau 24 Scénarios de la demande d'énergie et des pointes annuelles de la CEET

	DEMAND	E D'ENERG	SIE (GWh	au niveau	d'injection	on)					
	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh
Scénario Haut	1,528	1,685	1,832	1,981	2,146	2,327	2,526	2,745	2,986	3,252	3,543
Scénario Moyen	1,404	1,553	1,700	1,848	1,995	2,142	2,290	2,437	2,584	2,732	2,87
Scénario Faible	1,229	1,357	1,449	1,521	1,759	1,818	1,880	1,945	2,012	2,064	2,13
	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh
Scénario Haut	3,919	4,272	4,586	4,925	5,292	5,689	6,118	6,581	7,082	7,624	8,21
Scénario Moyen	3,096	3,243	3,391	3,485	3,580	3,727	3,875	4,022	4,186	4,357	4,53
Scénario Faible	2,210	2,268	2,328	2,390	2,453	2,519	2,586	2,656	2,725	2,795	2,86
	POINTE A	NNUELLE	(MW)								
	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW
Scénario Haut	242	267	290	314	340	369	401	435	473	516	56
Scénario Moyen	223	246	270	293	316	340	363	386	410	433	45
Scénario Faible	195	215	230	241	279	288	298	308	319	327	33
	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW
Scénario Haut	621	677	727	781	839	902	970	1,043	1,123	1,209	1,30
Scénario Moyen	491	514	538	553	568	591	614	638	664	691	71
Scénario Faible	350	360	369	379	389	399	410	421	432	443	45

Source: CEB, octobre 2014 (fichier « CEB Prévisions 2015 – 2035 »).

ANNEXES

- ANNEXE 1 Evolution du nombre d'abonnés MT dans les régions de la SBEE dans la période 2002 2014
- ANNEXE 2 Scénarios de demande MT dans les GCU et les centres en dehors des GCU qui ont déjà des abonnés MT
- ANNEXE 3 Puissance appelée au point d'injection durant la pointe annuelle (MW)

ANNEXE 1 : Evolution du nombre d'abonnés MT dans les régions de la SBEE dans la période 2002 – 2014

Région SBEE	2002	2003	2004	2005	2006	2007
Littoral 1						
Littoral 2						
Atlantique	347	312	327	343	368	393
Oueme	45	39	43	46	49	51
Mono	15	15	17	18	18	19
Zou	38	20	25	31	34	35
Borgou	28	21	21	23	26	30
Atacora	17	12	15	18	22	20
Total SBEE	490	419	448	479	517	548

Région SBEE	2008	2009	2010	2011	2012	2013	2014
Littoral 1				312	323	331	350
Littoral 2				103	108	112	116
Atlantique	413	438	450	73	79	98	113
Oueme	50	56	61	68	75	83	88
Mono	20	23	23	25	26	30	32
Zou	40	42	51	57	60	61	68
Borgou	35	46	58	58	64	71	73
Atacora	21	21	24	35	37	40	43
Total SBEE	579	626	667	731	772	826	883

Statistique élec, feuille MT, D41

Sources: 2002 – 2013 Rapports Annuels de la SBEE. 2014 Estimation.

ANNEXE 2 : Scénarios de demande MT dans les GCU et les centres en dehors des GCU qui ont déjà des abonnés MT

Tableau A2.1 : Demande MT dans le Scénario Haut

		Ventes	Ventes	Demande	Demande	Demande	Demande	Demande
Centre		2013	2014	2015	2020	2025	2030	2035
		MWh	MWh	MWh	MWh	MWh	MWh	MWh
Cotonou	GCU	155,639	164,178	208,624	311,667	460,756	669,290	954,927
Littoral 1	GCU Coton.	113,728	122,323	153,701	229,616	339,456	493,090	703,529
Littoral 2	GCU Coton.	41,911	41,855	54,923	82,051	121,300	176,200	251,397
Atlantique								
Ouidah		2,514	2,511	3,477	6,813	12,712	22,720	39,187
Abomey-Calavi	GCU	11,886	16,591	20,862	32,701	50,848	77,895	117,560
Allada		267	895	358	1,102	2,555	5,202	9,797
Sékou		297		398	1,149	2,603	5,240	9,797
Attagan		52	-	69	763	2,203	4,933	9,797
Ouémé-Plateau								
Porto-Novo	GCU	25,825	24,000	31,294	49,052	76,272	116,843	176,340
Mono-Couffo								
Lokossa		17,231	17,405	20,862	32,701	50,848	77,895	117,560
Zou-Collines								
Abomey-Bohicor	GCU	29,429	28,941	35,684	55,934	86,974	133,237	201,083
Borgou-Alibori								
Parakou	GCU	13,577	11,490	15,647	24,526	38,136	58,422	88,170
Atacora-Donga								
Natitingou		2,822	3,272	3,477	6,813	12,712	22,720	39,187
Sémé-Kpodji								
Sémé-Kpodji	GCU	-		6,954	21,801	50,848	103,861	195,934
TOTAL		259,538	269,283	347,707	545,022	847,467	1,298,258	1,959,338
Total GCU		234,476	245,201	319,066	495,681	763,833	1,159,548	1,734,014

Tableau A2.2 : Demande MT dans le Scénario Moyen

		Ventes	Ventes	Demande	Demande	Demande	Demande	Demande
Centre		2013	2014	2015	2020	2025	2030	2035
		MWh	MWh	MWh	MWh	MWh	MWh	MWh
Cotonou	GCU	155,639	164,178	206,327	279,151	386,549	527,058	707,383
Littoral 1	GCU Coton.	113,728	122,323	152,009	205,661	284,785	388,303	521,155
Littoral 2	GCU Coton.	41,911	41,855	54,318	73,490	101,764	138,755	186,228
Atlantique								
Ouidah		2,514	2,511	3,439	6,102	10,665	17,891	29,028
Abomey-Calavi	GCU	11,886	16,591	20,633	29,290	42,659	61,342	87,085
Allada		267	895	354	987	2,143	4,097	7,257
Sékou		297	-	393	1,029	2,184	4,126	7,257
Attagan		52	-	69	683	1,848	3,885	7,257
Ouémé-Plateau								
Porto-Novo	GCU	25,825	24,000	30,949	43,934	63,988	92,013	130,628
Mono-Couffo								
Lokossa		17,231	17,405	20,633	29,290	42,659	61,342	87,085
Zou-Collines								
Abomey-Bohicon	GCU	29,429	28,941	35,292	50,099	72,966	104,923	148,956
Borgou-Alibori								
Parakou	GCU	13,577	11,490	15,475	21,967	31,994	46,006	65,314
Atacora-Donga								
Natitingou		2,822	3,272	3,439	6,102	10,665	17,891	29,028
Sémé-Kpodji								
Sémé-Kpodji	GCU	-	-	6,878	19,526	42,659	81,789	145,142
TOTAL		259,538	269,283	343,879	488,160	710,979	1,022,363	1,451,422
Total GCU		234,476	234,476	315,553	443,967	640,815	913,131	1,284,508

Tableau A2.3 : Demande MT dans le Scénario Faible

		Ventes	Ventes	Demande	Demande	Demande	Demande	Demande
Centre		2013	2014	2015	2020	2025	2030	2035
		MWh						
Cotonou	GCU	155,639	164,178	204,318	268,239	347,614	444,538	560,810
Littoral 1	GCU Coton.	113,728	122,323	150,528	197,622	256,100	327,508	413,170
Littoral 2	GCU Coton.	41,911	41,855	53,789	70,618	91,514	117,031	147,641
Atlantique								
Ouidah		2,514	2,511	3,405	5,863	9,590	15,090	23,014
Abomey-Calavi	GCU	11,886	16,591	20,432	28,145	38,362	51,738	69,041
Allada		267	895	350	948	1,927	3,455	5,753
Sékou		297	-	390	989	1,964	3,480	5,753
Attagan		52	-	68	657	1,662	3,277	5,753
Oueme-Plateau								
Porto-Novo	GCU	25,825	24,000	30,648	42,217	57,543	77,607	103,561
Mono-Couffo								
Lokossa		17,231	17,405	20,432	28,145	38,362	51,738	69,041
Zou-Collines								
Abomey-Bohicon	GCU	29,429	28,941	34,948	48,141	65,617	88,495	118,092
Borgou-Alibori								
Parakou	GCU	13,577	11,490	15,324	21,109	28,771	38,803	51,781
Atacora-Donga								
Natitingou		2,822	3,272	3,405	5,863	9,590	15,090	23,014
Sémé-Kpodji								
Sémé-Kpodji	GCU	-		6,811	18,763	38,362	68,984	115,068
TOTAL		259,538	269,283	340,529	469,079	639,366	862,295	1,150,682
Total GCU		234,476	245,201	312,479	426,614	576,269	770,165	1,018,354

Commentaires (Scénario Haut, Moyen et Faible)

Ventes en 2014 : Estimation basée sur des statistiques reçues de la SBEE. Les statistiques ne montrent pas de ventes MT dans les centres de Sékou et d'Attagan. Probablement incluses dans les ventes dans autres centres.

ANNEXE 3 : Puissance appelée au point d'injection durant la pointe annuelle par catégorie de client

Puissance appelée au point d'injection durant la pointe annuelle (MW)

Scénario Haut	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
GCU BT	114	139	148	160	172	185	199	217	236	256	278	300	324	349	375	402	431	460	491	523	555	587
Déjà élec. 2014 et dehors GCU	37	46	50	55	60	66	72	85	98	113	129	147	165	185	206	228	252	277	304	332	361	391
GCU MT	35	45	49	53	58	64	69	75	82	89	97	106	115	124	135	146	159	172	186	201	217	235
Autres MT	5	6	7	8	8	9	10	12	13	14	16	18	19	22	24	26	29	32	35	39	43	47
Programme d'électrification	0	0	2	4	6	9	12	16	20	24	28	33	38	44	51	58	66	74	84	94	106	119
Grands Industriels (SCB + NOCIBE)	7	19	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
Total	197	255	279	303	329	356	386	428	472	520	572	626	685	747	814	884	960	1 039	1 123	1 211	1 305	1 401

Scénario Moyen	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
GCU BT	114	137	143	150	157	164	173	185	197	211	225	239	254	270	287	304	321	339	358	376	395	413
Déjà élec. 2014 et dehors GCU	37	45	49	52	56	60	64	74	84	95	107	119	132	146	161	176	193	210	228	247	267	288
GCU MT	35	45	48	51	54	58	62	67	72	77	83	89	95	102	109	117	125	134	143	152	163	174
Autres MT	5	6	7	7	8	8	9	10	11	12	13	15	16	18	19	21	23	25	27	29	32	35
Programme d'électrification	0	0	1	2	4	6	8	11	13	16	20	23	27	31	35	40	46	52	58	65	73	82
Grands Industriels (SCB + NOCIBE)	7	18	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
Total	197	251	269	284	301	318	339	368	400	433	469	507	547	589	633	680	730	782	836	893	953	1 014

Scénario Faible	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
GCU BT	114	134	139	144	150	156	162	171	182	192	203	215	226	239	251	264	278	292	305	320	334	346
Déjà élec. 2014 et dehors GCU	37	44	47	50	52	55	58	65	71	78	85	93	101	109	118	127	136	146	157	167	178	190
GCU MT	35	44	47	50	53	56	60	63	67	71	75	80	84	89	94	100	105	111	117	124	131	138
Autres MT	5	6	7	7	8	8	9	10	10	11	12	13	14	15	16	18	19	21	22	24	26	27
Programme d'électrification	0	0	0	1	2	3	4	6	7	9	11	13	15	17	20	23	26	30	34	38	42	47
Grands Industriels (SCB + NOCIBE)	7	14	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Total	197	243	260	272	285	299	314	335	358	382	407	433	461	490	520	552	585	620	655	693	731	768

Plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

DAEM - MERPMEDER

Tome 2

PLAN D'EXPANSION DES MOYENS DE PRODUCTION

Rapport Final Aout 2015

RAPPORT Final

Plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

Tome 2:

Plan d'Expansion des Moyens de Production

Références du contrat : DAEM : 206/MEF/MERPMEDER/DNCMP/SP

IED: 2012/001

Client IDA

Consultant IED Innovation Energie Développement

2 chemin de la Chauderaie 69340 Francheville, France Tel: +33 (0)4 72 59 13 20

Fax: +33 (0)4 72 59 13 39

Site web: www.ied-sa.fr

Rédaction du document

	VERSION 1	VERSION 2	VERSION 3
Date	Avril 2015	Aout 2015	
Rédaction	CA/HP/PS	CA/HP/PS	
Relecture	CA/HP/PS	CA/HP/PS	
Validation	HP	HP	

Ce rapport a été rédigé par IED dans le cadre du contrat Elaboration du plan directeur de développement du sous-secteur de l'énergie électrique au Bénin à parti des informations collectées au cours des missions effectuées au Bénin et des échanges avec les personnes rencontrées. Il ne reflète pas nécessairement les opinions de la Banque Mondiale, du Ministère de l'Energie du Bénin, de la SBEE, de l'ABERME

PLAN DIRECTEUR DE DEVELOPPEMENT DU SOUS-SECTEUR DE L'ENERGIE ELECTRIQUE AU BENIN

LISTE DES TOMES:

TOME 0 : RESUME EXECUTIF

TOME 1: SCENARIOS DE DEMANDE

TOME 2: PLAN D'EXPANSION DES MOYENS DE PRODUCTION

TOME 3: DEVELOPPEMENT DU RESEAU

TOME 4: ELECTRIFICATION RURALE

TOME 5: ANALYSE FINANCIERE

TOME 6: PLAN D'ACTION

TOME 2: TABLE DES MATIERES

1	INTRODUCTION - CONSIDERATIONS GENERALES	. 12
2	INVENTAIRE DE L'OFFRE	. 13
2.1	La situation actuelle	13
2.1.1	Les moyens d'approvisionnement existants	13
2.1.2	Les projets en cours	16
3	ANALYSE DE L'APPROVISIONNEMENT EN GAZ NATUREL	. 18
4	COUTS DES COMBUSTIBLES ET COUT DE REVIENT DU KWH	. 20
4.1	Coûts des combustibles	20
4.2	Coûts des émissions de gaz à effet de serre	21
4.3	Structure de coût suivant les technologies modélisés	22
5 201	DESCRIPTION DES SCENARIOS D'EVOLUTION DU BOUQUET ENERGETIQUE CEB DANS LA PERIO 5 – 2018	
5.1	Présentation des scénarios	24
5.2	Le bouquet énergétique unique	24
5.3	La poursuite de la situation actuelle (Statu quo)	24
5.4	Séparation des bouquets énergétiques	25
5.5	Description du logiciel de simulation horaire du bouquet énergétique	25
5.6	Résultats	
5.6.1	Cas du bouquet unique, croissance haute	26
5.6.2	Statu quo	27
5.6.3	Séparation des bouquets énergétiques	27
5.6.5	Examen comparatif des scénarios	28

6 A	SPECTS LOGISTIQUES ET ENVIRONNEMENTAUX D'INSTALLATION D'UNE CENTRALE MU	LTI FUEL
DANS LE	S ANNEES 2018 - 2019	28
6.1	Problématique	28
6.2	Emplacement de la centrale et problématique environnementale	28
7 PE	RIODE 2020-2035 : LOGICIEL UTILISE, HYPOTHESES, CAS EXAMINES	30
7.1	Présentation du logiciel utilisé	30
7.2	Résumé des hypothèses	
7.2.1	Candidats pour l'expansion du parc de production et des importations	30
7.2.2	Coûts d'investissements	31
7.2.3	Disponibilité du gaz	31
7.2.4	Coûts des combustibles (réf. Paragraphe 4.1)	32
7.2.5	Autres Hypothèses	32
7.3	Cas examinés	33
8 PE	RIODE 2020-2035 : RESULTATS	34
8.1	Parc thermique	34
8.2	Solaire PV	35
8.3	Hydroélectricité	36
8.4	Importations	36
8.5	Etude détaillée des résultats d'un cas à prédominance Gaz	37
8.5.1	Description du cas	
8.5.2	Développement de capacité sur l'espace CEB dans le scénario de croissance forte	37
8.5.3	Analyse des résultats	
8.5.3.1	Gaz et charbon	39
8.5.3.2 8.5.3.3	Importations	
8.5.3.4 8.5.3.4	Répartition des centrales installées	
8.5.3.5	Réserve de marge	40
8.6	Etude détaillée des résultats d'un cas à prédominance charbon	
8.6.1	Description du cas	
8.6.2	Développement de capacité sur l'espace CEB dans le scénario de croissance forte	
8.6.3	Analyse des résultats	
8.6.3.1 8.6.3.2	Charbon	
8.6.3.3	Autres sources	
8.6.3.4	Répartition des moyens de production	
8.6.3.5	Réserve de marge	
8.7 8.7.1	PV au coût de 2 000 US\$/kWc	
8.7.2	Hydroélectricité volontariste	
8.7.3	Coût du GNL	
8.7.4	Valorisation des coûts des émissions de CO2	
J.,.T	TAIOLIGAGOLI ACO COALO ACO CILIDOIDID AC COLONIANIONI DI CONTRA DI	,,,,,,,,,,,,,, す ノ

8.7.5	Comparaison des coûts des solutions étudiées	46
ANNEXE	1 - PRIX DES COMBUSTIBLES ET DES CENTRALES PV	48
A1.1.	Prix du pétrole brut	48
A1.2.	Prix du gaz naturel	49
A1.3.	Prix du GNL, du stockage et de la regazéification	50
A1.3.1	Prix du GNL	50
A1.3.2	Prix de location d'une barge pour le stockage et la regazéification	51
A1.4	Prix du charbon	53
A1.5.	Prix des centrales PV	54
A1.6 Pro	ojet GNL de la société GASOL	56
ANNEXE	2 - LOGICIEL DE SIMULATION 2015-2019	57
A2.1	Modélisation de la demande	57
A2.2	Modélisation de la production hydroélectrique	57
A2.3	Modélisation du mix énergétique	57
ANNEXE	3 - RESULTATS DETAILLES POUR L'ANNEE 2017	59
A3.1	Cas du bouquet énergétique unique de référence	59
A3.2	Cas du bouquet énergétique avec statu quo institutionnel*	60
A3.3	Cas de la séparation des bouquets énergétiques *	61
ANNEXE	4 - Hypotheses pour la periode 2020 – 2035	63
A4.1.	Charges	63
A.4.1.1	Demande en puissance	63
A.4.1.2	Monotone de charge	64
A.4.2.	Centrales de productions existantes	65
A.4.2.1	Centrales thermiques	65
A.4.2.2	Centrales hydroélectriques	67
A.4.3	Centrales de productions candidates	68
A.4.3.1	Centrales thermiques, solaire et importations	68
A.4.3.2	Centrales hydroélectriques	70
A.4.4.	Ordre de mérite	71
A.4.5	Ressources en énergie primaires	72
A.4.6.	Autres hypothèses	7 3

ANNEXE 5 - CAPACITE INSTALLEE ET IMPORTABLE SUR L'ESPACE CEB DANS LA PERIODE 2015 – 2035

A	Annexe 6 - Resultats detailles d'un cas a predominance de gaz et d'un cas a	
PREDOM	IINANCE DE CHARBON	78
A6.1	Résultats d'un cas à prédominance Gaz : B5	78
A6.1.1	Caractéristiques du cas	78
A6.1.2	Capacité sur l'espace CEB et capacité disponible pour le Bénin	78
A6.1.2.1	Scénario Haut	79
A6.1.2.2.	Scénario Moyen	
A6.1.2.3 A6.1.3	Scénario Faible	
A6.1.4	Besoins en carburants et émissions de CO2	
A6.1.5	Répartition des centrales installées	
A6.1.5.1 A6.1.5.2	Scénario Haut Scénario Moyen	
A6.1.5.3	Scénario Faible	
A6.1.6	Réserve de marge	89
A6.2	Résultats d'un cas à prédominance Charbon : A6	90
A6.2.1	Caractéristiques du cas	90
A6.2.2	Capacité sur l'espace CEB et capacité disponible pour le Bénin	90
A6.2.2.1	Scénario Haut	
A6.2.2.2	Scénario Moyen	
A6.2.2.3 A6.2.3	Scénario Faible	
A6.2.4	Besoins en carburants et émissions de CO2	
A6.2.5	Répartition des moyens de production	
A6.2.5.1	Scénario Haut	
A6.2.5.1 A6.2.5.2	Scénario Moyen	
A6.2.5.2	Scénario Faible	
A6.2.6	Réserve de marge	101
	TABLE DES ILLUSTRATIONS	
Liste des	tableaux	
Tableau	1 : Centrales thermiques SBEE existantes	14
Tableau	2 : Coûts des combustibles	21
Tableau	3 : Emission de CO2 par technologie	21
Tableau	4 : Structure de coût d'exploitation par technologie (US\$/MWh) pour 20 \$/t.CO2	22
	5 Structure de coût d'exploitation par technologie (FCFA/kWh) pour 20\$/t.CO2	
	6 : Résultats des simulations années 2015-2018. Cas du bouquet énergétique unique	
	m	_
	7 : Résultats des simulations années 2015-2018. Cas du bouquet énergétique unique	
	règles actuelles.	_
	8 : Résultats des simulations années 2015-2018. Cas du bouquet énergétique séparé	
	9 : Coûts d'investissement	
	10 : Cas B5. Scénario Haut. Capacité sur l'espace CEB (MW)	
	11 : Cas A6. Scénario Haut. Capacité sur l'espace CFB.	

Tableau 12 : Impact de la variation du prix du CO2 sur le parc de production	45
Liste des figures	
Figure 1 : Profil des livraisons TCN et VRA/CIE	16
Figure 2 : Mix énergétique horaire annuel - cas B5 - Scénario Fort - 2035	36
Figure 3 : Variation de la fonction objectif (Cas B5, Scénario Fort)	44
Figure 4 : Coût total actualisé (milliers de US\$)	46
Figure 5 : Coût total actualisé normalisé	46

Liste des Acronymes

CCGN Cycle combiné fonctionnant au gaz naturel

CEB Communauté Electrique du Bénin

CEET Compagnie d'Energie Electrique du Togo

CG Contour Global

DDGN groupe diesel fonctionnant au gaz naturel
DDO groupes Diesel fonctionnant au fioul léger
DFL groupes Diesel fonctionnant au fioul lourd

END Energie Non Distribuée
ENS Energy Not Served (=ENS)
GAO Gazoduc d'Afrique de l'Ouest

GN Gaz Naturel

GNL Gaz Naturel Liquéfié

HFO Heavy Fuel Oil

IEA - AIE International Energy Agency – Agence internationale de l'Energie

LNG Liquefied Natural Gas
LOLP Loss of Load Probability
MBTU Million British Thermal Unit

MPC Million Pied Cube

MUSD Million USD

MVA Mega Volt Ampère

MW Méga Watt

O&M Opération & Maintenance

PV PhotoVoltaique

SBEE Société Béninoise d'Energie Eletrique

TAG Turbine à Gaz

TAGGN turbine à gaz fonctionnant au gaz naturel TAVC turbine à vapeur fonctionnant au charbon

TCN Transport Company of Nigeria
TEP Tonne d'Equivalent Petrole

TAG Turbine à Gaz

VRA Volta River Authority
WAPP West African Power Pool

WASP Wien Automatic System Package

RESUME

Situation actuelle

L'approvisionnement électrique du Bénin et de la Communauté Electrique du Bénin en général est aujourd'hui plus fragile que jamais. Le potentiel de production et d'importations et des problèmes au niveau du réseau de transport ne permettent pas de satisfaire la demande des abonnés existants. Les délestages sont fréquents et parfois de longue durée. Les coûts de production souffrent de la faible disponibilité du gaz dans le Gazoduc de l'Afrique de l'Ouest. Le Gazoduc qui alimente le Bénin, le Togo et le Ghana à partir du gaz en provenance du Nigéria a une capacité de 200 MPC/jour mais le fournisseur N-Gas au Nigéria ne peut pas livrer les quantités contractuelles de 134 MPC/jour. Seul 10 MPC/jour sont au total disponible pour le Bénin et le Togo. Le gaz est utilisé par les Turbines à Gaz (TAG) de la CEB installées à Maria Gleta et à Lomé. Les TAG de la centrale CAI à Maria Gleta tournent au Jet A1, un combustible très coûteux pour un fonctionnement en base ou semi-base.

Hypothèses principales et méthodes de calcul

Le Consultant considère que le Plan Directeur de Production et de Transport électrique du Bénin ne peut faire abstraction du territoire de la CEB dans son ensemble même si certaines problématiques ne seront approfondies que pour le Bénin. Ce point de vue résulte de l'imbrication des réseaux de transport des pays concernés, du partage de certaines unités de production et de l'exploitation du système de production transport par un organisme commun. De plus la vision prospective encourage à poursuivre cette intégration pour des raisons technico-économiques dues aux économies d'échelle inhérentes aux systèmes électriques et parce qu'elle constitue un embryon du marché de l'électricité de l'Afrique de l'Ouest promu par le WAPP et encouragé par les bailleurs de fonds internationaux.

Ceci posé, la période d'étude a été segmentée en trois parties:

- ❖ 2015 2017 intervalle pendant lequel ne peuvent être envisagées que des améliorations des conditions d'exploitation du parc de production et des réseaux existants,
- ❖ 2018 2019 intervalle sous forte contrainte sur lequel la marge d'action est faible en raison du peu d'opportunités réalistes à si bref délai,
- 2020 2035 où la marge d'action est plus ouverte en termes de possibilité d'installation de nouvelles centrales de production, d'importation, et de développement du réseau de transport.

Les deux premières périodes ont été étudiées à l'aide d'un logiciel sous EXCEL spécialement conçu à cet effet; la troisième période a été étudiée à l'aide du logiciel WASP bien connu.

Les modèles sous EXCEL et WASP déterminent le parc de production et son utilisation qui satisfont la demande au Togo et au Bénin au moindre coût économique.

Le parc de production analysé entre 2015 et 2020 comprend les centrales existantes, les importations du Nigéria (TCN), du Ghana (VAR) et de Côte d'Ivoire (CIE). Une nouvelle centrale bicombustible d'une capacité de 120 MW dont la planification est déjà au stade de l'APD est supposée être mise en service à Maria Gleta à partir de 2018. Des projets de centrales PV connectés au réseau pour un total de 140 MWc sont supposés apparaître progressivement à partir de 2017.

Les technologies candidates pour le parc de production dans la période 2020 – 2035 sont des technologies éprouvées et fiables : cycle combiné associant des turbines à gaz et à vapeur, centrales vapeur au charbon à lit fluidisé circulant, centrales basées sur des technologies diesel permettant

l'utilisation de plusieurs combustibles : fuel léger, lourd ou gaz naturel. Les énergies renouvelables sont également prises en compte (centrales hydroélectriques installées sur des sites déjà identifiés, installation de solaire PV, centrales à biomasse). L'option d'importer de l'électricité du Niger produite par une centrale à charbon a également été considérée.

Les coûts de production des centrales qui utilisent des produits pétroliers ou du gaz naturel et les coûts d'importations du Nigéria et du Ghana sont liés au prix du pétrole brut. Deux scénarios d'évolution de ce prix sont analysés :

- o Le prix reste au niveau actuel de 50 65 US\$/baril durant toute la période 2015 2035.
- Le prix actuel augmente à partir de 2017 à 100 US\$/baril en 2020 et reste ensuite à ce niveau.

Les combustibles les plus importants sont le gaz reçu du gazoduc et le charbon importé. Le coût actuel du gaz est de 11 US\$/MMBTU. Ce coût augmente à 14 US\$/MMBTU si le prix du pétrole brut atteint 100 US\$/baril. Le coût d'importation du charbon est considéré dans le modèle comme indépendant du prix du pétrole brut. Deux scénarios sont examinés : le charbon coûte 4 US\$/MMBTU ou 5 US\$/MMBTU.

Le coût du GNL a été lié au coût du gaz du gazoduc : plus 15% et une surcharge d'environ 12 FCFA/kWh pour la location d'une barge pour le stockage et la regazéification. La surcharge est basée sur l'hypothèse que des grandes quantités sont importées ce qui nécessitera probablement que les importations soient aussi faites pour d'autres pays que le Bénin et le Togo.

Le Tableau 1 présente les coûts économiques de production et d'importation hors les coûts des émissions de gaz à effet de serre.

Résultats pour la période 2015 – 2019

Les importations du Nigéria ont été limitées à environ 1 400 GWh/an et les importations du Ghana/Côte d'Ivoire à 550 GWh/an. La production de la centrale hydroélectrique de Nangbeto est de 185 GWh/an. Les centrales PV entrent progressivement à partir de 2017 et fournissent jusqu'à 227 GWh/an au Bénin.

Sous ces hypothèses et supposant que la livraison de gaz reste limitée à 10 MPC/jour, le modèle a déterminé la production des centrales thermiques existantes - TAG de la CEB, TAG de la centrale CAI, centrales diesel de la SBEE, centrales en locations et la centrale bicombustible de Contour Global – et la production de la nouvelle centrale bicombustible qui est prévue d'être installée à Maria Gleta et supposée être disponible en 2018. La centrale fonctionnera au fioul lourd tant que davantage de gaz ne sera pas disponible sur le site de Maria Gléta. L'approvisionnement en fioul lourd pose de délicats problèmes environnementaux à Maria-Gléta.

Les analyses montrent que l'utilisation de la centrale de Contour Global au bénéfice des deux pays et non seulement pour le Togo comme c'est actuellement le cas permet un mix énergétique global plus performant et beaucoup moins coûteux que les errements actuels. Encore faut-il que les mandants de la CEB l'autorisent à acheter cette énergie.

Tableau 1 : Coûts d'investissement, coûts de production et prix d'importation. (FCFA/kWh au prix 2015 ; coûts incluent combustible et O&M, hors coûts carbone)

		Coûts de produc	tion/d'importation			
Source	Coûts d'investissement	Pétrole brut	Pétrole brut			
		50 - 65 US\$/baril	100 US\$/baril			
		FCFA par kV	Vh au prix 2015			
Centrales diesel SBEE	Existent. Fin durée de vie : fin 2025	85	136			
Centrales en	Existent.					
location « MRI,	Fin location : à partir de 2020	85 + prime fixe	136 + prime fixe			
TAG (CEB, CAI)	Existent.	71 gaz	90 gaz			
TAG (CLB, CAI)	Fin durée de vie : fin 2025.	198 (Jet A1)	331 (Jet A1)			
Centrale diesel	1 350 US\$/kW	52 HFO	77 HFO			
bicombustible	(Centrale ContourGlobal existe)	60 gaz	75 gaz			
Cycle combiné	1 100 US\$/kW	46 gaz	58 gaz			
Cycle combiné	1 100 033/KW	65 GNL	79 GNL			
Centrale charbon	Lit fluidisé circulant		n 4 US\$/MMBTU			
Centrale charbon	2 600 US\$/kW *	29 si charbo	n 5 US\$/MMBTU			
	Nangbeto existe.	Nangbeto : 9 (65 M				
Centrales	Adjarala à partir 2020.	Adjarala: 10 (148	MW, 355 GWh/an)			
hydroélectriques	Candidats : Kétou-Dogo (229 GWh	/an), Vossa (167), B	éthel Bis (89),			
,	Olougbe (62), Dyodyonga (56), Bé					
	Coûts d'investissement de tous ca	ndidats : 3 000 US\$/	/kW.			
	1 000 US\$/kWc (2 000 US\$/kWc d	ans les analyses de s	sensibilité).			
Centrale PV	140 MWc sont supposés être prog	grammés d'ici 2020.	·			
	Production annuelle : environ 1 40	00 kWh par kWc inst	allé.			
Control Diamond	21 MW sont prévus être disponibl	es à partir de 2020 p	produisant			
Centrale Biomasse	150GWh/an. Aucune autre capaci	té n'est programmé	e			
Import Nigéria	TCN	60	71			
Import Ghana +						
Cote Ivoire	VAR / CIE	66	77			
Import Niger	Centrale charbon	60 si charbor	n 4 US\$/MMBTU			
import Miger	Centrale Charbon	66 si charbon 5 US\$/MMBTU				

^{*} Inclut 100 US\$/kW pour port minéralier

Résultats pour la période 2020 – 2035

Le besoin en capacité additionnelle de production pour satisfaire la demande du Togo et du Bénin dans la période 2020 – 2035 varie entre environ 600 MW (Scénario Faible) et 1 800 MW (Scénario Haut). Outre le prix des combustibles, trois hypothèses influent largement sur le choix des centrales à installer :

a) La quantité de gaz disponible à l'importation par le gazoduc de l'Afrique de l'Ouest. Les cas analysés comprennent les hypothèses 10 ; 50 et 200 MPC/jr pour le Bénin et le Togo

- b) La possibilité ou non d'installer une barge pour l'importation et la regazéification du GNL
- c) La possibilité ou non de disposer de centrales à charbon jusqu'à 1 000 MW.

Le besoin en capacité additionnelle de production pour satisfaire la demande du Togo et du Bénin dans la période 2020 – 2035 varie entre environ 600 MW (Scénario Faible) et 1 800 MW (Scénario Haut). Outre le coût des combustibles, trois hypothèses influent largement sur le choix des centrales à installer :

- d) La quantité de gaz disponible à l'importation par le gazoduc de l'Afrique de l'Ouest. Les cas analysés comprennent les hypothèses 10 ; 50 et 200 MPC/jour pour le Bénin et le Togo.
- e) La possibilité ou non d'installer une barge pour l'importation et la regazéification du GNL.
- f) La possibilité ou non de disposer de centrales à charbon jusqu'à 1 000 MW.

Les résultats principaux de ces hypothèses concernant l'addition de capacités de production se présentent comme suit :

- ❖ Si la disponibilité du gaz fourni par le gazoduc est limitée à 10 ou 50 MPC/jour, la plus grande partie des nouveaux moyens de production est constituée de centrales à charbon que le charbon coûte 4 ou 5 US\$/MMBTU.
 - L'alimentation d'un cycle combiné fonctionnant au gaz n'est pas possible si seulement 10 ou 50 MPC/jour sont disponibles. Le gaz est utilisé dans ce cas en priorité par les turbines à gaz (TAG) existantes (CEB et CAI) puis par les centrales bicombustibles existantes et programmées (centrale de ContourGlobal et centrale à Maria Gleta). Si la capacité charbon atteint la limite de 1000 MW dans le Scénario Haut, des cycles combinés au gaz issu du « GNL » ou des centrales bicombustibles fonctionnant principalement au fioul lourd s'ajoutent.
- ❖ Si le coût du gaz est de 14 US\$/MMBTU, le charbon devient l'option optimale indépendamment de la disponibilité de gaz et que le charbon coûte 4 ou 5 US\$/MMBTU.

 Dans le Scénario Haut où la capacité charbon atteint la limite de 1000 MW, l'offre énergétique est complétée à partir de 2030 par des centrales au gaz naturel ou au HFO suivant la disponibilité du gaz.
- ❖ Les cycles combinés fonctionnant au gaz importé par le gazoduc constituent la source à préférer à condition que le WAPCo puisse livrer suffisamment de gaz (200 MPC/jour) et que le prix de ce gaz soit égal ou inférieur à 11 US\$/MMBTU.

Les résultats concernant les autres sources potentielles sont :

Importation de GNL: Le coût du GNL est augmenté de 15% de plus par rapport au gaz du gazoduc et une surcharge de 12 FCFA/kWh pour la location d'un méthanier. Ceci fait que le GNL n'apparait que rarement dans le parc de production à moindre coût économique et la production d'électricité à partir de cette source est toujours faible. Il faut que le coût du GNL soit de 9,20 US\$/MMBTU (coûts hors surcharge) pour que le GNL devienne une source principale pour la génération d'électricité. Le consultant a des réserves sur le fait que de ce coût soit atteignable.

<u>Centrales PV</u>: Si le solaire coûte à l'investissement 1000 US\$/kWc, la puissance installée optimale est égale à la puissance maximale autorisée (50% de la pointe à midi). Suivant les scénarios de demande, la capacité installée dans l'ensemble du Togo et du Bénin atteint dans ce cas 520, 740 ou 1120 MWc en 2035. Le fait que les centrales ne produisent que pendant la journée limite leur contribution au mix énergétique à environ 10%. Si le coût d'investissement est de 2000 US\$/kWc, nettement moins de capacité PV est installée (en 2035, entre environ 640 et 680 MWc dans le Scénario Haut) et les dates de mise en service sont retardées.

<u>Centrales hydroélectriques</u>: Hormis Adjarala dont la construction est en cours, aucun des sites candidats n'est sélectionné pour faire partie du parc de production quel que soit le scénario de demande. Les coûts d'investissement (3 000 US\$/kW) sont trop élevés par rapport au productible des centrales candidates. Les centrales candidates peuvent offrir un total cumulé de 650 GWh/an ce qui représente à peine 6% de la demande prévue pour 2035 sur l'espace CEB.

<u>Importations du Nigéria</u>: Les importations montrent dans presque tous les cas examinés une tendance à la baisse à partir de 2020. Le niveau atteint en 2035 est typiquement entre 500 et 800 GWh/an. Un niveau même plus faible est parfois atteint vers 2025 mais les importations remontent ensuite pour atteindre en 2035 le niveau mentionné. Si la demande suit le Scénario Haut et le gazoduc ne fournit que 10 MPC/jour, les importations peuvent même remonter au niveau actuel d'environ 1300 GWh/an.

<u>Importations du Ghana/Côte d'Ivoire</u>: Les importations deviennent très faibles à partir de 2020; typiquement à 10 - 40 GWh/an. Elles sont remplacées par la production des centrales à charbon ou des cycles combinés à gaz qui coûtent moins chère.

<u>Importations du Niger</u>: Les importations du Niger, produite par une centrale à charbon, font partie de la solution optimale dans tous les scénarios de demande et tous options d'approvisionnement. Les importations commencent en 2025. Le niveau est typiquement entre 1000 et 1500 GWh/an. Le coût de 60 - 66 FCFA/kWh font des importations une source attrayante.

Impact des coûts d'émissions: Les résultats présentés en haut sont basés sur le coût de 20 US\$ par tonne de CO2 équivalent. Les calculs faits avec 40 US\$/tCO2 et supposant que 200 MPC/jour sont disponible¹ par le gazoduc montrent que la tendance de favoriser les centrales à charbon ne change pas. Les centrales arrivent plus tard et la capacité totale est plus faible mais elles restent la source dominante. C'est seulement si le gaz coûte 11 US\$/MMBTU et si la demande suit le Scénario Faible ou Moyen qu'il n'y a plus de centrales à charbon. Mais dans ces cas, les cycles combinés à gaz sont aussi les centrales préférées au coût de 20 US\$/tCO2.

Conclusion: Vue les incertitudes de disponibilité de gaz du gazoduc, il est recommandé d'envisager la construction d'une centrale à charbon de 250 MW. Il est vrai que si jamais le gazoduc peut fournir jusqu'à 200 MPC/jour et cela au coût d'aujourd'hui en termes réelles (= prix de 2015), l'installation des cycles combinés à gaz est préférée aux centrales à charbon. Mais l'installation de 250 MW en capacité charbon est même recommandée dans ce cas sous l'optique de diversification des sources d'approvisionnement. Les modèles comme WASP ne tiennent pas compte des risques que la forte dépendance à une source entraine.

Localisation des futures centrales charbon-vapeur: La localisation des centrales au charbon dépendra de l'emplacement des infrastructures permettant l'importation des énergies primaires correspondantes. Le plan directeur du Togo (SNC-Lavalin juillet 2014) préconise également l'installation de centrales au charbon pour le Togo. Il ne paraît pas raisonnable de doubler les infrastructures d'importation du charbon. Si l'option charbon est retenue sur l'espace CEB un seul port minéralier sera construit pour le bénéfice des deux pays. Sous réserve d'une étude de faisabilité technique, économique et environnementale, l'implantation d'un port minéralier et de centrales charbon-vapeur à Sémé-Kpodji est une option intéressante, bénéficiant la de la proximité du poste 330 kV de Sakété pour les raccordements électriques.

_

¹ Si seulement 10 ou 50 MPC/jour sont disponibles, l'impact du coût des émissions risque de ne pas apparaître parce que la disponibilité limitée du gaz nécessite l'installation des centrales à charbon.

1 Introduction - considérations générales

Le Consultant considère que le Plan Directeur de Production et de Transport électrique du Bénin ne peut faire abstraction du territoire de la CEB dans son ensemble même si certaines problématiques ne seront approfondies que pour le Bénin. Ce point de vue résulte de l'imbrication des réseaux de transport des pays concernés, du partage de certaines unités de production et de l'exploitation du système de production transport par un organisme commun. De plus la vision prospective encourage à poursuivre cette intégration pour des raisons technico-économiques dues aux économies d'échelle inhérentes aux systèmes électriques et parce qu'elle constitue un embryon du marché de l'électricité de l'Afrique de l'Ouest promu par le WAPP et encouragé par les bailleurs de fonds internationaux.

Trois périodes doivent être distinguées pour l'établissement du plan directeur de l'alimentation électrique du Bénin entre 2015 et 2035:

- La période 2015 2017 où il faut s'en remettre aux moyens de production et aux capacités d'importations existantes, faute de pouvoir construire dans un temps aussi bref de nouvelles centrales hydraulique ou thermique dans l'espace CEB. Cette période est caractérisée par une grande difficulté à assurer l'équilibre entre l'offre et la demande dans des conditions de coût acceptables. En outre une grande incertitude pèse sur la disponibilité du gaz naturel sur lesquels les acteurs du secteur avaient fondé beaucoup d'espoir.
- La période 2018 2020 qui devrait être marquée par la mise en service dans l'espace CEB d'une importante centrale thermique permettant de relâcher une partie des contraintes précédentes.
- La période 2020 2035 où les options de production deviennent plus ouvertes avec une probabilité accrue de disposer de gaz naturel, la possibilité de recourir au charbon d'importation si les installations portuaires le permettent, la faisabilité de plusieurs projets hydroélectriques en sus de la centrale d'Adjarala déjà engagée et une flexibilité du réseau de transport améliorée entre le Nigéria et le Ghana. C'est pour cette période qu'une étude classique de Plan Directeur Production Transport peut enfin être engagée avec une large gamme d'options.

Les technologies thermiques candidates pour le parc de production futur à partir de 2020 sont des technologies éprouvées et fiables : cycles combinés associant des turbines à gaz et à vapeur, centrales charbon vapeur à lit fluidisé circulant ou à charbon pulvérisé, centrales basées sur des technologies diesel permettant l'utilisation de plusieurs combustibles : fioul léger, lourd ou gaz naturel.

A partir de 2020 les marges de manœuvre sont suffisantes pour attendre des moyens de productions installés qu'ils supportent la défaillance temporaire ou durable d'une des centrales de production sans nuire à la qualité de service. Autrement dit, la réserve froide devra être suffisante pour permettre la maintenance et la mise hors service planifiée d'une partie du parc de production et la réserve tournante en mesure de faire face à la perte soudaine d'un groupe pour cause de défaillance.

Le modèle mathématique utilisé pour le calcul du développement des moyens de production à partir de 2020 est un modèle probabiliste d'optimisation sous contraintes. Les algorithmes utilisés permettent d'explorer de très nombreuses configurations afin de retenir celle qui assure un

minimum de coûts sur la période d'étude. De nombreuses variantes ont été étudiées afin d'évaluer l'impact de certaines hypothèses déterminantes sur le futur parc de production :

- Scénario de demande
- Prix des produits pétroliers
- Disponibilité plus ou moins grande du gaz naturel
- Prix du charbon
- Coût d'investissement des centrales solaires
- Volumes des importations depuis le Nigéria et du Ghana

Les résultats principaux des simulations permettent de déterminer les caractéristiques suivantes de la stratégie optimale :

- ❖ le nombre, le type et la date de construction des centrales à installer,
- la répartition de la production des centrales année par année,
- ❖ les coûts de construction, de carburant et d'exploitation,
- les besoins en importations d'énergie primaire,
- les émissions de gaz à effet de serre

Les calculs effectués dans ce tome ne sont que des calculs économiques, une analyse plus fine des coûts est effectué dans le tome 5 Analyses Financières.

2 Inventaire de l'offre

Préalablement à l'étude spécifique de chacune des périodes citées ci-dessus, le consultant rappelle ci-dessous l'inventaire de l'offre présenté dans le rapport de démarrage amendé de quelques éléments complémentaires obtenus depuis.

2.1 La situation actuelle

2.1.1 Les moyens d'approvisionnement existants

Les moyens d'approvisionnement électriques du Bénin se décomposent entre les moyens de production propres de la SBEE, les fournitures de la CEB et les achats de la SBEE à des producteurs privés au Bénin, essentiellement AGGREKO et MRI.

Les principaux moyens interconnectés de production propres de la SBEE sont les suivants :

- La centrale d'AKPAKPA à Cotonou équipée de moteurs Diesel fonctionnant principalement au fioul lourd pour 22 MW :
- Des centrales équipées de moteurs Diesel fonctionnant principalement au fioul léger (PORTO NOVO, PARAKOU, NATITINGOU) pour un total de 43 MW :
- La centrale CAI de Maria Gléta équipée de huit turbines à gaz aeroderivative de 10 MW susceptibles de fonctionner soit au gaz naturel soit au Jet fioul A1.
- Une petite centrale hydroélectrique : YERIPAO (600 kW) actuellement hors service

Les moyens d'approvisionnement électrique de la CEB se répartissent entre ses moyens de production propres, les achats d'énergie à TCN, VRA, NIGELEC, et à CONTOUR GLOBAL, un producteur privé disposant d'une centrale Diesel de 102 MW (6 x 17 MW) fonctionnant principalement au fioul lourd au Togo.

Les moyens de production propres de la CEB sont les suivants :

- Une turbine à gaz aéroderivative de 20 MW sise à Cotonou fonctionnant principalement au gaz naturel
- Une turbine à gaz aéroderivative de 20 MW sise à Lomé et fonctionnant principalement au gaz naturel
- La centrale hydroélectrique de NANGBETO au Togo, équipée de 2 groupes KAPLAN de 31,5
 MW, dont la production est répartie à parts égales entre le Togo et le Bénin.

Pour autant la situation de l'ensemble de ces approvisionnements est actuellement fragile techniquement ou économiquement pour les raisons exposées ci-dessous :

Les moyens de production Diesel ou hydroélectriques de la SBEE sont virtuellement tous à l'arrêt pour cause d'incident ou de besoin de maintenance lourde nécessitant des financements que la SBEE peine à mobiliser :

Tableau 1 : Centrales thermiques SBEE existantes

Localisation	Installé (MVA)	Composition	Disponible (MVA)	Etat	Fuel
Porto-Novo	12	6x2 (Wartsilla)	4	En cours de révision (24 000hr)	Gasoil
Parakou	14+5	7x2 (Wartsilla)	2-3	Arrêté	Gasoil
Natitingou	12	6x2 (Wartsilla)	6	Exploité seulement si la CEB ne fournit pas	Gasoil
Kandi				Groupe démantelé	Gasoil
Natitingou (Yerikpao) Hydro	0,6			Problème d'arbre	
Akpakpa	12 20	4x3 Pielstick 2x10 Man	0	Arrêt révision Arrêt révision	HFO

Il y a cependant des perspectives sérieuses de redémarrage des groupes d'AKPAKPA à bref délai et 24 MW au fioul léger ont été pris en compte à ce titre dans l'étude.

La centrale CAI de Maria Gléta ne dispose pas de fourniture de gaz naturel (voir infra) et doit être exploitée au JETA1, un combustible hors de prix (>>200 FCFA/kWh) pour un fonctionnement en base ou semi-base. La puissance réellement disponible n'est que de 68 MW et deux groupes ont déjà subi des incidents majeurs au cours des essais de fonctionnement. Les essais de fonctionnement au gaz naturel ont cependant été menés à bien récemment. Des contacts en vue d'un approvisionnement au gaz naturel de réseau ou de gaz comprimé seraient en cours avec des opérateurs privés mais à des prix très supérieurs à ceux du marché. La CEB ne souhaite pas acheter la production CAI au JETA1 à son prix de revient, beaucoup plus élevé que celui de ses autres sources d'approvisionnement. Un accord intérimaire d'échange d'énergie entre la CEB et la SBEE permet toutefois à cette dernière d'utiliser la centrale en pointe en assumant complétement ses coûts.

Les fournitures de MRI à partir de petits moteurs Diesel au gazole sont fiables mais onéreuses. Une centrale similaire est en cours d'installation par AGGREKO. Le Ministère de l'Energie béninois souhaite que le recours à ces installations soit aussi limité dans le temps que possible. Il paraît pourtant difficile de s'en passer avant la mise en service de centrales thermiques de forte puissance vers 2020.

Certaines difficultés affectent aussi les approvisionnements de la CEB :

- La centrale hydroélectrique de NANGBETO va subir une réhabilitation importante à bref délai pendant laquelle la puissance disponible sera réduite de moitié. De plus, la production présente une saisonnalité marquée et une sensibilité forte aux conditions hydrologiques, deux facteurs qui peuvent réduire la puissance réellement disponible à la pointe à 15 MW pendant les périodes sèches.
- Les turbines à gaz CEB de Cotonou et de Lomé fonctionnent en base et nécessitent une maintenance lourde toutes les 15 000 h soit tous les deux ans à ce rythme de fonctionnement soutenu. Celle-ci occasionne une indisponibilité de plusieurs mois car faute d'un contrat de maintenance par substitution pratiqué par d'autres opérateurs il faut expédier la turbine aux Etats-Unis. En outre leur approvisionnement journalier en gaz naturel n'est pas complétement fiable en raison de la pression souvent trop basse du gaz naturel à Lomé et Maria Gléta.
- Les importations d'électricité en provenance du Nigéria peuvent dépasser 200 MW mais subissent des variations annuelles et journalières importantes avec notamment 213 heures d'extinction complète soit 2,4% du temps en 2013. En outre leur pérennité n'est pas assurée à long terme compte tenu des besoins propres du Nigéria. Leur stabilité de fréquence/tension laisse à désirer. Il semble que les réglages primaires et secondaires soient défectueux sur l'ensemble du réseau nigérian. Il en résulte les difficultés mentionnées plus haut pour le couplage de Porto-Novo et l'impossibilité de couplage des réseaux alimentés par le Ghana et par le Nigéria, dont d'ailleurs la stabilité statique et dynamique reste à prouver même en 330 kV. L'adaptation entre la demande et les puissances disponibles soit au Ghana, soit au Nigéria conduit à effectuer des coupures d'alimentation pour modifier les points d'ouverture entre les zones alimentées soit par le Nigéria soit par le Ghana.

- Les importations en provenance du Ghana culminent à 110 MW mais avec une valeur moyenne d'environ 70 MW. Elles alimentent surtout le Togo et sont considérées comme moins fiables pour la partie béninoise. En outre le Ghana souffre des aléas hydrologiques qui affectent la centrale d'Akosombo et de la réduction des livraisons de gaz par le WAPCo. Par contre le pays a des ressources propres de gaz naturel à l'ouest et envisage d'installer une station de regazéification de GNL à Tema (projet Quantum Power).
- Les livraisons de CONTOUR GLOBAL à la CEB sont d'un coût élevé par rapport à ses autres sources d'approvisionnement. La CEET s'approvisionne directement auprès de ce fournisseur dont le taux d'utilisation est faible en dépit de la qualité de ses installations.

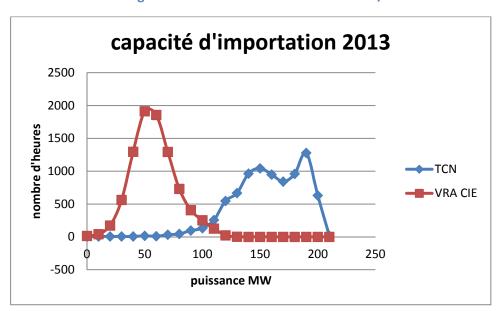


Figure 1: Profil des livraisons TCN et VRA/CIE

En conclusion l'approvisionnement électrique du Bénin est aujourd'hui plus fragile que jamais, dépendante totalement de ses voisins et de fournisseurs d'énergie de coût élevé. Les conséquences pourraient en être la multiplication des délestages et l'augmentation drastique des tarifs de la SBEE.

2.1.2 Les projets en cours

Deux projets majeurs sont actuellement à un stade d'étude avancé et considérés comme décidés par le WAPP:

- La centrale hydroélectrique d'ADJARALA (147 MW), en aval de NANGBETO sur le fleuve Mono, a subi beaucoup de vicissitudes. Le chantier de construction a repris sous contrôle d'une entreprise chinoise. La mise en service peut être espérée au plus tard en 2020. La production serait alors partagée à parts égales entre le Bénin et le Togo.
- La centrale Diesel bicombustible HFO/gaz naturel de MARIA GLETA (120 MW) est au stade de l'APD par TRACTEBEL Ingénierie dans la perspective d'un fonctionnement au gaz naturel. Toutefois la faisabilité technique et la rentabilité économique d'une telle entité dépendent de la disponibilité durable du gaz naturel, le fonctionnement au fioul lourd devant demeurer marginal. Au demeurant un fonctionnement soutenu au fioul lourd exige une noria de

camions pour assurer l'approvisionnement en combustibles ou bien la construction d'un oléoduc calorifugé et d'une station de compression depuis le stockage pétrolier du port de Cotonou. Ces deux options sont problématiques avec des conséquences prévisibles pour la détérioration des chaussées et les risques et nuisances encourus par les populations riveraines dans le premier cas, du fait des investissements supplémentaires et des difficultés d'exploitation dans le second. TRACTEBEL prévoit la réalisation de la centrale en deux phases :

- o 120 MW (probablement 7 x 18 MW) en 2018
- o 330 MW supplémentaires ultérieurement

D'autres projets sont à des stades divers d'avancement :

- Le Plan Directeur du WAPP 2011 prévoit un cycle combiné au gaz naturel de 450 MW à vocation régionale sur le site de Maria-Gleta à échéance 2020 au plus tôt. Une telle capacité de production électrique requiert environ 55 MPC/jour. Comme indiqué précédemment, la disponibilité d'une telle quantité supplémentaire de gaz n'est pas du tout assurée. De plus l'évacuation de la puissance produite requiert l'extension d'environ 80 km de ligne 330 kV vers Maria Gléta, induisant un surcoût notable. La vocation régionale de la centrale est en outre contradictoire avec l'hypothèse d'un maintien des importations depuis le Nigéria et le Ghana. Le projet ne sera donc pas considéré comme une option ferme d'installation mais rangé comme candidat dans l'éventail des possibilités examinées par les logiciels de simulation.
- Fermes solaires connectées au réseau : l'étude prend en compte les projets suivants pour un total de 140 MWc installés d'ici 2020 :

o MCC: 5 MWc (Natitingou) + 10 MWc (Djougou) + 15 MWc (Parakou) + 15 MWc (Bohicon)

o SOBES : 2 x 10 MWc (Sakété)

Solare Park Arcos: 2 x 10MWc (Natitingou / Kandi)
 Greenheart power Africa: 25 MWc (Toucountouna)

o Autre: 30 MWc

Le plan directeur de développement des infrastructures d'énergie électrique du Togo (SNC-Lavalin juillet 2014) ne prévoit pas l'installation de centrales PV.

• Centrales Biomasse : trois projets de centrales thermiques alimentées par de la biomasse totalisant 21 MW sous forme d'IPP sont pris en compte à l'échéance 2020 :

o Euro Négoce Industrie : 6 MW Kandi

o AF Power : 5 MW Tchaourou

o Greenheart Power Africa: 10 MW

Il s'agit de trois propositions de projets dont le contrat d'achat est en cours de négociations ou la Convention de concession a été autorisée par le Gouvernement.

Eoliennes: La liste de propositions de projets par des promoteurs privés que le consultant a reçu de la DGE contient un seul projet mais sans indication de la capacité, de la production, des sites et des coûts. Seul un Mémorandum d'Entente existe. Le consultant considère peu probable que cette source d'énergie puisse faire partie du mix énergétique dans des proportions significatives.

3 Analyse de l'approvisionnement en gaz naturel

Les besoins des centrales existantes et des projets à venir conduisent à analyser plus précisément les conditions d'approvisionnement du Bénin en gaz naturel et les tractations en cours pour compléter/substituer l'approvisionnement en provenance du Nigéria.

L'acheminement actuel du gaz naturel est assuré par WAPCo à partir de la station de compression d'ITOKI au Nigéria.

WAPCo est un consortium (joint-venture) regroupant des entreprises des secteurs publics et privés du Nigéria, du Bénin, du Togo et du Ghana. Elle a pour vocation principale d'assurer, en toute sécurité, responsabilité et fiabilité, et à des prix compétitifs par rapport aux autres combustibles, le transport du gaz naturel depuis le Nigéria vers les marchés du Bénin, du Togo et du Ghana.

L'actionnariat de WAPCo comprend : Chevron West African Gas Pipeline Ltd (36.9%), Nigerian National Petroleum Corporation (24.9%), Shell Overseas Holdings Limited (17.9%), Takoradi Power Company Limited (16.3%), Société Togolaise de Gaz (2%) et Société BenGaz S.A. (2%).

Long de 678 kilomètres, le Gazoduc de l'Afrique de l'Ouest (GAO) est connecté à l'ancien gazoduc ESCRAVOS-LAGOS qui aboutit au Terminal d'exportation de gaz naturel de la société Nigeria Gas Company à ITOKI, au Nigeria. De la tête de pont à Lagos, il suit la côte au large jusqu'à Takoradi, au Ghana, avec des embranchements vers Cotonou (Bénin), Lomé (Togo) et Tema (Ghana). Le réseau du gazoduc ESCRAVOS-LAGOS a une capacité de production de 800 MPC/jr (millions de pieds cubes standards par jour ou MMscfd), tandis que celui de WAPCo a une capacité initiale de 200 MPC/jr avant d'atteindre la capacité maximale de 460 MPC/jr.

Le principal tronc du gazoduc en mer est posé sur le fond marin à une profondeur moyenne de 35 mètres, même si à certains endroits, notamment au sud-est du Ghana, au sud de Lomé et au niveau de la frontière Bénin-Nigéria, cette profondeur varie entre 50 et 70 mètres. Sa distance au littoral varie autant que sa profondeur. Au sud du Cap St Paul au Ghana, la distance du gazoduc au littoral est de 3,5 miles nautiques (6,5 kilomètres) tandis qu'au niveau du tronçon le plus large, du côté sud de Winneba, toujours au Ghana, elle est de 17,5 miles nautiques (soit 32,5 kilomètres). La longueur approximative des embranchements au littoral est de:

• Cotonou: 7 miles nautiques (13 Km).

• Lomé: 10,3 miles nautiques (19 Km).

• Tema: 7,8 miles nautiques (14 Km).

Le diamètre de la canalisation tronc principale est de 20 pouces tandis que celui des embranchements de Cotonou de Lomé et de Tema est de 8 pouces pour la partie marine et de 10 pouces pour la partie terrestre. L'extrémité de la canalisation à Takoradi (Aboadze) fait partie du tronc principal.

L'exploitation du gazoduc rencontre actuellement des difficultés affectant sévèrement la production d'électricité à partir du gaz au Bénin :

Le fournisseur N-Gas au Nigéria rencontre des difficultés pour livrer les quantités contractuelles qui s'élèvent à 133,612 MPC/jr pour les trois pays dès le démarrage de l'exploitation commerciale du

gaz. Le Ghana est la principale victime de ces réductions de livraison. Dans ces conditions, la négociation d'un contrat additionnel pour la fourniture du gaz naturel à la centrale électrique CAI de 80 MW de MARIA GLETA ne progresse pas. Les besoins journaliers de cette dernière centrale s'élèvent en effet à 23,66 MPC/jr

Les rapports issus de l'exploitation du gazoduc font apparaître que depuis le démarrage de l'exploitation commerciale, à peine la moitié des quantités contractuelles de gaz annoncées a été livrée. Cette situation serait due aux travaux en cours au Nigéria pour accroître l'offre de gaz. On peut cependant remarquer que les récentes études gazières menées au Ghana ne paraissent plus guère compter sur le gaz émanant de ce pays. Dans ces études la partie ghanéenne du gazoduc WAPCo est simplement utilisée pour transporter du gaz local de Takoradi vers Tema.

La sécurisation du gazoduc en mer est aussi problématique. Causés par le relevage d'urgence de l'ancre d'un bateau attaqué par des pirates, les dommages infligés à la canalisation au large des côtes du Togo ont provoqué la suspension de la livraison du gaz naturel aux clients pendant près d'un an. Pendant cette période, les centrales électriques ont été privées de leur alimentation la plus économique. Cet incident illustre les risques encourus par le gazoduc du fait qu'il n'est pas ensouillé et se trouve dans une zone d'activités navales intenses.

Le Bénin n'a donc aucune visibilité sur sa desserte fiable par le gazoduc WAPCo alors que l'ensemble de ses projets de centrale thermique à court et moyen terme reposait sur cette hypothèse. Toutefois la carence du Nigéria a suscité l'apparition de projets de terminaux de regazéification de GNL au Ghana et au Bénin dont on trouvera quelques éléments en annexes 1. Il est également question de l'installation d'une station de compression à Takoradi permettant d'injecter du gaz dans le gazoduc WAPCo du Ghana vers les consommateurs à l'est, notamment à Tema. Ce dernier projet serait également associée à la valorisation du gaz torché dans les installations ghanéennes que les centrales du pays ne sont pas en mesure d'utiliser à ce stade et qui pourrait donc être exporté par le WAPCo sous réserve d'être miscible au gaz nigérian.

Le consultant a également examiné dans quelles conditions le gazoduc pourrait acheminer les quantités de gaz nécessaires dans plusieurs hypothèses de transit. Un aspect apparemment problématique est la limitation à 8 pouces des canalisations marines de connexion à Tema, Cotonou et Lomé. On constate effectivement qu'avec cette limitation, il est difficile d'acheminer plus de 250 MPC par jour vers Cotonou et Lomé avec la compression maximale à ITOKI tout en admettant que la compression à Takoradi permette d'alimenter Tema. La pleine utilisation de la capacité théorique du gazoduc principal (430 MPC par jour) au bénéfice du Bénin et du Togo exige donc de renforcer à terme les dérivations vers ces pays.

Ces évolutions sur le marché du gaz laissent espérer en tout cas qu'un approvisionnement fiable et abondant en gaz naturel du Bénin sera obtenu en 2020. Par contre l'alimentation en gaz naturel des centrales CAI et Diesel de MARIA GLETA dès 2018 demeure à ce stade très incertaine.

A l'origine le prix de fourniture du gaz était de 9,5 \$/MMBTU; il est maintenant de 10-11 \$/MMBTU pour 4 ans. Au-delà il pourrait s'élever jusqu'à 14 \$/MMBTU. L'état Béninois a été contacté par des fournisseurs privés pour être livré en gaz (via le gazoduc ou en gaz comprimé) à des tarifs variant de 14,5 à 19 \$/MMBTU.

4 Coûts des combustibles et coût de revient du kWh

4.1 Coûts des combustibles

Parmi le mix énergétique étudié, les coûts des combustibles ont un poids considérable sur les options retenues. Des détails justifiant les choix des coûts du gaz naturel, du GNL et du charbon sont donnés en Annexe 1 du présent rapport. La description suivante donne un résumé. Tous les coûts sont des coûts au prix 2015.

4.1.1 Coût des produits pétroliers et du gaz

Le développement de ces coûts est lié au développement du prix du pétrole brut. Deux scénarios sont considérés :

- a) Le prix du Brent reste jusqu'en 2035 au niveau actuel de 50 65 US\$ par baril.
- b) Le prix du Brent augmente à partir de 2017 pour atteindre 100 US\$/baril en 2020 et reste ensuite à ce niveau.

L'évolution des coûts des produits pétroliers (fioul lourd, diesel, Jet A1) est quasiment proportionnelle à l'évolution du prix du Brent².

Le coût du gaz fourni par le gazoduc est supposé rester au niveau actuel de 11 US\$/MMBTU si l'hypothèse (a) s'applique. Dans le cas de l'hypothèse (b), le coût du gaz augmente mais moins que le prix du Brent. Il est de 14 US\$/MMBTU à partir de 2020³.

Les importations potentielles de GNL sont supposées coûter 15% de plus par rapport au gaz naturel. La location d'une barge pour le stockage et la regazéification du GNL augmente le coût de de 0,02 US\$/kWh.

Le mix énergétique des importations venant du Nigéria et du Ghana/Côte d'Ivoire est largement basé sur une production thermique à base de pétrole. On peut donc s'attendre à ce que le coût d'importation augmente si le prix du Brent augmente. L'augmentation des importations du Nigéria est de 0,10 US\$/kWh à 0,12 US\$/kWh si l'hypothèse (b) s'applique. Le coût des importations du Ghana/Côte d'Ivoire augmente dans ce cas de 0,11 US\$/kWh à 0,13 US\$/kWh.

4.1.2 Coût du charbon

Deux scénarios sont examinés : Le coût d'importation est de 4 US\$/MMBTU ou de 5 US\$/MMBTU.

Le coût du charbon détermine le coût des importations du Niger étant donné que ces importations seront basées sur la production de la future centrale de Salkadamna exploitant le charbon de la mine du même nom. Le coût de ces importations est de 0,10 US\$/kWh si le charbon coûte 4 US\$/MMBTU et de 0,11 US\$/kWh si le charbon coûte 5 US\$/MMBTU.

² Le prix de 60 US\$/baril a été utilisé dans le calcul des coûts dans le futur. Exemple : coût de diesel si le prix du Brent es de 100 US\$/baril : 13,14 * 100 / 60 = 21,9 US\$/GJ.

³ L'augmentation ne commence qu'en 2019 parce que le prix de 11 US\$/MMBTU est fixe jusqu'à fin 2018.

Tableau 2 : Coûts des combustibles

Combustible	Actuel	Si pétrole brut 100 \$/bbl	
HFO	8,514	12,9	\$/GJ
LFO	13,14	21,9	\$/GJ
Jet A1	29,20	48,7	\$/GJ
C (de)	11	14	\$/MMBTU
Gaz (gazoduc)	10,4	13,3	\$/GJ
GNL⁴	12,7	16,1	\$/MMBTU
GINL	12,0	15,3	\$/GJ
Ch a wh a w	4	5	\$/MMBTU
Charbon	3,8	4,7	\$/GJ

4.2 Coûts des émissions de gaz à effet de serre

L'analyse économique pure prend en compte deux valorisations des émissions de gaz à effet de serre (GES) via la taxation des tonnes de CO2 équivalent émises à 20 US\$/t ou 40 US\$/t. Le Tableau 3 présente les surcoûts que cela représente selon chaque technologie dans le cas de la valorisation de la tonne de CO2 à 20 US\$.

Davantage de détails justifiant les choix de prix effectués sont donnés en Annexe 1 du présent rapport.

Tableau 3: Emission de CO2 par technologie

Technologie	t.CO2/GJ	t.CO2/MWh	US\$/MWh	FCFA/kWh
Charbon	0,089	0,85	17,0	10,5
CCTG au Gaz (gazoduc ou GNL)	0,052	0,38	7,6	4,7
TAG au GN	0,060	0,67	13,4	8,3
HFO	0,075	0,71	14,2	8,8
DDO	0,074	0,74	14,8	9,2
Moteur au Gaz	0,043	0,49	9,8	6,1

⁴ Afin de prendre en compte les surcoûts liés au transport, le prix du GNL CIF (Cost Insurance and Freight) est fixé 15% au-dessus du prix du gaz du Gazoduc. Les coûts liés à la regazéification sont inclus dans les coûts d'exploitation des centrales

4.3 Structure de coût suivant les technologies modélisés

Les centrales ont été modélisées avec les paramètres décrits ci-dessous donnant la structure de coût suivante :

Tableau 4 : Structure de coût d'exploitation par technologie (US\$/MWh) pour 20 \$/t.CO2

			08	&Μ	Coût en	carburant	Coût Car O&M (ho		Carburar	total nt + O&M CO2	ordre de mérite		
	rendeme	nt	O&M	Regazéfi- ciation GNL	Actuel	Si pétrole brut 100 \$/bl	Actuel	Si brut 100 \$/bl	Actuel	Si brut 100 \$/bl	Actuel	Si pétrole brut 100 \$/bl	
Technologie	kJ/kWh		US\$/	MWh	US\$	/MWh	US\$/I	ИWh	US\$/	MWh			
Charbon	9 231	39%	2,7		35,0	43,8	37,7	46,5	54,7	63,5	1	1	
Pulvérisé													
Charbon CFB	9 574	38%	3,14		36,3	45,4	39,5	48,6	56,5	65,6	2	2	
CC-Gaz pipe	7 247	50%	1,71		75,6	96,3	77,3	98,0	84,9	105,6	3	3	
HFO	9 450	38%	7,1		80,5	121,9	87,6	129,0	94,7	136,1	4	8	
TCN									100,0	120,0	5	5	
NIGER									100,0	110,0	6	4	
Moteur MF GN	9 000	40%	7,1		93,9	119,5	101,0	126,6	103,7	129,3	7	6	
gazoduc													
VRA									110,0	130,0	8	7	
Moteur MF GNL	9 000	40%	7,1	20	108,0	137,5	135,1	164,6	117,8	147,3	9	10	
CC-Gaz GNL	7 247	50%	1,71	20	107,0	130,7	108,7	132,4	120,4	144,1	10	9	
TAG gazoduc	11 225	32%	2,51		117,1	149,1	119,7	151,6	130,5	162,5	11	11	
LFO (Diesel)	10 000	36%	10,1		131,4	219,0	141,5	229,1	146,2	233,8	12	12	
TAG au LFO	11 435	31%	2,51		333,9	556,5	336,4	559,1	334,0	556,7	13	13	

Tableau 5 Structure de coût d'exploitation par technologie (FCFA/kWh) pour 20\$/t.CO2

				&M 4/kWh)	Coût en carburant (FCFA/kWh)		Coût Carburant + O&M hors CO2 (FCFA/kWh)		Carbura	it total nt + O&M + CFA/kWh)	ordre de mérite		
Technologie	Rendeme (kJ/kWh		O&M	Regazéfi- ciation GNL	Actuel	Si brut 100 \$/bl	Actuel	Si brut 100 \$/bl	Actuel	Si brut 100 \$/bl	Actuel	Si brut 100 \$/bl	
Charbon Pulvérisé	9 231	39%	1,67		21,72	27,15	23,39	28,82	33,93	39,36	1	1	
Charbon CFB	9 574	38%	1,95		22,53	28,16	24,47	30,11	35,01	40,65	2	2	
CC-Gaz pipe	7 247	50%	1,06		46,89	59,68	47,95	60,74	52,66	65,45	3	3	
HFO	9 450	38%	4,40		49,88	75,58	54,29	79,98	58,69	84,39	4	8	
TCN							62,00	74,40	62,00	74,40	5	5	
NIGER							62,00	68,20	62,00	68,20	6	4	
Moteur MF GN gazoduc	9 000	40%	4,40		58,24	74,12	62,64	78,52	64,31	80,19	7	6	
VRA							68,20	80,60	68,20	80,60	8	7	
Moteur MF GNL	9 000	40%	4,40	12,40	66,97	85,24	83,77	102,04	73,05	91,31	9	10	
CC-Gaz GNL	7 247	50%	1,06	12,40	66,33	81,03	67,39	82,09	74,63	89,34	10	9	
TAG gazoduc	11 225	32%	1,56		72,63	92,44	74,19	94,00	80,94	100,75	11	11	
LFO (Diesel)	10 000	36%	6,26		81,47	135,78	87,73	142,04	90,64	144,96	12	12	
TAG au LFO	11 435	31%	1,56		207,04	345,06	208,59	346,62	207,11	345,13	13	13	

5 Description des scénarios d'évolution du bouquet énergétique CEB dans la période 2015 – 2018

5.1 Présentation des scénarios

Trois options d'évolution du bouquet énergétique sur le territoire Bénin-Togo :

- Le scénario du mix énergétique selon lequel la CEB réalise l'équilibre global et permanent de l'offre et de la demande du Togo et du Bénin en usant de tous les moyens disponibles dans les deux pays sans restriction et en respectant l'ordre de mérite des moyens de production et des possibilités d'importation depuis le Nigéria et le Ghana.
- La poursuite de la situation actuelle dans laquelle la CEB répartit les importations du Nigéria et du Ghana, la production de ses moyens propres mais ne peut faire appel qu'exceptionnellement aux autres producteurs dépendant de la CEET ou de la SBEE.
- La séparation complète des bouquets énergétiques du Bénin et du Togo, chacun des deux pays se réservant l'usage des moyens de productions sis sur son territoire, partageant la production de Nangbeto à parts égales et les importations du Nigéria et du Ghana selon des règles à définir

Chacune de ces options fait l'objet ci-après d'un développement spécifique. Les cas simulés proposent des solutions réputées satisfaisantes si leur LOLP pour l'année considérée est inférieure à 1%.

5.2 Le bouquet énergétique unique

Ce scénario considère l'équilibre de l'offre et de la demande en considérant CEB comme l'acheteur unique libre d'acheter selon l'ordre de mérite aux exportateurs et aux producteurs existants sur le territoire du Bénin et du Togo. Ce scénario suppose également que la CEB peut redistribuer l'énergie sur l'ensemble du territoire des deux pays sans contraintes liées aux capacités et aux structures des réseaux 330 kV, 161 kV, 63 kV et MT existants.

Ce scénario exige implicitement une interconnexion sans réserve des réseaux haute tension entre la CEB, la TCN et la VRA-CIE.

Ce scénario constituera le scénario de référence.

5.3 La poursuite de la situation actuelle (Statu quo)

Le mix énergétique unique traité au 5.2 ne correspond pas à la réalité présente puisque les mandants de CEB ne l'autorisent qu'exceptionnellement à acheter de l'énergie aux producteurs dont les prix de vente sont très supérieurs à ceux pratiqués par les exportateurs TCN et VRA-CIE. La CEB n'a donc pas un accès libre aux centrales de CONTOUR GLOBAL à Lomé, CAI à Cotonou (MARIA GLETA), MRI et AGREKKO au Bénin ainsi qu'aux centrales diesel de la SBEE. Ces centrales font l'objet d'achats d'énergie en direct ou bien de production propre par la CEET et la SBEE, les opérateurs de distribution du Togo et du Bénin.

L'interconnexion parfaite ne peut qu'être approchée par une gestion adéquate du système de transport et de la configuration du réseau en raison de l'instabilité du réseau nigérian qui empêche de mettre en œuvre une interconnexion totale. Les points d'ouverture du système doivent donc être constamment modifiés afin d'adapter la demande des réseaux couplés à l'importation ghanéenne d'une part et à celle des réseaux couplés à l'interconnexion nigériane. Les moyens de télé conduite et de télé information du dispatching de la CEB sont limités et on ne peut exclure que la gestion actuelle ne soit pas optimale et dictée pour une part par des règles empiriques.

La simulation de cette option est approchée par la limitation pratique de l'utilisation de la centrale de Contour Global aux besoins propres du Togo qui se limitent à l'appel de 1 à 3 groupes sur les 6 installés.

5.4 Séparation des bouquets énergétiques

Dans cette option la demande du Bénin est satisfaite par les centrales de la SBEE, MRI, AGGREKO, CAI, la centrale CEB de Cotonou, la moitié de la production de Nangbeto, les centrales solaires et une part des importations du Nigéria et du Ghana.

La demande du Togo est satisfaite par la centrale de Contour Global, la centrale CEB de Lomé, la moitié de la production de Nangbeto et une part des importations du Nigéria et du Ghana.

La part des importations revenant à chaque pays est bien entendu le point délicat des simulations de cette option. L'examen des résultats 2013 conduit à estimer que la part revenant au Bénin cette année- là s'élevait virtuellement à 57% avec une tendance à la baisse en 2014.

5.5 Description du logiciel de simulation horaire du bouquet énergétique

Le logiciel dédié à la simulation du bouquet énergétique horaire de la CEB fonctionne sous EXCEL. Il comporte les modules suivants :

- (i) un module de calcul de la demande horaire,
- (ii) un module de simulation des offres hydroélectriques journalières,
- (iii) un module de simulation des importations horaires basé sur les valeurs de l'année 2013,
- (iv) un module de calcul du mix énergétique horaire annuel
- (v) un module de calcul des coûts d'exploitation de chaque centrale

Tous ces modules fonctionnent pour toutes les années de 2014 à 2035. Certains sont dotés de Macros qui permettent de reproduire les calculs de façon pluriannuelle ou de les itérer en utilisant des séries de paramètres.

Le fonctionnement de chacun de ces modules est décrit en Annexe 2.

5.6 Résultats

5.6.1 Cas du bouquet unique, croissance haute.

Le tableau ci-dessous récapitule les résultats des simulations pour les années 2015 à 2018 dans le cas du bouquet énergétique unique géré à l'optimum.

Tableau 6 : Résultats des simulations années 2015-2018. Cas du bouquet énergétique unique géré à l'optimum.

Année	Prix des combustibles	LOLP CEB	Coût moyen (US\$/MWh). END compris (Hors END)	Observations
2015	Prix actuels	0,50%	105,7 (99,4)	Centrales SBEE hors service; MRI 40 MW; AGGREKO 20 MW; CO2 20 \$/t
2016	Prix actuels	0,50%	109,2 (102,9)	Centrales SBEE:24 MW; MRI 40 MW; AGGREKO 40 MW; CO2 20 \$/t
2017	Prix actuels	1,08%	122,8 (109,4)	Centrales SBEE:24 MW; MRI 40 MW; AGGREKO 40 MW; CO2 20 \$/t
2017	Prix plus élevés, associés avec 70 US\$/baril	1,08%	133,0 (119,4)	
2018	Prix actuels	2,44%	140,6 (110,0)	
2018	Prix plus élevés, associés avec 80 US\$/baril	2,24%	160,5 (132,4)	

5.6.2 Statu quo

Le tableau ci-dessous récapitule les résultats des simulations pour les années 2015 à 2018 dans le cas du bouquet énergétique unique géré selon les règles actuelles et simulé en estimant que CEET ne recourt qu'à la moitié des groupes de Contour Global pour ses besoins propres.

Tableau 7 : Résultats des simulations années 2015-2018. Cas du bouquet énergétique unique géré selon les règles actuelles.

Année	Prix des combustibles	LOLP CEB	Coût moyen (US\$/MWh). END compris (Hors END)	Observations
2015	Prix actuels	1,39%	128,7 (111,3)	3 groupes Contour Global
2016	Prix actuels	1,41%	132,0 (114,4)	3 groupes Contour Global
2017	Prix actuels	3,46%	163,5 (120,3)	3 groupes Contour Global
2017	Prix plus élevés, associés avec 70 US\$/baril	3,44%	175,6 (132,5)	3 groupes Contour Global
2018	Prix actuels	6,25%	197,2 (117,1)	3 groupes Contour Global.
2018	Prix plus élevés, associés avec 80 US\$/baril	6,09%	218,6 (142,4)	3 groupes Contour Global.

5.6.3 Séparation des bouquets énergétiques

Le tableau ci-dessous récapitule les résultats des simulations pour les années 2015 à 2018 dans le cas des bouquets énergétiques séparés. Le choix de la répartition des importations entre le Bénin et le Togo a été fait de telle sorte que la LOLP de chacun soit inférieure à 1%.

Tableau 8 : Résultats des simulations années 2015-2018. Cas du bouquet énergétique séparé.

Année	Prix des combustibles	LOLP Bénin	LOLP Togo	Coût m (US\$/N END compris	/Wh).	Observations
				Bénin	Togo	
2015	Prix actuels	0,63%	0,91%	156,6	100,8	Part Bénin : 35%
	Prix actuels			(148,7)	(89,4)	Part Togo : 65%
2016	Prix actuels	0,74%	0,94%	165,9	102,1	Part Bénin : 22%
	Flix actuels			(166,7)	(90,3)	Part Togo: 78%
2017	Prix actuels	1,04%	2,53%	166,7	121,7	Part Bénin : 30%
	Flix actuels			(153,8)	(90,1)	Part Togo: 70%
2017	Prix plus élevés, associés	1,02%	2,55%	188,8	126,5	Part Bénin : 30%
	avec 70 US\$/baril			(174,0)	(96,6)	Part Togo : 70%
2018	Prix actuels	2 000/	2 200/	198,2	144,9	Part Bénin : 25%
2018	PTIX actuels	3,89%	3,39%	(150,3)	(102,6)	Part Togo: 75%
2040	Prix plus élevés, associés	2.000/	2.400/	240,4	145,1	Part Bénin : 25%
2018	avec 80 US\$/baril	3,90%	3,40%	(191,6)	(102,6)	Part Togo : 75%

5.6.5 Examen comparatif des scénarios

Les trois scénarios étudiés ci-dessus conduisent aux conclusions suivantes :

- Le scénario du bouquet énergétique unique donne des solutions satisfaisantes jusqu'en 2017 inclus alors que le scénario du statu quo ne le permet jamais et que le scénario des bouquets énergétiques séparés ne le permet que jusqu'en 2016 avec une répartition des importations probablement inacceptable pour le Bénin.
- (ii) Outre les problèmes de qualité de service, le scénario du statu quo induit des surcoûts de l'ordre de 10 US\$/MWh (≈ 6 FCFA/kWh) hors END au moins par rapport au scénario de référence soit une dépense additionnelle de 15 à 20 millions de US\$ par an pour le Bénin.
- (iii) Le scénario du double bouquet énergétique conduit à des résultats très contrastés pour les deux pays selon le choix de la clé de répartition des importations du Nigéria et du Ghana. Une répartition trop favorable au Bénin provoque une qualité de service complétement dégradée au Togo. Si elle est favorable au Togo, le coût moyen du MWh au Bénin devient insupportable. Le surcoût pour le Bénin par rapport au coût de référence est de toute façon supérieur à celui encouru par rapport à la situation de statu quo.

En conclusion ces résultats montrent l'intérêt pour le Bénin (et le Togo) de se rapprocher techniquement et institutionnellement du scénario de référence.

6 Aspects logistiques et environnementaux d'installation d'une centrale multi fuel dans les années 2018 - 2019

6.1 Problématique

L'équilibre raisonnable entre offre et demande exige la mise en service d'une nouvelle centrale thermique en 2018 dans l'hypothèse où se réalise le scénario de croissance forte. Cette centrale est nécessairement une centrale diesel bi- ou même tri-combustible (gazole, fioul lourd, gaz naturel) dotée de groupes de 20 MW, seule réalisable dans un délai court et afin de se prémunir contre les incertitudes sur l'approvisionnement en gaz naturel, de disposer de flexibilité de réglage du système et de maintenir une taille unitaire de groupe compatible avec la réserve tournante accessible.

6.2 Emplacement de la centrale et problématique environnementale

Deux emplacements réalistes peuvent être envisagés pour la centrale tri-combustible :

- Le site de Maria Gléta, où aboutit la dérivation du gazoduc WAPCo pour Cotonou, conformément au projet instruit par Tractebel.
- Un site au voisinage de la centrale actuelle de CONTOUR GLOBAL, desservi en gaz naturel par la dérivation du gazoduc WAPCo et à proximité immédiate du dépôt pétrolier de Lomé.

Au cas où 30 MPC/jr seraient disponibles dans l'un ou l'autre site, la centrale pourrait fonctionner au gaz. Il faudrait environ 50 MPC/jr au total pour pouvoir également alimenter en gaz la centrale CAI sur le site de Maria Gléta ou la centrale de CONTOUR GLOBAL sur celui de Lomé.

Si cet approvisionnement en gaz naturel fait défaut, la solution alternative au fioul lourd ne pose pas de problème particulier sur le site de Lomé. Par contre l'approvisionnement en fioul lourd du site de Maria Gléta et en JET A1 de la centrale CAI pose de redoutables problèmes environnementaux ou exige des investissements lourds qui grèvent les coûts d'investissement de la centrale. En effet l'approvisionnement par camions citernes (15 à 35 m³ par véhicule) conduit à envisager le recours à une noria de 20 à 45 trajets aller-retour pour le fioul lourd pour un fonctionnement à pleine charge. Il faut y ajouter entre 10 et 25 trajets pour le transport du JET A1 les jours de pointe en 2019. C'est l'enfer pour les populations riveraines et un risque important d'accident de personne ou de grande ampleur du fait du caractère des cargaisons. De plus, les routes de desserte de Maria Gléta sont en grande partie non revêtues et traversent des zones densément peuplées. Le transport de gaz comprimé par camion pose d'ailleurs des problèmes analogues. De ce fait le consultant ne peut cautionner le projet dans ces conditions.

L'alternative mentionnée mais non chiffrée par Tractebel, est la construction d'un oléoduc entre la station de stockage des produits pétroliers sur le port de Cotonou sur une distance d'environ 20 km en milieu urbain. Cet ouvrage, capable de véhiculer les deux combustibles successivement sous réserve d'un nettoyage intermédiaire doit être calorifugé et nécessite l'installation d'une station de compression garantie et sécurisée sur le site de stockage des produits pétroliers. La conduite des installations ne doit pas subir d'interruption longue sous peine de conduire à la coagulation irrémédiable du fioul lourd dans l'oléoduc.

La résolution du problème de l'approvisionnement en gaz par gazoduc du site de Maria Gléta paraît donc une condition indispensable en vue de la construction d'une telle centrale à Maria Gléta.

7 Période 2020-2035: Logiciel utilisé, hypothèses, cas examinés

Comme mentionné plus haut, la période 2020-2035 a été étudiée selon une approche différente. En effet cette période est beaucoup plus ouverte en termes de possibilité d'installations de nouvelles centrales. L'enjeu de l'étude est de déterminer quelles sont les types de centrales qui permettront de minimiser les coûts globaux et à quelle date la construction de ces centrales doit intervenir.

7.1 Présentation du logiciel utilisé

Le logiciel WASP (Wien Automatic System Package) a été retenu pour l'étude de la période 2020 - 2035. C'est un logiciel développé par l'AIEA⁵ depuis 1972. Ce logiciel permet l'étude et l'optimisation d'un parc de moyens de production électrique sur un territoire et une durée définis. Il compare un très grand nombre de configurations afin de trouver la combinaison optimale de centrales de production minimisant les coûts actualisés globaux.

L'algorithme utilisé explore toutes les configurations possibles en terme de type de centrale et de date de construction, calcule les coûts associés à chaque configuration et retient la configuration qui minimise les coûts tout en respectant les critères de fiabilités fixés comme hypothèses de base.

Le modèle mathématique utilisé permet de calculer les coûts de façon probabiliste en fonction des variations des conditions d'hydraulicité. Les calculs prennent en compte la variabilité interannuelle et la saisonnalité des ressources hydrauliques d'une année sur l'autre. Le modèle prend également en compte la saisonnalité des ressources.

7.2 Résumé des hypothèses

L'intégralité des hypothèses est présentée dans l'Annexe 4. Le résumé suivant se limite aux hypothèses les plus importantes.

7.2.1 Candidats pour l'expansion du parc de production et des importations

Les technologies suivantes sont envisagées à long terme pour la fourniture d'électricité au Bénin :

- Centrales à cycle combiné : Turbine à Gaz (100 MW) + Turbine Vapeur (50 MW)
- Solaire photovoltaïque : unité de 22 MWc (20 MW effectifs)
- Centrale Diesel au Fioul Lourd: 120 MW
- Centrale au charbon à lit circulant fluidisé⁶: 125 MW
- Importations du Niger : tranche de 100 MW
- Centrales bicombustibles HFO Gaz Naturel: 120 MW

⁵ Agence Internationale de l'Energie Atomique

⁶ Les centrales à charbon pulvérisés, dont les coûts d'investissement et d'exploitation sont légèrement plus faibles que ceux des centrales à lit circulant fluidisés. , ont finalement étés écartées des simulations en raison de leur impact environnemental trop important.

Les coûts du gaz importé par le gazoduc ou d'une barge de regazéification de GNL sont différents. De ce fait les centrales au gaz (cycle combiné, centrale bicombustible) font l'objet de modélisations distinctes selon leur alimentation en carburant.

7.2.2 Coûts d'investissements

Les coûts d'investissements des centrales de production sont présentés dans le tableau ci-dessous.

Tableau 9 : Coûts d'investissement

Centrale	Coûts d'investissement	Durée de construction	Durée de vie
	US\$ 2015 par kW	Années	Années
Cycle combiné : TAG (100MW) +TV (50MW)	1100	3	25
Groupes Diesel	1070	1	20
PV	1000 / 2000	3	20
Centrale au Fuel Lourd	1350	3	25
Centrale Charbon à lit fluidisé circulant	2600	3	35
Centrale bicombustible	1350	3	25
Centrales hydroélectriques	3000	10	50

7.2.3 Disponibilité du gaz

Le gaz du gazoduc ouest africain et sa disponibilité dans le futur sont une source importante d'aléas pour l'étude. Plusieurs scénarios de disponibilité sont donc considérés :

- 10 MPC/jour : permet de satisfaire consommation actuelle des deux TAG de la CEB
- 50 MPC/jour : quantité nécessaire à l'approvisionnement des TAG de la CEB, de CAI, de Contour Global et de la future centrale multi-combustible de Maria Gleta (120 MW)
- 200 MPC/jour : fourniture maximale si le Ghana ne consomme plus de gaz en provenance du Nigéria
- 300 MPC/jour : fourniture maximale si le Ghana installe des stations de compression sur son territoire pour vendre du gaz au Togo et au Bénin.

Les limites de 200 et 300 MPC/Jour sont les limites maximales de transit calculées en tenant compte des diamètres des conduites alimentant les sites de Maria Gleta et Lomé Port.

7.2.4 Coûts des combustibles (réf. Paragraphe 4.1)

Deux variantes concernant le coût du gaz et du charbon⁷ sont examinées.

- ❖ Gaz:
 - o 11 US\$/MMBTU sur toute la période d'étude
 - 11 US\$/MMBTU dans les années 2015 2018, 12,6 US\$/MMBTU en 2019 et 14 US\$/MMBTU à partir de 2020.
- Charbon :
 - o 4 US\$/MMBTU sur toute la période d'étude ;
 - o 5 US\$/MMBTU sur toute la période d'étude.

7.2.5 Autres Hypothèses

Energie non Distribuée

Le coût de l'énergie non distribuée (Energy Not Served) est pris de 1,25 US\$/kWh pour respecter les hypothèses du WAPP (Tome 1, p.15).

La limite annuelle admise pour la probabilité de délestage annuel (LOLP) lié à l'insuffisance de production ou aux indisponibilités fortuites (pannes) est de 1% sur la période 2020-2035.

Réserve de marge

Une réserve de marge correspondant à la perte des deux plus grosses unités de production en fonctionnement a été prise comme référence. Les deux groupes les plus importants du parc peuvent toujours être mis en indisponibilité sans réduire la capacité du système à faire face à la pointe.

Reserve tournante

A chaque instant chaque centrale en fonctionnement dispose d'une marge de production exprimée en pourcentage de sa capacité maximale disponible. La réserve tournante du système correspond à la somme des marges de production. La règle dite « n-1 » stipule que la réserve tournante doit être à tout moment supérieure ou égale au plus gros groupe en fonctionnement. Une réserve de tournante de 20 MW, correspondant à une turbine à gaz ou un moteur bicombustible a été admise pour la période 2020-2030, portée ensuite à 100 MW pour la période 2030-2035⁸.

Taux d'actualisation

Les calculs ont été faits avec le taux de 10%.

⁷ Le modèle suppose qu'aucune centrale à charbon n'est en service avant 2020.

⁸ La défaillance des importations du Nigéria ou du Ghana devrait en théorie être compensée par les réserves tournantes propres à ces pays, ce qui n'est aujourd'hui malheureusement pas le cas.

7.3 Cas examinés

Nonobstant les analyses de sensibilité, 27 cas ont été examinés dans le détaill. Ils combinent des scénarios (i) de demande, (ii) de coûts des produits pétroliers et du gaz, (iii) de disponibilité de gaz du gazoduc et (iv) de coûts d'importation de charbon :

- Trois scénarios de demande : Haut, Moyen , Faible.
- Pour chaque scénario de demande, deux scénarios de développement des coûts des produits pétroliers et du gaz : (1) maintien au niveau actuel : « coûts constants » ; (2) augmentation entre 2017 et 2020 et stabilisation : « coûts à la hausse ». Les coûts sont indiqués dans le paragraphe 4.1.1. Le coût du gaz est de 11 US/MMBTU dans le scénario « coûts constants » et, à partir de 2020, de 14 US\$/MMBTU dans le scénario « coûts à la hausse ».
- Pour chaque combinaison demande/coûts, trois scénarios de disponibilité maximale de gaz du gazoduc : 10 MPC/jour, 50 MPC/jour, 200 MPC/jour.
- Pour les combinaisons demande / « coûts à la hausse » / disponibilité de gaz du gazoduc, deux scénarios du coût du charbon : 4 US\$/MMBTU et 5 US\$/MMBTU.
- Pour les combinaisons demande / « coûts constant » / disponibilité de gaz du gazoduc, le coût du charbon est de 4 US\$/MMBTU.

Voir Annexe 5 pour un tableau récapitulatif des cas examinés.

Le coût des systèmes PV est de 1000 US\$/kWc et le coût des émissions de gaz à effet de serre de 20 US\$ par tonne de CO2 équivalent. Dans certains cas, des analyses de sensibilité ont été faites pour déterminer l'impact d'autres hypothèses : coût des systèmes PV 2000 US\$/kWc ; coût des émissions 40 US\$/tCO2.

D'autres analyses ont été menées à propos des options suivantes :

* Réalisation de tous les sites hydroélectriques candidats

Comme indiqué plus loin, aucun des six sites hydro candidats du Bénin ne fait partie de la solution optimale si le coût d'investissement est de 3000 US\$/kW alors que ce coût est le coût le plus faible envisageable sans subvention. L'impact sur la valeur des coûts économiques de la réalisation de tous les sites candidats au coût de 3000 US\$/kW a cependant été examiné dans le contexte du scénario où les prix des produits pétroliers reste constant et la disponibilité du gaz naturel est élevée.

Production à partir du GNL

Dans les 27 cas décrits ci-dessus, le coût du GNL est égal à celui du gaz naturel de réseau majoré de 15%. Une surcharge de 0,02 US\$/kWh est ajoutée pour prendre en compte les coûts de location d'une barge de stockage et de regazéification. A quelques exceptions près, les centrales GNL ne font alors partie de la solution optimale qu'à trois conditions : (i) le gazoduc ne peut fournir que 10 ou 50 MPC/jour, (ii) le GNL ne coûte que de 12,65 US\$/MMBTU plus la surcharge susmentionnée et (iii) la demande suit le Scénario Modéré ou Fort. La contribution des centrales GNL à la production totale est toujours très faible, 3,6% de la demande totale au maximum

L'utilisation de grandes quantités de GNL devient intéressante si les quantités disponibles en gaz naturel par le gazoduc sont limitées (10 ou 50 MPC/jour). Au prix de 12,65 US\$/MMBTU le GNL est cependant trop coûteux pour jouer un rôle important. Mais il se peut que le marché propose du GNL à des prix finalement moins coûteux que le gaz naturel du WAPCo. C'est pourquoi des calculs ont été faits afin de déterminer le seuil de coût à partir duquel l'alimentation en GNL devient prépondérante.

8 Période 2020-2035 : Résultats

Tous les résultats présentés ci-après ne décrivent que la solution optimale parmi les milliers de configurations étudiées par le modèle WASP. L'optimum est défini comme la solution dont la somme des coûts actualisés sur la période 2015 – 2035 est minimale.

La capacité installée des centrales retenues et la puissance importée année par année selon la solution optimale pour l'évolution du bouquet énergétique de la CEB sont présentées en Annexe 5. Les résultats de deux cas sont présentés dans le détail en Annexe 6 : un cas à prédominance de moyens de production basé sur le gaz et un cas à prédominance de moyens de productions basé sur le charbon.

8.1 Parc thermique

Les centrales thermiques au charbon ou au gaz naturel sont prépondérantes dans l'approvisionnement en énergie électrique du Bénin/Togo dans les solutions à moindre coût économique. La disponibilité du gaz du gazoduc et son coût et à un degré moindre le coût du charbon permettent de trancher entre le gaz et le charbon.

Les grandes tendances du parc thermique optimal sont décrites ci-après :

Si au moins 200 MPC/jour sont disponibles en gaz naturel et le coût du gaz est inférieur ou égal à 11 US\$/MMBTU, les cycles combinés à gaz fournissent dans tous les scénarios de demande la plus grande partie de l'approvisionnement en énergie électrique du Bénin. Les centrales à charbon ont néanmoins une contribution importante dans le scénario de croissance forte. Elles apparaissent dans la solution optimale à partir de 2023 et fournissent jusqu'à 40% de l'approvisionnement (capacité installée en 2035 : 625 MW). Dans les scénarios de croissance modérée et faible, les centrales à charbon n'apparaissent qu'en 2031 ou 2032. Leur contribution est d'environ 10% dans le scénario de croissance modérée et atteint jusqu'à 26% dans le scénario de croissance faible.

Ces résultats supposent que le charbon coûte 4 US\$/MMBTU. Au prix de 5 US\$/MMBTU, il n'y a plus de centrales à charbon dans les scénarios de croissance modérée ou faible. Les cycles combinés à gaz remplacent les centrales à charbon. Dans le scénario de croissance forte, les centrales à charbon ne font partie de la solution optimale qu'à partir de 2031 et pour une capacité bien inférieure (375 MW en 2035). Les centrales GNL remplacent alors certaines centrales à charbon.

- Si seulement 50 MPC/jour de gaz naturel sont disponibles au prix de 11 US\$/MMBTU, la production des centrales à charbon représente dans tous les scénarios de demande la plus grande partie de l'approvisionnement, que le charbon coûte 4 ou 5 US\$/MMBTU. Si le charbon coûte 5 US\$/MMBTU l'arrivée du charbon est un peu retardée, le parc de production étant alors composé de moins de charbon et de plus de centrales HFO voire GNL.
- Quel que soit la disponibilité du gaz et le scénario de demande, si le coût du gaz atteint 14 US\$/MMBTU à partir de 2020, la production des centrales à charbon prédomine dans l'approvisionnement que le charbon vaille 4 ou 5 US\$/MMBTU.
 La contribution des centrales à gaz à l'approvisionnement total est le plus souvent inférieure à 5%. La seule exception survient dans le scénario de croissance forte et si 200 MPC/jour sont disponibles. Dans ce cas la contribution du gaz devient importante après 2029 et atteint 34% de l'approvisionnement total. Ce développement résulte du fait que la capacité des centrales à charbon atteint en 2029 le maximum admis de 1000 MW.

8.2 Solaire PV

Si les coûts d'investissement en solaire photovoltaïque sont de l'ordre de 1000 US\$/kWc, cette technologie fait partie de l'optimum économique. La capacité maximale intermittente pouvant être présente simultanément sur le réseau constitue alors la seule limite à une l'installation massive de centrales de ce type. Hors moyens de stockage qui en augmente considérablement le prix, le photovoltaïque souffre d'une très forte variabilité potentielle dans des intervalles de temps très courts. Un passage nuageux peut faire chuter la production de tout un site de 100% à 20-30% en quelques secondes, ce qui oblige le reste du parc de production à s'adapter très rapidement. Cependant cet effet peut être minoré dans le cas d'un réseau où la diffusion spatiale des centrales PV est élevée grâce au foisonnement induit. Les simulations supposent que la puissance PV installée ne doit pas dépasser 50% de la pointe à midi.

Avec cette règle et si le solaire coûte à l'investissement 1000 US\$/kWc la puissance installée optimale est égale à la puissance maximale autorisée. Suivant les scénarios de demande, la capacité installée augmente de 140 MWc en 2019 à 520, 740 ou 1120 MWc en 2035. Les courbes journalières montrent une forte pénétration du solaire pendant la journée, la pointe du soir est alors couverte par l'hydroélectricité, les moyens thermiques et les importations.

Le taux de pénétration en l'énergie est de l'ordre de 10% à partir de 2020, et reste à peu près constant jusqu'en 2035.

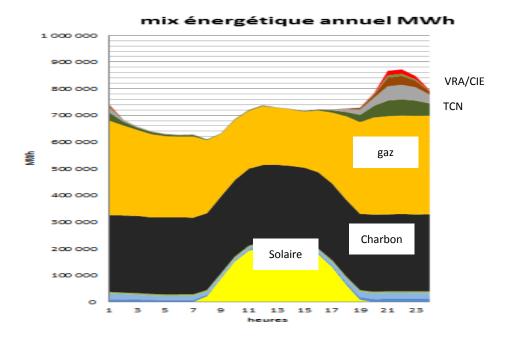


Figure 2 : Mix énergétique horaire annuel - cas B5 - Scénario Fort - 2035

Dans le cas où le coût d'investissement est de 2000 US\$/kWc moins de capacité PV est installée et les dates de mise en service sont retardées.

8.3 Hydroélectricité

Les centrales d'Adjarala et Nangbéto représentent un apport non négligeable mais limité dans le mix énergétique de l'espace CEB. Six autres sites potentiels dont le productible varie entre 31 et 144 GWh/an en année d'hydraulicité normale (650 GWh/an au total) ont été identifiés au Bénin. Par contre aucun site potentiel n'est mentionné dans le plan directeur du Togo.

Avec un potentiel équipable de 1 000 GWh l'hydroélectricité ne peut couvrir que 12% de la demande dans le meilleur des cas. Aucun des sites potentiels n'apparaît dans l'optimum économique en raison de la faiblesse du productible et des coûts d'investissements élevés, même si la tonne de CO2 est valorisée à 40 US\$ ou 60 US\$.

8.4 Importations

Importations du Nigéria

Les importations montrent dans presque tous les cas examinés une tendance à la baisse à partir de 2020. Le niveau atteint en 2035 est typiquement entre 500 et 800 GWh/an. Un niveau même plus faible est parfois atteint vers 2025 mais les importations remontent ensuite pour atteindre en 2035 le niveau mentionné. Si la demande suit le Scénario Haut et le gazoduc ne fournit que 10 MPC/jour, les importations peuvent même remonter au niveau actuel d'environ 1300 GWh/an.

Importations du Ghana/Côte d'Ivoire

Les importations deviennent très faibles à partir de 2020 ; typiquement à 10 - 40 GWh/an. Elles sont remplacées par la production des centrales à charbon ou des cycles combinés à gaz qui coûtent moins.

Importations du Niger

Les importations du Niger, produite par une centrale à charbon, font partie de la solution optimale dans tous les scénarios de demande et tous options d'approvisionnement. Les importations commencent en 2025. Le niveau est typiquement entre 1000 et 1500 GWh/an. Le prix de 0,10 - 0,11 US\$/kWh fait les importations une source attrayante.

8.5 Etude détaillée des résultats d'un cas à prédominance Gaz

8.5.1 Description du cas

Dans le cas étudié dans ce paragraphe la disponibilité du gaz en provenance du Nigéria est maximale : 200 MPC/jr; les prix de l'énergie primaire sont 11 US\$/MMBTU pour le gaz et 4 US\$/MMBTU pour le charbon. La tonne de CO2 est valorisée à 20 US\$. Le PV est à 1000 US\$/kW.

8.5.2 Développement de capacité sur l'espace CEB dans le scénario de croissance forte

Le tableau suivant présente le développement d'après l'optimum économique de la capacité sur l'espace CEB si la demande suit le scénario de croissance forte. Les tableaux correspondants pour les scénarios de croissance Moyen et Faible se trouvent dans l'Annexe 6.

Tableau 10 : Cas B5⁹. Scénario Haut. Capacité sur l'espace CEB (MW)

	2015	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	2035
Nangbeto (hydro)	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65
Adjarala (hydro)	0	0	0	0	0	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148
Biomasse	0	0	0	0	0	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
TAVCF (charbon)	0	0	0	0	0	0	0	0	125	250	250	250	250	250	250	250	250	500	625	625	875
CCGN (gaz)	0	0	0	0	0	300	300	300	300	300	300	450	600	750	900	900	1050	1050	1050	1200	1200
Contour Glob. (multi fuel)	102	102	102	102	102	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108
Maria Gleta (multi fuel)	0	0	0	119	119	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126
Import Nigéria (TCN)	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
Import Niger	0	0	0	0	0	0	0	0	0	0	100	200	200	200	200	200	200	200	200	200	200
Import Ghana (VRA/CIE)	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
Centrale CAI (Jet A1, gaz)	64	64	64	64	64	64	64	64	64	64	64	0	0	0	0	0	0	0	0	0	0
TAG CEB (gaz)	40	40	40	40	40	40	40	40	40	40	40	0	0	0	0	0	0	0	0	0	0
Centrales diesel SBEE	24	24	24	24	24	24	24	24	24	24	24	0	0	0	0	0	0	0	0	0	0
Centrales diesel location	80	80	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solaire PV	0	0	70	140	140	300	340	360	400	440	500	540	580	640	700	760	820	880	960	1040	1120
Total hors solaire	655	655	655	774	774	1176	1176	1176	1301	1426	1526	1648	1798	1948	2098	2098	2248	2498	2623	2773	3023
Total, solaire inclus	655	655	655	914	914	1476	1516	1536	1701	1866	2026	2188	2378	2588	2798	2858	3068	3378	3583	3813	4143
Pointe	506	558	607	661	720	784	863	950	1044	1148	1270	1394	1516	1649	1793	1947	2112	2289	2479	2682	2897
Réserve hors PV	149	97	48	113	54	392	313	226	257	278	256	254	282	299	305	151	136	209	144	91	126

⁹ La terminologie des cas est détaillée en Annexe 5

8.5.3 Analyse des résultats

8.5.3.1 Gaz et charbon

Au prix de 11 US\$/MMBTU, c'est le gaz qui est mobilisé en priorité. Le charbon n'apparaît dans l'optimum économique que vers 2030 dans les scénarios de croissance faible et modérée et en 2023 dans le scénario de croissance forte.

Dans les trois scénarios de demande les premiers cycles combinés arrivent dès 2020 pour satisfaire la limite du LOLP à 1%. La puissance totale et le rythme d'installation varient d'un scénario à l'autre. Au total, 1 200 MW de centrale au gaz sont installés en 2035 dans le scénario de croissance forte, 900 MW dans le scénario de croissance modérée et 300 MW dans le scénario de croissance faible. La limitation d'importation du gaz à 200 MPC/jour n'est pas atteinte dans les scénarios de croissance modérée et faible. Le complément est fait avec du charbon.

Dans le scénario de croissance forte, les besoins en gaz dépassent 200 MPC/jour à partir de 2031 les besoins s'élevant jusqu'à 300 MPC/jour au-delà. Deux options de fourniture de 300 MPC/jour sont possibles :

- 1) le Ghana exporte du gaz en installant des stations de compression sur son territoire. Le gazoduc existant permet alors de livrer 300 MPC/jour à l'ensemble Togo-Bénin.
- 2) du GNL est importé à partir d'une barge pour compléter les besoins en énergie primaire. De 0,2 à 1,1 milliards de m³ par an de GNL seront nécessaires entre 2032 et 2035 (environ 100MPC/jr). l'importation de GNL ne fait pas partie de la solution optimale en raison de ses coûts: 12,65 US\$/MMBTU plus 0,02 US\$/kWh pour la location de la barge de stockage et de regazéification.

8.5.3.2 Importations

La part des importations est réduite à moins de 20% sauf dans le cas du scénario de croissance modérée. Le parc de production comprend suffisamment de moyens de production moins onéreux que les importations.

8.5.3.3 Energies renouvelables

Hydro

Le développement de centrales hydroélectriques additionnelles n'entre pas dans l'optimum économique. Les coûts d'investissement de 3000 US\$/kW sont trop élevés par rapport au productible des centrales candidates.

PV

Tous les scénarios font appel massivement au solaire photovoltaïque pour autant que son coût soit inférieur ou égal à 1000 US\$/kWc. L'optimum correspond donc à la limite technique soit 50% de la pointe à midi.

8.5.3.4 Répartition des centrales installées

La question de la répartition des nouveaux moyens de production thermiques entre le Bénin et le Togo est délicate à traiter dans l'absolu. Idéalement on devrait parvenir en 2035 à une capacité de production dans chaque pays permettant de faire face à la demande en puissance et en énergie

locale. Toutefois le site d'installation des centrales au charbon dépendra de l'existence à proximité d'un port minéralier tandis que les cycles combinés au gaz devront être alimentés par gazoduc ou par une installation de regazéification de GNL. Dans tous les cas le réseau d'évacuation d'énergie devra être adapté et la localisation des sites est nécessaire pour l'étude du réseau de transport. On supposera à cette fin que les centrales à charbon seront installées au Bénin (bien que le plan directeur de la CEET en prévoie au Togo) et que les cycles combinés seront alternativement installés dans chaque pays.

L'Annexe 6 décrit la proposition du consultant à propos de la répartition des centrales par pays

8.5.3.5 Réserve de marge

La réserve de marge est la différence entre la capacité installée mobilisable à la demande et la pointe. Dans toutes les variantes étudiées la réserve de marge se situe entre +3% et +70% de la pointe. Elle permet de faire face à l'arrêt d'un groupe pour maintenance. De plus le système étant fortement interconnecté avec ses voisins, il est envisageable de faire appel plus fortement aux importations en cas de problème passager. Dans tous les cas la réserve de marge présente assure une LOLP inférieure à 1% signifiant que les lourds problèmes de délestages seront résolus.

8.6 Etude détaillée des résultats d'un cas à prédominance charbon

8.6.1 Description du cas

Dans le cas étudié dans ce paragraphe, toutes les options d'approvisionnement en énergie primaire sont ouvertes. Le charbon est disponible au prix de 5 US\$/MMBTU. Le prix des produits pétroliers et du gaz est basé sur une hypothèse à 100 US\$ par baril. Le gaz naturel vaut donc 14 US\$/MMBTU à partir de 2020. La tonne de CO2 est valorisée à 20 US\$. Le solaire PV et l'hydroélectricité peuvent être retenus si leur présence est justifiée économiquement au regard des autres options. Le solaire PV est subventionné et son coût d'installation est de 1000 US\$/kWc. Le gaz naturel issu du gazoduc WAPCO est disponible à hauteur de 200 MPC/jour.

8.6.2 Développement de capacité sur l'espace CEB dans le scénario de croissance forte

Le tableau suivant présente le développement des capacités de production sur l'espace CEB si la demande suit le scénario de croissance forte. Les tableaux correspondants pour les scénarios de croissance modérée et faible se trouvent dans l'Annexe 6.

Tableau 11 : Cas A6. Scénario Haut. Capacité sur l'espace CEB.

	2015	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
Nangbeto	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65
Adjarala	0	0	0	0	0	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148
Biomasse	0	0	0	0	0	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
TAVCF (Centrale charbon)	0	0	0	0	0	250	375	375	500	500	500	625	750	875	1000	1000	1000	1000	1000	1000	1000
CCGN (Cycle combiné)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	150	300	450	600	750	900
Import Niger	0	0	0	0	0	0	0	0	0	0	200	200	200	200	200	200	200	200	200	200	200
Import Nigéria (TCN)	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
Contour Global	102	102	102	102	102	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108
Maria Gleta Multi Fuel	0	0	0	119	119	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126
Centrale HFO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	102	102	102
Import Ghana/Côte d'Ivoire (VRA/CIE)	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
Centrale CAI	64	64	64	64	64	64	64	64	64	64	64	0	0	0	0	0	0	0	0	0	0
TAG CEB	40	40	40	40	40	40	40	40	40	40	40	0	0	0	0	0	0	0	0	0	0
Centrales Diesel SBEE	24	24	24	24	24	24	24	24	24	24	24	0	0	0	0	0	0	0	0	0	0
Centrales en location	80	80	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solaire PV	0	0	70	140	140	280	280	360	400	440	500	540	580	640	700	760	820	880	960	1040	1120
Total hors solaire	655	655	655	774	774	1126	1251	1251	1376	1376	1576	1573	1698	1823	1948	2098	2248	2398	2650	2800	2950
Total solaire inclus	655	655	725	914	914	1406	1531	1611	1776	1816	2076	2113	2278	2463	2648	2858	3068	3278	3610	3840	4070
Pointe (Bénin + Togo)	506	558	607	661	720	784	863	950	1044	1148	1270	1394	1516	1649	1793	1947	2112	2289	2479	2682	2897
Réserve hors PV	149	97	48	113	54	342	388	301	332	228	306	179	182	174	155	151	136	109	171	118	53

8.6.3 Analyse des résultats

8.6.3.1 Charbon

Si le prix du gaz est de 14 US\$/MMBTU, le parc de production à moindre coût économique est basé sur le charbon quel que soit le scénario de demande. Ce résultat reste valable si le charbon coûte 4 ou 5 US\$/MMBTU. La seule différence entre ces deux sous-variantes est que le rythme d'installation des centrales à charbon est plus soutenu si le prix du charbon est de 4 US\$/MMBTU. La part principale du parc de production est basée sur une production au charbon dans les scénarios de croissance faible et modérée. Le recours à une autre source d'énergie primaire n'est pas nécessaire dans les Scénarios Moyen et Faible parce que la limite de 1 000 MW de capacité charbon n'est pas atteinte dans ces scénarios. Elle est atteinte en 2029 dans le scénario de croissance forte. C'est la raison pour laquelle des centrales à gaz importé à partir du gazoduc du WAPCO sont installées à partir de 2030.

8.6.3.2 Gaz

Seul le Scénario de croissance forte nécessite des importations de gaz pour satisfaire la demande. Les besoins de gaz pour alimenter des cycles combinés se chiffrent au maximum à environ 150 MPC/jour en 2035.

8.6.3.3 Autres sources

Dans tous les cas le solaire fait partie du parc optimal de production s'il ne coûte que 1 000 US\$/kW. Dans tous les cas, la limite technique maximale (50% de la pointe à midi) correspond à l'optimum économique. Aucune autre ressource hydro que Nangbéto et Adjarala n'est retenue.

8.6.3.4 Répartition des moyens de production

Les mêmes hypothèses de répartition que dans le cas précédent sont appliquées ici .Les centrales au charbon sont installées au Bénin, et une répartition équilibrée des éventuelles centrales au gaz est proposée afin de minimiser les transports d'énergie électrique. Cependant comme les résultats montrent une prédominance du charbon (installé au Bénin) cela conduit à un fort déséquilibre de production entre les deux pays, le Bénin exportant vers le Togo. Voir Annexe 6 pour des détails.

8.6.3.5 Réserve de marge

En comptant les importations, la capacité installée au Bénin sera toujours supérieure à la pointe du pays. Au Togo par contre l'offre n'est supérieure à la demande que de 2015 à 2017 et de 2020 à 2031, cette situation s'explique par l'hypothèse faite qu'il n'y aura qu'un seul port minéralier sur l'espace CEB et que celui-ci se trouvera au Bénin. Sur l'espace CEB par contre il y a bien toujours suffisamment de moyens de production pour faire face à la demande : la réserve de marge est toujours supérieure à 100 MW. La LOLP est toujours inférieure à 1% ce qui montre que la demande est bien satisfaite et que les problèmes de délestages sont résolus.

8.7 Autres cas simulés

8.7.1 PV au coût de 2 000 US\$/kWc

Au coût de 1 000 US\$/kWc, le solaire PV participe à l'optimum économique dans tous les scénarios. Si le coût est de 2000 US\$/kWc, le solaire PV n'y figure que si la demande est assez forte, ce qui se traduit par un décalage des dates de mise en service de solaire PV supplémentaire. Au final moins de capacité PV est installée. Les différences sont présentées ci-dessous dans deux études de cas. 140 MWc sont supposés installés au Bénin dès fin 2019 dans tous les cas examinés. La description suivante porte sur la capacité additionnelle installée.

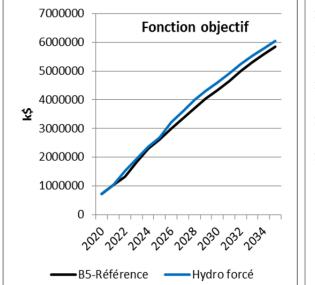
Si le solaire PV coûte 1 000 US\$/kWc, au total 380 MWc sont installés entre 2020 et 2035 dans le scénario de croissance faible, 600 MWc dans le scénario de croissance modérée et 980 MWc dans le scénario de croissance forte ; quel que soit le cas des prix des combustible examiné. Dans les scénarios de croissance modérée et forte, la capacité solaire PV augmente chaque année.

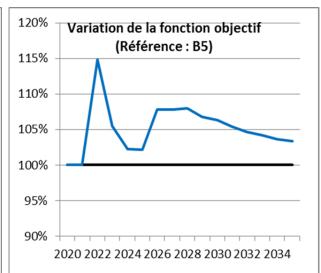
Premier cas (200 MPC/jour, gaz 11 US\$/MMBTU, charbon 4 US\$/MMBTU)

Si le PV coûte 2 000 US\$/kWc, le développement de capacité additionnelle PV se présente comme suit :

- Scénario de croissance faible : 40 MWc additionnels en 2035.
- Scénario de croissance modérée : 20 MWc ajoutés chaque année à partir de 2027 soit au total 140 MWc additionnels en 2035.
- Scénario de croissance forte: 40 MWc ajoutés chaque année à partir de 2026 soit au total 500 MWc additionnels en 2035.

Deuxième cas: (200 MPC/jour, gaz 14 US\$/MMBTU à partir de 2020, charbon 4 US\$/MMBTU)


Si le solaire PV coûte 1 000 US\$/kWc, le programme d'installation de capacité additionnelle est identique à celui du premier cas étudié. Si le solaire PV coûte 2 000 US\$/kWc, le développement de capacité additionnelle PV se présente comme suit :


- Scénario de croissance faible : pas de capacité additionnelle.
- Scénario de croissance modérée : 40 MWc ajoutés chaque année à partir de 2032 soit au total 140 MWc additionnels en 2035.
- Scénario de croissance forte : 40 MWc ajoutés chaque année à partir de 2028 soit au total 540 MWc additionnels en 2035.

8.7.2 Hydroélectricité volontariste

En cas de la mise en service des six centrales hydro candidates entre 2022 et 2035, les coûts totaux actualisés¹⁰ ne sont pas réduits par rapport aux cas étudiés plus haut si le coût d'investissement est de 3000 US\$/kW. C'est pourquoi l'optimisation économique écarte cette solution. Les graphiques ciaprès présentent ces coûts, en valeur absolue et relative par rapport à un cas de référence.

-B5 -

hydro forcé

Figure 3: Variation de la fonction objectif (Cas B5, Scénario Fort)

8.7.3 Coût du GNL

Dans les cas présentés plus haut, le prix du GNL est 15% plus élevé que le prix de référence du gaz naturel importé par le gazoduc. Un surcout de 20 US\$/MWh est ajouté pour prendre en compte le prix de location d'une barge pour le stockage et la regazéification du GNL; voir Annexe 1.

Dans les cas examinés, les centrales utilisant le gaz produit à partir de GNL font partie de la solution optimale si trois conditions sont satisfaites¹¹:

- (a) le prix du gaz est de 11 US\$/MMBTU et le prix du GNL donc de 12,65 US\$/MMBTU plus 0,02 US\$/kWh pour la location d'une barge pour le stockage et la regazéification ;
- (b) la disponibilité du gaz du gazoduc est de 10 ou 50 MPC/jour ;
- (c) la demande suit le scénario de croissance forte ou modérée.

Les capacités de production supplémentaires installées sont des centrales à charbon en grande majorité.

Il se peut que le coût du GNL ne soit pas lié au prix du gaz naturel contrairement à ce qui est pris comme hypothèse de référence (cf supra) et que le GNL soit moins coûteux. Les calculs montrent que si le coût du GNL est de 9,20 US\$/MMBTU plus la surcharge de 0,02 US\$/kWh, ce combustible

¹⁰ Le coût total actualisé est appelé « fonction objectif » car il est la cible de l'optimisation économique

¹¹ Le GNL fait aussi partie du parc de production optimal via des centrales multi fuel pour le Scenario Fort, cas A1, A2, A3 et A4. Leur contribution est cependant marginale.

est utilisé en base pour la génération d'électricité dans le scénario de croissance forte si la disponibilité du gaz dans le gazoduc est de 10 MPC/jour. Le charbon complète le parc de production à partir de 2026. La tendance est la même pour les scénarios de croissance modérée et faible. Dans ces deux cas, la date d'apparition du charbon est retardée. Les tendances sont identiques si la disponibilité du gaz dans le gazoduc est de 50 MPC/jour.

8.7.4 Valorisation des coûts des émissions de CO2

Les émissions de gaz à effet de serre sont devenues une des problématiques majeures à prendre en compte dans la génération d'électricité. Si le parc de production de l'espace de la CEB est principalement basé sur des centrales thermiques au charbon, les émissions de CO2 du Bénin et du Togo seront élevées. Les coûts de ces émissions peuvent changer l'optimum économique mais n'ont pas d'impact sur les finances réelles de la CEB tant qu'un marché du carbone n'est pas implanté au Afrique.

Les études faite ont pris en compte les coûts en les valorisant à 20 US\$/tCO2. Le tableau suivant présente les grandes lignes des changements induits par une valorisation portée à 40 US\$/tCO2. Dans tous les cas examinés, le gazoduc est supposé fournir jusqu'à 200 MPC/jour. Si la disponibilité du gaz est seulement de 10 ou de 50 MPC/jour, l'impact du coût des émissions risque de ne pas apparaître parce que la disponibilité limitée du gaz implique nécessairement l'installation des centrales à charbon.

Tableau 12: Impact de la variation du prix du CO2 sur le parc de productio	Tableau 12	: Impact de la	a variation du	prix du CO2 sur	le parc de production
--	------------	----------------	----------------	-----------------	-----------------------

Cas	Coût gaz*/charbon	Scénario de	Impact si coût est de 40 US\$/tCO2
	(US\$/MMBTU)	Demande	au lieu de 20 US\$/tCO2
A5	14 / 4	Fort-Moyen-Faible	Parc de production globalement inchangé
A6	14 / 5	Fort	Le charbon arrive aussi dès 2020, mais son développement est plus lent. La capacité finale est inchangée (1000 MW). Le gaz arrive plus tôt : dès 2020. En 2035, il y a 900 MW de CCGN.
A6	14 / 5	Moyen	750 MW de charbon en 2035 au lieu de 1000 MW si 20 US\$/tCO2. Gaz: 150 MW CCGN en 2020 augmentant à 300 MW en 2035. Pas de CCGN si 20 \$/tonne.
A6	14 / 5	Faible	Parc de production globalement inchangé
B5	11 / 4	Fort	Le charbon apparait en 2033 au lieu de 2023 ; complété par du HFO et des cycles combinés au GNL (2032).
B5	11 / 4	Moyen	Uniquement des CCGN (gazoduc). Pas de charbon (si 20 US\$/tCO2 : 125 MW de charbon à partir de 2031).
B5	11 / 4	Faible	Uniquement des CCGN (gazoduc). Pas de charbon (si 20 US\$/tCO2: 125 MW de charbon en 2032 et 250 MW à partir de 2034).

^{*} Si coût du gaz 11 US\$/MMBTU constant sur la période 2015 – 2035. Si coût du gaz 14 US\$/MMBTU : coût à partir de 2020. Avant 11 US\$/MMBTU entre 2015 et 2018 et 12,6 US\$/MMBTU en 2019.

8.7.5 Comparaison des coûts des solutions étudiées

L'optimisation du parc de production a été réalisée en minimisant les coûts totaux du système. La comparaison des coûts survenant à des années différentes a été effectuée en actualisant ces coûts à un taux de 10%. Les calculs ont été faits pour tous les scenarios de demande, à titre d'illustration les graphiques suivant comparent ces coûts dans les principaux cas du Scénario Fort. Le cas B5 étant le cas dont les coûts sont minimaux, il a été pris comme cas de référence.

Figure 4 : Coût total actualisé (milliers de US\$)

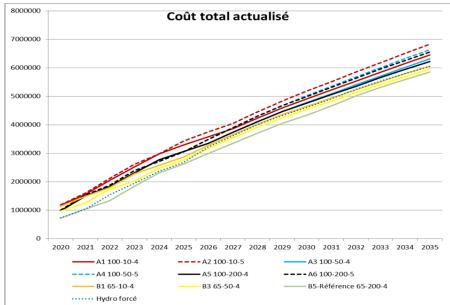
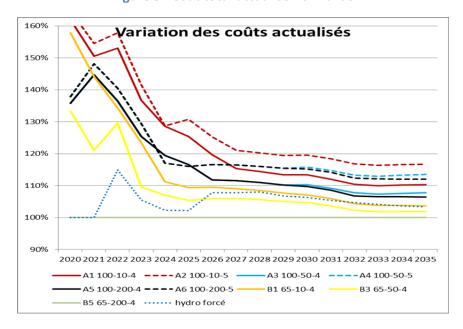



Figure 5 : Coût total actualisé normalisé

Le cas de référence est le cas B5 où le gaz du gazoduc, l'énergie primaire la moins chère est disponible en abondance. Les graphiques ci-dessus illustrent bien l'impact du coût des énergies primaires sur les coûts totaux du système.

Annexes

- ANNEXE 1 : Prix des combustibles et des centrales PV
- ANNEXE 2 : Logiciel de simulation 2015-2019
- ANNEXE 3 : Résultats détaillés pour l'année 2017
- ANNEXE 4 : Hypothèses pour la période 2020 2035
- ANNEXE 5 : Capacité installée et importable sur l'espace CEB dans la période 2015 2035
- ANNEXE 6 : Résultats détaillés d'un cas à prédominance de gaz et d'un cas à prédominance de charbon

ANNEXE 1


Annexe 1 - Prix des combustibles et des centrales PV

Les prix du gaz naturel, du GNL et, dans une moindre mesure, du charbon ont été liés au prix du pétrole brut. Cette annexe présente d'abord les hypothèses concernant le futur développement du prix du pétrole brut et ensuite les hypothèses concernant le prix du gaz naturel, du GNL et du charbon. De plus, l'annexe discute aussi les prix des grandes centrales PV.

Les prix prévisionnels annoncés dans cette annexe sont utilisés dans le calcul du plan de production à moindre coût économique. Ils n'incluent pas les coûts économiques des émissions du gaz à effet de serre. Ces derniers sont ajoutés dans le calcul économique.

A1.1. Prix du pétrole brut

Le Graphique A1.1 montre l'évolution du prix du pétrole brut (Brent) entre mai 1987 et mai 2015. Entre janvier 2011 et septembre 2014, le prix était relativement stable, variant entre 95 et 125 US\$/baril (moyenne mensuelle). En octobre 2014, s'est amorcée une forte chute des prix jusqu'à 48 US\$/baril en janvier 2015. Depuis février 2015, la moyenne mensuelle a varié entre 56 et 64 US\$/baril. La forte augmentation de la production du pétrole brut aux Etats-Unis (fracking) est considérée comme la raison principale de cette baisse des prix.

Graphique A1.1: Prix du Brent en US\$ par baril dans la période mai 1987 - mai 2015

Source: http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RBRTE&f=M

<u>Fichier:</u> Brent Monthly May 87 May 2015.xls

L'hypothèse du maintien du prix au niveau actuel pendant une longue durée est soutenue par plusieurs arguments contextuels: capacité de production supérieure à la demande, augmentation de l'utilisation des énergies renouvelables, levée des sanctions envers l'Iran, etc. D'autres arguments supportent au contraire le retour du prix au niveau d'environ 100 US\$/baril dans l'avenir proche :

arrêt de beaucoup de sites de fracking, tensions géopolitiques, augmentation des coûts de production, etc. L'incertitude concernant le futur développement est bien interprétée dans les scénarios de l'AIE; voir le Graphique A1.2.

History 2013 Projections 300 250 High Oil Price 200 150 Reference 100 Low Oil Price 50 2005 2013 2020 2025 2030 2035 2040

Graphique A1.2 : Scénarios du prix du Brent (2013 US\$/baril)

Source: US Energy Information Administration (EIA), Annual Energy Outlook 2015, Avril 2015, page 5. <u>Fichier:</u> EIA Outlook 2015.pdf (p.5).

La présente étude examine deux cas (2015 US\$/baril) :

- a) Le prix reste au niveau actuel de 50 65 US\$/baril jusqu'en 2035.
- b) Le prix reste au niveau actuel en 2016. Il augmente ensuite pour atteindre 100 US\$/baril en 2020 et reste à ce niveau jusqu'en 2035.

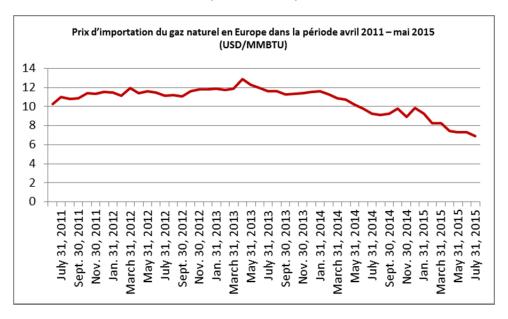
A1.2. Prix du gaz naturel

Jusqu'à fin 2014, le prix du gaz fourni par WAPCO était de 9,5 US\$/MMBTU. Depuis 2015, ce prix a été révisé à 11 US\$/MMBTU¹². Il devrait rester à ce niveau jusqu'à fin 2018.

Le prix de 11 US\$/MMBTU est nettement plus élevé que le prix actuel du gaz naturel en Europe qui est d'environ 7,3 US\$/MMBTU. Le Graphique A1.3 montre l'évolution du prix du gaz en Europe entre avril 2011 et mai 2015¹³. La grande différence entre le prix de WAPCO et le prix en Europe s'explique par le déséquilibre différent de l'offre et de la demande dans les deux bassins géographiques : en Afrique de l'Ouest, la demande de gaz naturel dépasse offre tandis que c'est l'inverse en Europe.

La comparaison des évolutions des prix du gaz en Europe et du prix du Brent indique que le prix du gaz est influencé par le prix du Brent. Mais cette influence ne se traduit pas par un rapport de

¹² Le consultant a été informé que le prix est depuis janvier 2015 entre 10 et 11 US\$ par MMBTU.


¹³ Source: https://ycharts.com/indicators/europe natural gas price.

proportionnalité¹⁴. Entre septembre 2014 et mai 2015, par exemple, le prix du Brent a baissé de 34% tandis que le prix du gaz a « seulement » baissé de 21%.

Deux scénarios d'évolution du prix du gaz ont été retenus pour les simulations du mix énergétique : (i) le prix du gaz obtenu de WAPCO reste au niveau de 11 US\$/MMBTU si le prix du Brent reste au niveau actuel de 50 - 65 US\$/baril, (ii) Si le prix du Brent augmente jusqu'à à 100 US\$/baril (augmentation de 54% - 82% par rapport au prix actuel) en 2020, le prix du gaz reste au niveau de 11 US\$/MMBTU jusqu'en 2019, s'élève à 14 US\$/MMBTU (augmentation de 27%) en 2020 et reste ensuite à ce niveau.

Graphique A1.3 : Prix d'importation du gaz naturel en Europe dans la période avril 2011 – mai 2015 (US\$/MMBTU)

Source: https://ycharts.com/indicators/europe_natural_gas_price

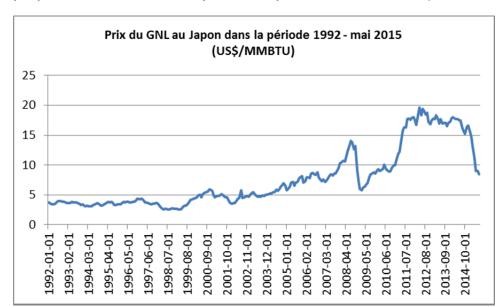
Fichier: Brent Monthly May 87 May 2015.xls

A1.3. Prix du GNL, du stockage et de la regazéification

A1.3.1 Prix du GNL

En 2013, 17 pays ont exporté du GNL pour un volume total de 238,6 millions de tonnes (MT). Parmi ces 17 pays, cinq pays sont africains: Le Nigéria a exporté 16,9 MT, l'Algérie 10,9, la Guinée Equatoriale 3,9 MT, l'Egypte 2,8 MT et l'Angola 0,3 MT¹⁵. Aucun pays en Afrique n'a importé du GNL en 2013¹⁶. La proposition d'un projet pour le Bénin, le Togo et le Ghana faite par la société Gasol est présentée section A1.2 de cette annexe.

¹⁴ La corrélation entre le prix du Brent et le prix du gaz était entre avril 2011 et mai 2015 de 0,74.


¹⁵ Source: International Gas Union, World LNG Report — 2014 Edition, p.8. Voir: http://www.igu.org/sites/default/files/node-page-field-file/IGU%20-%20World%20LNG%20Report%20-%202014%20Edition.pdf

Il y a des projets d'importation de GNL. Un projet pour le Ghana est décrit dans l'article http://uk.reuters.com/article/2014/08/03/ghana-lng-terminal-idUKL6N0Q80UL20140803

Le Japon a été en 2013 le plus grand importateur de GNL avec 87,8 MT. Avant l'incident de Fukushima qui conduisit à l'arrêt des centrales nucléaires et à une forte augmentation des importations de GNL, le Japon payait un prix pour le GNL 10% à 25% plus élevé que le prix d'importation de gaz naturel en Europe. Depuis l'incident de Fukushima, ce différentiel de prix a atteint 45% à 60%. En avril 2015, par exemple, le Japon a payé 11,9 US\$/MMBTU pour le GNL alors qu'en Europe, le prix du gaz naturel était de 7,4 US\$/MMBTU.

Les calculs faits dans la présente étude supposent que l'importation de GNL coûte 15% de plus que le gaz naturel fourni par WAPCo. Le prix est donc de 12,65 US\$/MMBTU quand le prix du gaz est de 11 US\$/MMBTU (prix du Brent reste au niveau actuel de 50 - 65 US\$ /baril) et de 16,10 US\$/MMBTU quand le prix du gaz est de 14 US\$/MMBTU (prix du Brent est de 100 US\$/baril).

Graphique A1.4 : Prix du GNL au Japon dans la période 1992 - mai 2015 (US\$/MMBTU)

Source: https://www.quandl.com/data/ODA/PNGASJP_USD-Japan-Natural-Gas-Price

Fichier: Japan LNG Price 1-1992 Until 5-2015.xls

A1.3.2 Prix de location d'une barge pour le stockage et la regazéification

Fin 2013, la capacité totale des barges de stockage et de regazéification du GNL était de 44,3 millions de tonnes. Les coûts de regazéification se montaient en 2013 à environ 145 US\$ par tonne. Depuis ces prix ont tendance à augmenter¹⁷.

La capacité de la barge dont le Bénin et le Togo auraient besoin dépend de la production attendue des centrales fonctionnant au gaz naturel produit à partir du GNL. La production de telles centrales (cycles combinés) atteint au maximum 15,4 TWh/an dans les scénarios examinés pour la production en 2035 dans le scénario de croissance forte, si le gazoduc ne fournit que 10 MPC/jour, s'il n'y a pas de centrale à charbon et si les importations du Nigéria, du Ghana et du Niger sont faibles. Pour produire 15,4 TWh/an, la capacité de la barge devrait être de 3,3 milliards de m³ par an soit 2,4

¹⁷ Source: International Gas Union, World LNG Report – 2014 Edition, pages 6 et 37. Le rapport ne dit pas expressément que le coût de 145 US\$/tonne inclut aussi les autres coûts de la barge (stockage, entretien, etc.) mais le texte donne l'impression que ces coûts sont inclus.

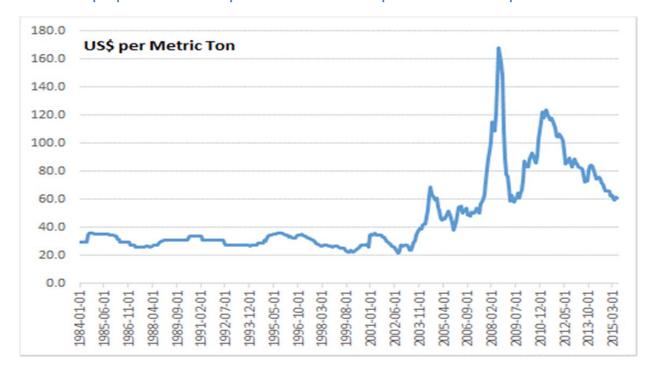
millions tonnes de GNL par an. Le prix de location pour une telle barge est estimé à 400 millions de US\$ par an s'il s'agit d'une barge neuve ce qui conduit à un coût unitaire de regazéification de 166 US\$ par tonne et environ 2,6 US cents par kWh (≈ 3,8 US\$/MMBTU¹8) pour une production de 15,4 TWh. Ce coût unitaire est nettement plus élevé au début de l'exploitation quand la production pour le Togo et le Bénin à partir du GNL est notablement plus faible. Dans le scénario de croissance forte, la production initiale est de l'ordre de 2,5 TWh/an. Dans ce cas, le prix de location de 400 millions de US\$ par an se traduit par un coût de regazéification 16 US cents par kWh. Le calcul correspondant pour le scénario de croissance modérée donne un coût initial de 19 US cents par kWh et pour le scénario de croissance faible de 12 US cents par kWh¹9.

Le coût initial est très élevé parce que le calcul est basé sur l'hypothèse qu'on installe une barge dont la capacité dépasse de beaucoup le besoin initial. Installer d'abord une « petite » barge et plus tard une autre barge quand la capacité de la première ne suffit plus semble donc être la stratégie à suivre pour réduire les coûts. Cette solution a cependant des limites parce que la barge doit permettre le stockage du GNL entre les livraisons. Ces intervalles risquent d'atteindre plusieurs mois au début de l'exploitation.

Une autre solution pour réduire les coûts de la barge consiste à de louer une barge d'occasion, en fait un méthanier déclassé et réaménagé mais avec une capacité dépassant largement les seuls besoins du Bénin et du Togo.

Si la barge ne satisfait que la demande du Togo et du Bénin, il n'existe pas de solution qui assure que la solution GNL soit faisable au plan économique et financier. Il faudrait que la barge reçoive aussi du GNL destiné (i) à produire de l'électricité à exporter ou (ii) à exporter du gaz naturel injecté dans le gazoduc après regazéification vers le Ghana ou le Nigéria. A cette condition une barge d'occasion, pourrait permettre de réduire le coût de regazéification à 2,0 US cents par kWh ce qui est le coût utilisé dans la présente étude.

⁻


¹⁸ Calcul fait avec un rendement de la centrale (cycle combiné é à gaz) de 7247 GJ/GWh et avec 1,0545 GJ/MMBTU. Le coût de 3,8 US\$/MMBTU est d'environ dix fois plus élevé que le coût mentionné dans le Plan Directeur du WAPP. Tome 2 du Rapport Final Provisoire (Septembre 2011) mentionne sur page 14 un coût entre 0,3 et 0,5 US\$/MMBTU pour regazéification et stockage.

¹⁹ La capacité des barges qui permettent de satisfaire la demande maximale dans ces scénarios est plus faible que celle des barges envisagées pour le Scénario Fort. Dans le Scénario Moyen, la production maximale des « centrales GNL » est de 9,3 TWh/an et la capacité de la barge de 1,46 million de tonnes GNL. Scénario Faible : production maximale des « centrales GNL » 6 TWh/an ; capacité de la barge 0,95 millions de tonnes GNL. En faisant le calcul avec des coûts de location de 166 US\$/tonne/an, le coût annuel de location est de 242 millions de US\$ (Scénario Moyen) et de 158 million de US\$ respectivement (Scénario Faible). La production initiale est dans les deux scénarios d'environ 1,3 TWh/an ce qui se traduit en coûts de 19 US cents par kWh (Scénario Moyen) et de 12 US cents par kWh (Scénario Faible).

A1.4 Prix du charbon

Le charbon destiné aux éventuelles centrales sera probablement importé d'Afrique du Sud. Le Graphique A1.5 montre l'évolution du prix du charbon exporté d'Afrique du Sud entre janvier 1984 et juin 2015. Ce prix a varié durant cette période entre 21,3 US\$/tonne (août 2002) et 167,8 US\$/tonne (juillet 2008), le prix moyen étant de 47,1 US\$/tonne (moyenne non pondérée).

Graphique A1.5: Prix d'exportation du charbon de provenance de l'Afrique du Sud

Source: http://www.indexmundi.com/commodities/?commodity=coal-south-african

Fichier: South African Coal Export Price 84 – 15.xls

Le prix actuel se monte à environ 61 US\$/tonne soit 2,6 US\$/MMBTU avec un pouvoir calorifique de $24,7 \, \text{MJ/kg}^{20}$ et $0,000947 \, \text{MMBTU/MJ}$.

Le prix de transport de Richards Bay à Rotterdam est actuellement d'environ 9 US\$/tonne pour le transport de 150 000 tonnes et de 11 - 12 US\$/tonne pour le transport de 75 000 tonnes²¹.

En supposant que le prix de transport de Richards Bay à Cotonou soit de 12 US\$/tonne (≈ 0,5 US\$/MMBTU) et en ajoutant 5 US\$/tonne pour le coût de déchargement et de manutention au port d'importation²² (≈ 0,2 US\$/MMBTU), le prix total d'importation serait actuellement d'environ 3,3 US\$/MMBTU.

Les hypothèses de calculs de 4,0 et 5,0 US\$/MMBTU s'expliquent comme suit :

Source: http://www.coalage.com/features/2696-coal-remains-a-vital-link-for-south-african-economy.html#.Va-fi7kVhjo (date: 26 avril 2013). Le charbon exporté est de charbon bitumineux dont la teneur en soufre est entre 0,6 et 0,7% et la teneur en cendres < 15%.

http://me-freight.com/news/open/513A744A37F40E3DC2257CBD00594E1CQ=Panamax-and-Capesize-freight-market-Indian-Ocean

Source: http://www.uni-potsdam.de/fileadmin/projects/wipo/RESOURCES/Kick-Off Workshop/Bayer.pdf

Une centrale à charbon ne sera pas disponible avant 2020. Si le prix du pétrole brut augmente du niveau actuel (50 à65 US\$/baril) à 100 US\$/baril en 2020, le prix du charbon sera probablement aussi plus élevé. Dans la période entre mai 1987 et mai 2015, le coefficient de corrélation entre le prix du Brent et le prix du charbon exporté par l'Afrique du Sud était de 0,91. Cela suggère que le prix d'exportation du charbon serait en 2020 d'environ 4,0 US\$/MMBTU si le prix du Brent augmente jusqu'à 100 US\$/baril. Il se peut cependant que la corrélation soit plus faible dans le futur et le que prix d'exportation soit plutôt de 3,5 US\$/MMBTU si le prix du Brent est de 100 US\$/baril. Le prix actuel de transport de 0,5 US\$/MMBTU est faible parce la capacité de transport mondiale est excédentaire. Cela peut changer dans le futur et c'est pourquoi il semble raisonnable de prendre un prix de transport de 1,0 US\$/MMBTU. Au total le prix de livraison CIF à Cotonou ou à Lomé se situerait entre 4,0 et 5,0 US\$/MMBTU (au prix de 2015).

La fourchette de prix de 4,0 à 5,0 US\$/MMBTU est aussi utilisée si le prix du Brent est supposé rester au niveau actuel (50 – 65 US\$/baril) pour tenir compte des évolutions possibles du prix de transport jusqu'en 2020 et de la baisse tendancielle de la qualité énergétique du charbon²³.

A1.5. Prix des centrales PV

Le Graphique A1.6 montre que le prix moyen par Wc des systèmes PV installés en Allemagne a chuté de 4,11 Euros/Wc en janvier 2009 à 1,24 Euros/Wc à la fin de 2014. Il s'agit du prix moyen des systèmes jusqu'à 100 kWc.

Graphique A1.6 : Prix moyens par Wc des systèmes PV jusqu'à 100 kWc en Allemagne entre janvier 2009 et décembre 2014 (prix hors taxes ; prix incluent les coûts d'installation)

Source: http://www.photovoltaik-guide.de/solarmarkt

Fichier: PV RFA Jan 09 Déc 14.xls

_

²³ La source http://iis-db.stanford.edu/pubs/23082/WP 100 Eberhard Future of South African Coal.pdf qui date de janvier 2011 mentionne sur page 3 que le pouvoir calorifique était d'environ 26 MJ/kg (6200 kcal/kg) mais que les exportations comprenaient récemment du charbon dont la valeur était de 24,7 MJ/kg (5900 kcal/kg). Des commentaires sur page 26 de l'article laissent attendre que la qualité du charbon exporté puisse continuer à diminuer.

Les prix correspondant des grands systèmes dont la capacité installée dépasse 1 MW - ces systèmes sont appelés en anglais « utility-scale projects » - sont certainement plus faibles. En 2005, une centrale de 5 MWc installée en Allemagne coûtait 4,6 Euro/Wc²⁴. A cette époque, les petits systèmes coûtaient plus de 5,00 Euro/Wc. Aux Etats-Unis, le prix moyen des grandes centrales (≥ 5 MWc) était en 2013 d'environ 20% plus faible que le prix des systèmes commerciaux (> 100 kWc)²⁵.

Les simulations du mix énergétique utilisent des prix hors taxes de 1,00 ou 2,00 US\$/Wc pour les grandes centrales PV. Ces prix sont basés sur les hypothèses suivantes :

- Une grande partie de la capacité installée avant 2020 sera subventionnée par les bailleurs de fonds. Il s'agit des centrales que le MCC envisage d'installer à Natitingou (5 MWc), Djougou (10 MWc), Parakou (15 MWc) et Bohicon (15 MWc) - les coûts d'investissement de ces centrales seront subventionnés à 100% par le MCC – et des centrales que les sociétés Sobes (20 MWc), Solare Park Arcos (20 MWc), Greenhart Power Africa (25 MWc) et d'autres (30 MWc) envisagent d'installer.
- La baisse des prix des systèmes PV va certainement continuer mais à un rythme plus lent. A partir de 2020, le prix des grandes centrales pourrait en Europe être inférieur à 1,00 US\$/Wc (au prix de 2015 hors taxes; taux de change 1,10 US\$/Euro)²⁶. Il faut s'attendre à ce que le prix au Bénin soit plus élevé. Pour que le prix soit de 1,00 US\$/Wc au Bénin à partir de 2020, des subventions par les bailleurs de fonds pourraient être nécessaires. Un prix de 2,00 US\$/Wc pourrait être obtenu sans subventions.

²⁴ Source: http://www.sonnenfluesterer.de/2014/01/photovoltaikpreise-fuer-mw-anlagen/

²⁵ Source : NREL, Photovoltaic System Pricing Trends, September 22, 2014, p.4.

²⁶ Une projection de JISEA (Joint Institute for Strategic Energy Analysis) laisse attendre que les prix aux Etats-Unis, en Allemagne et en Chine soient en 2025 presque la moitié des prix en 2014. Voir JISEA, Renewable Electricity: Insights for the Coming Decade, February 2015, p.vi.

A1.6 Projet GNL de la société GASOL

Source: http://www.gasolplc.com/fr/nos-activit%C3%A9s/import-de-gnl-au-b%C3%A9nin.aspx

Le GNL sera regazéifié dans un bassin de GNL nouvellement construit et qui sera situé près de l'entrée du port de Cotonou. Le GNL sera injecté dans le GAO via une canalisation latérale sous-marine nouvellement construite. Le GAO transportera le gaz naturel aux consommateurs au Bénin, au Togo et au Ghana.

Project	Projet d'approvisionnement en gaz naturel liquéfié (GNL)
Acheteurs	Gasol a négocié deux accords de concession avec les services publics de l'Etat du Bénin, du Togo et du Ghana : la CEB et la VRA Le gaz produit par le projet sera vendu à centrales électriques et industrielles du Bénin, du Togo et du Ghana en vertu d'accords sur le long terme de vente de gaz.
Avantages du Projet	Ce projet vise à établir le premier approvisionnement suffisant et fiable de gaz naturel pour le Bénin et le Togo et vise à permettre une augmentation significative de la fourniture de gaz disponible pour la consommation au Ghana. Le gaz va remplacer les combustibles liquides (diesel, mazout lourd, pétrole brut léger) dans la production d'énergie et dans les applications industrielles, réduisant ainsi substantiellement les coûts de production. Le gaz naturel est un carburant plus propre, moins onéreux que les autres combustibles liquides, et offre des avantages économiques et environnementaux importants aux trois pays.
Statut	Les négociations avec le gouvernement du Bénin à l'égard de la concession pour le bassin de GNL se déroulent de manière satisfaisante. De même, les négociations avec la Société du Gazoduc Ouest Africain (WAPCO) et les propriétaires du GAO en ce qui concerne l'interconnexion avec le GAO et avec les prêteurs potentiels pour garantir les engagements de financement nécessaires à la mise en œuvre du projet sont sur de bonnes voix. Gasol entend mener ce projet à la clôture financière le plus rapidement possible.
UFS & Barge de Regazéification /USRF	Gasol prévoit d'amarrer une USF/USRF dans le nouveau bassin. La USF/USRF sera réapprovisionnée sur une base régulière par les transporteurs de GNL via les transferts de navire à navire dans le bassin protégé.
GAO	L'accès à la GAO est une partie importante de la stratégie du projet. Le GNL regazéifié sera injecté dans le GAO via un nouveau gazoduc sous-marin qui reliera le bassin de GNL au GAO, qui se trouve à environ 15 kilomètres des côtes. Gasol a déposé sa candidature auprés des actionnaires du GAO afin de devenir un expéditeur de gaz conformément à la politique de libre accès du gazoduc et est actuellement en négociations avec WAPCo pour finaliser les questions commerciales et techniques concernant la connexion du projet au gazoduc et la capacité qui sera réservée pour l'utilisation du projet.

Annexe 2 - LOGICIEL DE SIMULATION 2015-2019

A2.1 Modélisation de la demande

La CEB dispose d'une courbe de demande horaire de référence pour l'année 2012. Celle-ci est ensuite extrapolée aux années suivantes en fonction des énergies annuelles et de puissance maximale telles que définies au paragraphe

La courbe de référence une fois connue, les courbes prévisionnelles sont obtenues par la mise en œuvre d'une application affine utilisant les formules suivantes :

$$P_t = E_n/8760 + (1-a)(p_r E_n/E_r - E_n/8760)$$

avec $a = 1 - (P_n - E_n/8760)/(P_r E_n/E_6 - E_n/8760)$

avec P_n, P_r les pointes de l'année n et de l'année de référence en MW

E_n, E_r les énergies annuelles de l'année n et de l'année de référence en MWh

A2.2 Modélisation de la production hydroélectrique

La production horaire de la centrale de Nangbeto est connue pour les années 2010 à 2013. L'année 2010 est représentative d'une année d'hydraulicité moyenne et l'année 2011 est représentative d'une année sèche. Ces données permettent de calculer les énergies journalières produites et les puissances maximales journalières disponibles.

A2.3 Modélisation du mix énergétique

Ce module est le composant central du logiciel pour lequel les autres modules sont des composants d'entrée ou de sortie.

Les types de centrales thermiques utilisées sont codifiées comme il suit :

DFL groupes Diesel fonctionnant au fioul lourd
 DDO groupes Diesel fonctionnant au fioul léger
 TAGGN turbine à gaz fonctionnant au gaz naturel
 CCGN cycle combiné fonctionnant au gaz naturel
 TAGDO turbine à gaz fonctionnant au fioul léger
 CCDO: cycle combiné fonctionnant au fioul léger
 TAVC turbine à vapeur fonctionnant au charbon

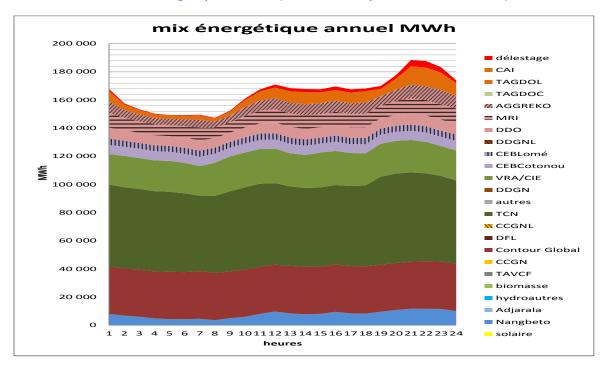
Le module utilise la feuille de calcul de la demande CEB issue du module demande. Il calcule la production solaire placée en la limitant au taux instantané admis de la demande (30%-50% en principe mais réglable). Il déduit alors de la demande horaire la production solaire placée pour obtenir une demande résiduelle 1.

Une demande résiduelle 2 est alors obtenue en déduisant de la demande résiduelle 1 les importations horaires du Nigéria et du Ghana sur la base des réalisations de l'année 2013.

Pour chaque groupe de production hydroélectrique le logiciel procède de manière identique et successive :

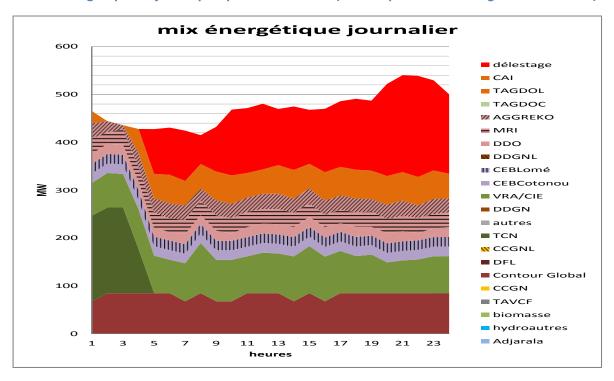
La production hydroélectrique journalière du groupe est placée dans l'ordre décroissant de la demande résiduelle horaire 2, c'est-à-dire qu'on place la puissance maximale disponible du jour de la production sur les heures les plus chargées jusqu'à épuisement de l'énergie journalière ou de la demande résiduelle 1. Si la production n'est pas épuisée sur 24 h, l'excédent est reporté sur la journée suivante. Après traitement de la production du groupe 1 on obtient une demande résiduelle 3.1 . On ventile alors la production du deuxième groupe hydro suivant le même principe d'où une demande résiduelle 3.2. On ventile alors la production du dernier groupe hydro suivant le même principe d'où une demande résiduelle 4.

La prise en compte successive des productions thermiques dans l'ordre de mérite conduit à des demandes résiduelles 5 (après TAVC), 6 (après CCGN), 7 (après TAGGN), 8 (après DFL), 9 (après CCDO), 10 (après DDO), 11 (après TAGDO). La demande résiduelle 11 est réputée délestée.

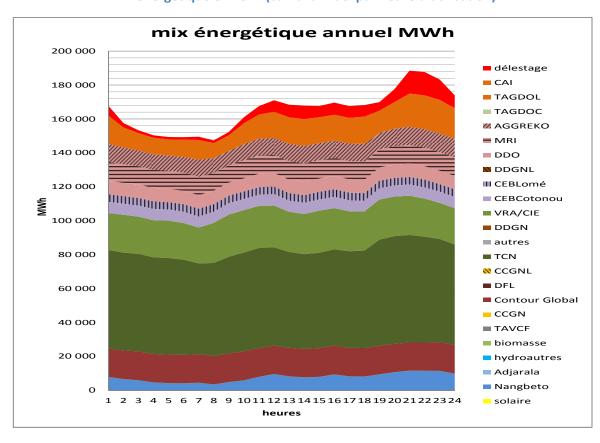

Annexe 3 - Résultats détaillés pour l'année 2017

A3.1 Cas du bouquet énergétique unique de référence

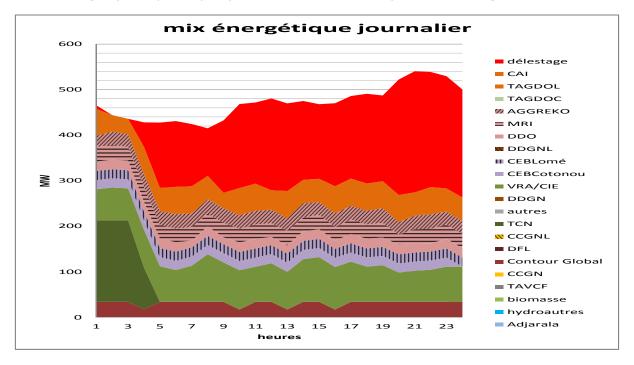
Tableau A3.1 Capacité installée (MW)


2017 import **TCN** MW 200 VRA/CIE MW 80 **TAGN CEBCotonou** 1 groupes 20 P.unitaires **TAGN CEBLomé** groupes 1 P.unitaires 20 DFL 6 **Contour Global** groupes P.unitaires 17 DDO groupes 8 3 P.unitaires MRI 20 groupes P.unitaires 2 20 **AGGREKO** groupes P.unitaires 2 groupes **TAGDO** CAI 8 8,5 P.unitaires

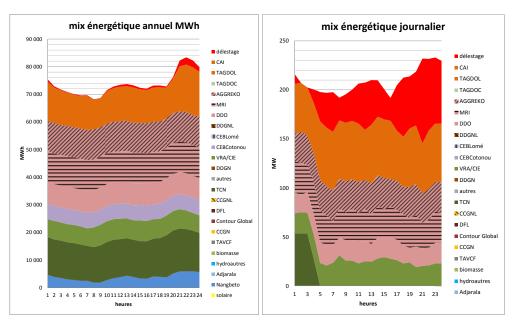
Mix énergétique en 2017 (cumul annuel par heure d'utilisation)



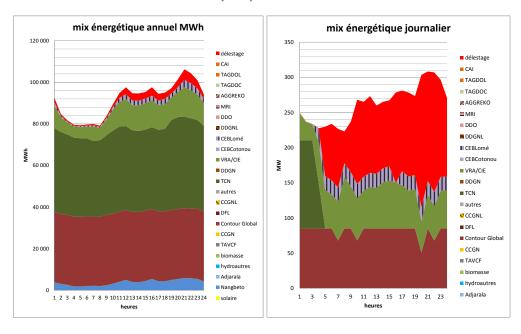
Mix énergétique du jour le plus perturbé en 2017 (144 : importations du Nigéria défaillantes)


A3.2 Cas du bouquet énergétique avec statu quo institutionnel*

Mix énergétique en 2017 (cumul annuel par heure d'utilisation)



^{*3} groupes à Contour Global


A3.3 Cas de la séparation des bouquets énergétiques *

Bénin 2017 -Mix énergétique (cumul annuel par heure d'utilisation)/ Mix énergétique du jour le plus perturbé

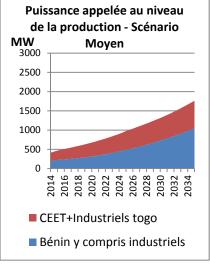
Togo 2017 - Mix énergétique (cumul annuel par heure d'utilisation)/ Mix énergétique du jour le plus perturbé

^{*} part des importations : 70% Togo ; 30% Bénin

Annexe 4 - Hypothèses pour la période 2020 - 2035

A4.1. Charges

Les trois scénarios de charge (Faible, Moyen, Haut) ont été couverts par l'étude. Les moyens de production de la CEB étant mutualisés pour le Togo et le Bénin, le consultant a intégré les prévisions de la demande du Togo dans le modèle utilisé. Les prévisions utilisées pour le Togo sont celle présentées par la CEB dans son document « prévision 2015-2035 ». Voir aussi Tome 1 dans le rapport « Scénarios de Demande ».


La prévision de la demande utilisée dans les calculs du plan d'expansion des moyens de production se doit d'inclure les pertes liées au transport. Le consultant a choisi de prendre une valeur fixe de 5% qui est confortée par les études de réseau qui ont été réalisées.

A.4.1.1 Demande en puissance

La demande en puissance au niveau de la production se décompose comme suit :

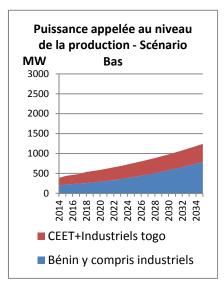


Tableau A4.1: Puissance de pointe au niveau de la production

	Scénai	rio Haut (MW	')	Scénario	Moyen (MV	V)	Scéna	rio Bas (MW)
	Bénin, y	CEET +	CEB	Bénin, y	CEET +	CEB	Bénin, y	CEET +	CEB
	compris industriels	Industriels	Total	compris industriels	Industriels	Total	compris industriels	Industriels	Total
2014	190	242	433	190	223	413	190	195	385
2015	227	267	494	224	246	470	220	215	436
2016	247	290	538	238	270	508	232	230	462
2017	271	314	585	254	293	547	245	241	486
2018	296	340	636	271	316	587	258	279	537
2019	324	369	693	289	340	628	273	288	561
2020	354	400	755	310	363	673	288	298	586
2021	396	435	831	340	386	726	310	308	618
2022	441	474	914	372	410	782	333	319	652
2023	490	516	1005	406	433	839	358	327	685
2024	543	562	1104	443	456	900	385	339	723
2025	600	621	1221	483	491	974	413	350	763
2026	661	677	1338	525	514	1039	442	360	802
2027	727	727	1454	570	538	1107	473	369	842
2028	798	781	1579	617	553	1170	506	379	885
2029	874	839	1713	668	568	1236	541	389	930
2030	955	902	1857	723	591	1314	578	399	977
2031	1043	970	2013	780	614	1394	616	410	1026
2032	1135	1044	2179	841	638	1479	657	421	1078
2033	1235	1123	2358	906	664	1569	699	432	1131
2034	1340	1209	2549	974	691	1665	743	443	1187
2035	1451	1302	2753	1044	719	1763	788	454	1242

A.4.1.2 Monotone de charge

Les moyens de productions installés devront être en mesure de faire face à la pointe et de fournir l'énergie nécessaire à la satisfaction de la demande. Le modèle mathématique utilisé prend en compte ces deux nécessités via la liste des pointes année par année et via la monotone de charge du système.

La monotone de charge actuelle de la CEB présente un facteur de charge ([énergie]/[pointe * 8760 h/an]) très élevé : 74% en 2013 qui est certainement dû à la pénurie de moyen de production. Si la production permet de faire face à la demande les niveaux de facteurs de charge sont plus bas. Le consultant table sur une progression vers un facteur de charge meilleur de 5 points : 69% en 2035. Deux périodes de l'année ont été considérées : saison sèche (janvier – juin ; appelée Période 2) et saison des pluies (juillet – décembre ; appelé Période 1) ; la charge sur le réseau en 2013 montre que

la pointe de la période 2 est de 2% plus faible que la Période 1, la monotone de charge est également légèrement différente. Les monotones de charges²⁷ pour chaque période évoluent comme suit :

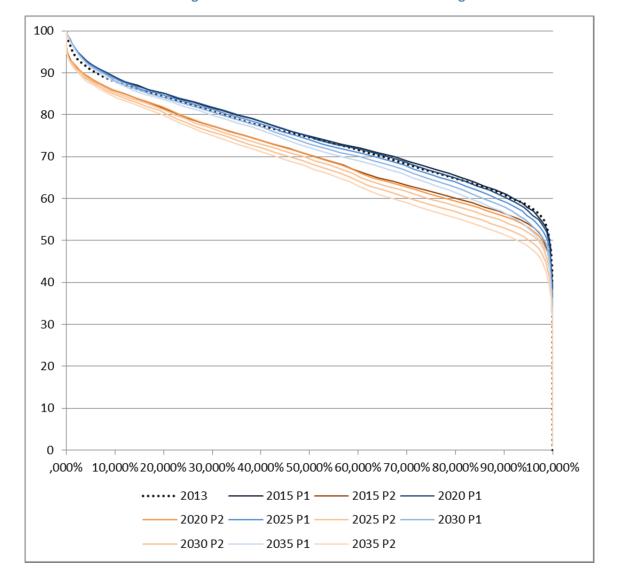


Figure A4.2: Evolution des monotone de charge

A.4.2. Centrales de productions existantes

A.4.2.1 Centrales thermiques

Sauf indication contraire, les coûts O&M, les rendements et autre données techniques relatifs aux centrales thermiques sont issus des hypothèses prises par le WAPP dans son « Actualisation du Plan Directeur Révisé des Moyens de Production et de Transport d'Energie Electrique de la CEDEAO » de septembre 2011.

²⁷ En ordonné sont représentés les niveaux de charge en % par rapport à la pointe annuelle ; en abscisse sont représentés la fraction du nombre d'heure par an ou un niveau de charge donné est atteint. Par exemple : X = 40% et Y = 75% signifie que pendant 40% des heures de l'année = 3500 heures la charge est de moins de 75% de la pointe c-à-d 300MW pour une pointe de 400 MW; donc pendant 3500 heures par an il faut avoir au moins 300 MW de moyen de production mobilisable.

Tableau A4.2 : Centrales thermiques et imports existants et programmés

Nom WASP		TCN	VRA	TMA	TLO	CAI*	SBE	MRI	CTG	CTGG	DFHF	DFGN
Description		Import Nigéria	Import Ghana	Turbine à Gaz Maria Gleta	Turbine à Gaz Lomé	Centrale CAI Maria Gleta	Production de la SBEE	centrale diesel en location	Contour Global fonctionnant au HFO	Contour Global fonctionnant au gaz	Centrale Dual Fuel (HFO)	Centrale Dual Fuel (gaz)
Nb de groupe		1	1	1	1	8	12	40	6	6	6	6
Charge min	MW	0	0	6	6	6	2	2	14	15	14	15
Capacité	MW	200	90	20	20	8	2	2	17	18	17	18
Rendement	kCal/KWh			2683	2683	2683	2390	2390	2259	2251	2259	2251
	%			32%	32%	32%	36%	36%	38%	40%	38%	40%
Carburant				NGAS	NGAS	JETA1	DIESEL	DIESEL	HFO	NGAS	HFO	NGAS
Réserve tournante	%			10	10	10	5	5	5	5	5	5
Taux de panne	%	22 ²⁸	0,1	5	5	10	5	1	0,2	0,2	0,2	0,2
jours de maintenance				90	90	90	10	10	10	10	10	10
classe de maintenance	MW			20	20	10	2	2	17	18	17	18
O&M fixe	\$/KW-mois			0,7	0,7	0,7	0,7	0,7	1,4	1,4	1,4	1,4
O&M variable	\$/MWh			2,51	2,51	2,51	10,1	10,1	7,1	7,1	7,1	7,1

^{*} La centrale CAI peut tourner au gaz naturel ou au fuel léger (Jet A1). A partir de 2020, la centrale continue à tourner au Jet A1 si le gaz fourni par le gazoduc continue d'être limité à 10 MPC/jour. Si plus de gaz est disponible, la centrale fonctionne à partir de 2020 au gaz naturel.

²⁸ Taux nécessaire pour quel les importations finales soient de 1357GWh/an comme prévu par la CEB

A.4.2.2 Centrales hydroélectriques

WASP modélise la ressource hydrologique en fonction de la probabilité d'occurrence des années exceptionnellement sèches, et humides. La période de planification couvrant les 20 prochaines années il a été choisi de modéliser :

- 10 années normales
- 1 année exceptionnellement sèche
- 4 années sèches
- 1 année exceptionnellement pluvieuse
- 4 années pluvieuses

Ce qui donne les probabilités d'occurrence suivantes :

Tableau A4.3: Conditions hydrologiques

Probabilité	Type d'année	Identification WASP
50%	Année normale	Hydro Condition (HC) 1
5%	Année exceptionnellement sèche	HC 2
20%	Année sèche	HC 3
5%	Année exceptionnellement pluvieuse	HC 4
20%	Année pluvieuse	HC 5

WASP modélise les centrales de productions hydroélectriques en se basant sur 5 paramètres :

- Puissance nominale des turbines (MW)
- Capacité du réservoir (GWh)
- Apports en eau (GWh) par période et par condition hydrologique
- Production minimale (GWh) par période et par condition hydrologique
- Production moyenne (MW) par période et par condition hydrologique

Coûts d'exploitation et de maintenance fixe : le même pour toutes les centrales.

Basé sur les statistiques de débit du Mono présenté dans l'étude d'Avant-Projet Détaillé du barrage d'Adjarralla réalisé par Tractebel en 2013, les paramètres suivants ont été utilisé dans WASP :

Tableau A4.4 : Centrales hydroélectriques existantes et programmées

				ΑĮ	oport (GWh)		Сар	acité	moye	nne (N	1W)
Condition h	ıydro		1	2	3	4	5	1	2	3	4	5
Probabilité			50%	5%	20%	5%	20%	50%	5%	20%	5%	20%
Nangbéto	Réservoir	P1	68	12	33	136	103	15	3	7	31	23
	127 GWh	P2	87	24	51	236	141	20	5	12	54	32
Adjarala	Réservoir	P1	152	27	73	305	231	35	6	17	70	53
	284 GWh	P2	194	53	115	528	317	44	12	26	121	72

A.4.3 Centrales de productions candidates

A.4.3.1 Centrales thermiques, solaire et importations

Les technologies suivantes sont envisagées à long terme pour la fourniture d'électricité au Bénin :

- Centrales à cycle combiné : Turbine à Gaz (100 MW) + Turbine Vapeur (50 MW)
- Solaire photovoltaïque : unité de 22 MWc (20 MW effectifs)
- Centrale Fuel Lourd: 120 MW
- Centrale au charbon à lit circulant fluidisé²⁹ : 125 MW
- Importation du Niger : tranche de 100 MW
- Centrales Dual Fuel HFO Gaz Naturel: 120 MW

Les coûts du gaz venant du pipeline ou d'une barge de regazéification de GNL étant différent, les centrales au gaz sont modélisées en double suivant leur alimentation en carburant.

²⁹ Les coûts d'investissement et d'exploitations des centrales à charbon pulvérisés sont légèrement plus faibles que les centrales à lit circulant fluidisés. Les centrales à charbon pulvérisés ne sont pas considérées dans les simulations en raison de leur impact environnemental trop important.

Tableau A4.5 : types et caractéristiques des centrales candidates

Nom WASP		CCGP	CCGL	MRI	PV	HFO	CFB	NIGR	DFGP	DFGL
Description		Cycle combiné au gaz Pipe	Cycle combiné au GNL	centrales type MRI	Centrales solaire PV	Centrale fuel Lourd	Centrale au Charbon à lit circulant fluidisé	Import Niger	Centrale Dual Fuel HFO - Gaz Pipe	Centrale Dual Fuel HFO - GNL
Charge min	MW	135	135	2	0	14	116	1	18	18
Capacité	MW	150	150	19	20	120	125	100	120	120
Rendement	kCal/KWh	1732	1732	2390	0	2259	2288	0	2151	2151
Kendement	%	50%	50%	36%		38%	38%		40%	40%
Carburant		NGAZ	GNL	DIESEL	Solaire	HFO	Charbon	Charbon	NGAZ	HFO-GNL
Réserve tournante	%	0	0	1	0	2	5	10	5	5
Taux de panne	%	0,3	0,3	0,1	77	0,2	8	5	0,2	0,2
jours de maintenance		7	7	10	2	10	26	0	10	10
classe de maintenance	MW	150	150	2	20	17	125	0	17	17
O&M fixe	\$/KW-mois	2,7	2,7	0,7	1,6	1,4	6,25	0	1,4	1,4
O&M variable	\$/MWh	1,71	1,71	10,1	0	7,1	3,14	125	7,1	7,1

La modélisation des centrales PV se fait par une centrale thermique équivalente avec un très fort taux d'indisponibilité fortuite qui permet de donner une production équivalente en GWh à une centrale PV ne fournissant de l'électricité que de 8 h à 18 h. Les caractéristiques de cette centrale sont calées sur le modèle utilisé par l'UEMOA dans son étude d'intégration de l'énergie solaire.

A.4.3.2 Centrales hydroélectriques

Six centrales hydro supplémentaires ont été rajoutées comme centrales candidates³⁰. Leur modélisation suit le même principe que les centrales de Nangbéto et Adjarala.

Tableau A4.6 : Centrales hydroélectriques candidates

			Productible		Ар	ports (G	Wh)		G	énérat	ion min	(GWh)	Proc	duction	n moyer	ne (M	W)
Probabilité hyd	lro	_	moyen (GWh)	50%	5%	20%	5%	20%	50%	5%	20%	5%	20%	50%	5%	20%	5%	20%
Condition hydr	0			1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Ketou-Dogo	Réservoir	P1	85	112	20	54	226	171	0	0	0	0	0	26	5	12	52	39
112 MW	144 GWh	P2	144	144	39	85	391	235	0	0	0	0	0	33	9	19	89	54
Vossa	Réservoir	P1	62	82	15	40	164	124	0	0	0	0	0	19	3	9	38	28
82 MW	105 GWh	P2	105	105	28	62	285	171	0	0	0	0	0	24	6	14	65	39
Olougbe	Réservoir	P1	23	30	5	15	61	46	0	0	0	0	0	7	1	3	14	11
30 MW	39 GWh	P2	39	39	11	23	106	63	0	0	0	0	0	9	2	5	24	14
Béthel Bis	Réservoir	P1	33	43	8	21	87	66	0	0	0	0	0	10	2	5	20	15
43 MW	56 GWh	P2	56	56	15	33	151	91	0	0	0	0	0	13	3	7	34	21
Bétérou	Réservoir	P1	18	24	4	12	48	36	0	0	0	0	0	5	1	3	11	8
24 MW	31GWh	P2	31	31	8	18	83	50	0	0	0	0	0	7	2	4	19	11
Dyodyonga		P1	21	28	5	13	56	42	0	0	0	0	0	6	1	3	13	10
28 MW	35 GWh	P2	35	36	10	21	97	58	0	0	0	0	0	8	2	5	22	13

³⁰ Source : Atelier Régionale du CEREEC Sur la petite Centrale hydroélectrique organisé par la CEDEA – Développement des petites centrales hydro-électrique au Bénin Avril 2012

A.4.4. Ordre de mérite

Suivant les hypothèses présentées dans les paragraphes précédents, l'ordre de mérite est tel que suit :

Tableau A4.7 : Ordre de mérite et coût par type de centrale et de combustible

	Coût to	tal : Carburan	t + O&M + émi	ssions CO2	Ordre (de mérite
	Actuel	Si Brent 100 \$/bbl	Actuel	Si Brent 100 \$/bbl	Actuel	Si Brent 100 \$/bbl
Technologie	\$/MWh	\$/MWh	FCFA/kWh	FCFA/kWh		
Charbon CFB	56,5	65,6	35,01	40,65	1	1
CC-Gaz pipe	84,9	105,6	52,66	65,45	2	2
HFO	94,7	136,1	58,69	84,39	3	7
Import Nigéria*	100,0	120,0	62,00	74,40	4	4
Import Niger*	100,0	110,0	62,00	68,20	5	3
Moteur MF GN gazoduc	103,7	129,3	64,31	80,19	6	5
Import Ghana / Côte d'Ivoire	110,0	130,0	68,20	80,60	7	6
Moteur MF GNL	117,8	147,3	73,05	91,31	8	9
CC-Gaz GNL	120,4	144,1	74,63	89,34	9	8
TAG gazoduc	130,5	162,5	80,94	100,75	10	10
LFO (Diesel)	146,2	233,8	90,64	144,96	11	11
TAG au LFO	334,0	556,7	207,11	345,13	12	12

^{*}Les coûts des importations ont été modifiés suivant les prix des produits pétroliers et du charbon.

A.4.5 Ressources en énergie primaires

Plusieurs énergies primaires sont à envisager pour l'alimentation électrique du Bénin, et plus largement de la CEB :

1. Energie hydroélectrique

Ressource limitée, insuffisante pour satisfaire l'offre; la totalité des ressources hydro considérée dans la présente étude (Nangbéto; Adjarala; Kétou Dogo; Vossa; Olougbe; Béthel bis; Bétérou; Dyodyonga) peut produire un peu moins de 1000 GWh. Adjaralla et Nangbéto représentent plus de la moitié de la production, mais seulement 50% sont affectable au Bénin, il reste donc 680 GWh. La demande du Bénin en 2015 est estimée à 1400 GWh, selon les scénarios la demande du Bénin sera de 4700; 6100 ou 8300 GWh en 2035. L'hydro peut donc représenter au mieux environ 15% de la demande du Scénario Faible. Pour l'espace CEB total l'hydro peut couvrir au mieux 16% de la demande du Scénario faible en 2035.

2. Energie Solaire

Ressource non stockable, aléatoire, insuffisante pour satisfaire l'offre

3. Energie éolienne

Ressource non stockable, aléatoire, insuffisante pour satisfaire l'offre, le potentiel au Bénin reste à prouver

4. Energies fossiles

a. Produits pétroliers

i. Fuel lourd

Importations à priori non limitées mais difficulté de transport sur terre (nécessité d'un pipeline calorifugé)

ii. Gaz naturel

Importation via le gazoduc du WAPCO, mais ressource limité ou via une barge équipée d'une unité de regazéification (cf. paragraphe suivant, et annexe 4)

iii. Fuel léger (diesel, JET...)

Importations à priori non limitées, transport et stockage aisés.

b. Charbon

Nécessité d'un port minéralier, avec des centrales à proximité, très grande difficulté de transport terrestre

5. Importations

Possibilité d'import du Ghana, de la Côte d'Ivoire, du Nigeria et à terme du Niger grâce à la future production d'électricité sur le site de la mine de charbon de Salkadamna.

A.4.6. Autres hypothèses

Energie non Distribuée

Le coût de l'énergie non distribuée est pris de 1,25 US\$/kWh pour respecter les hypothèses du WAPP (Tome 1, p.15).

La limite annuelle est de 1% sur la période 2020-2035

Réserve de marge

Une réserve de marge correspondant à la perte des deux plus grosses unités de production en fonctionnement a été prise comme référence. C'est-à-dire que les deux groupes plus importants peuvent toujours être mis en indisponibilité sans réduire la capacité du système à faire face à la pointe.

Reserve tournante

Chaque centrale a un paramètre de réserve tournante donné en % de la capacité installée. La règle communément admise pour la réserve tournante stipule qu'elle doit être égale en tout moment au plus gros groupe en fonctionnement, le plus gros groupe en fonctionnement sur le système est l'import du Nigéria, soit 200 MW. Il n'est pas réaliste de prendre cette valeur. Une réserve de tournante de 20 MW, correspondant à une turbine à gaz ou un moteur dual-fuel a été prise pour la période 2020-2030, puis 100MW pour la période 2030-2035.

Interconnexion du réseau

Il est considéré que tout le réseau de la CEB est interconnecté avec le Nigéria et le Ghana. C'est-à-dire qu'on considère qu'en 2020 les problèmes de variation de fréquence du Nigéria seront résolus et que tout le réseau peut fonctionner en mode interconnecté. Si ce n'était pas le cas l'ordre de mérite global des centrales serait modifié selon que l'on opère en ilot connecté au Nigéria ou au Ghana. L'optimum économique en serait déplacé.

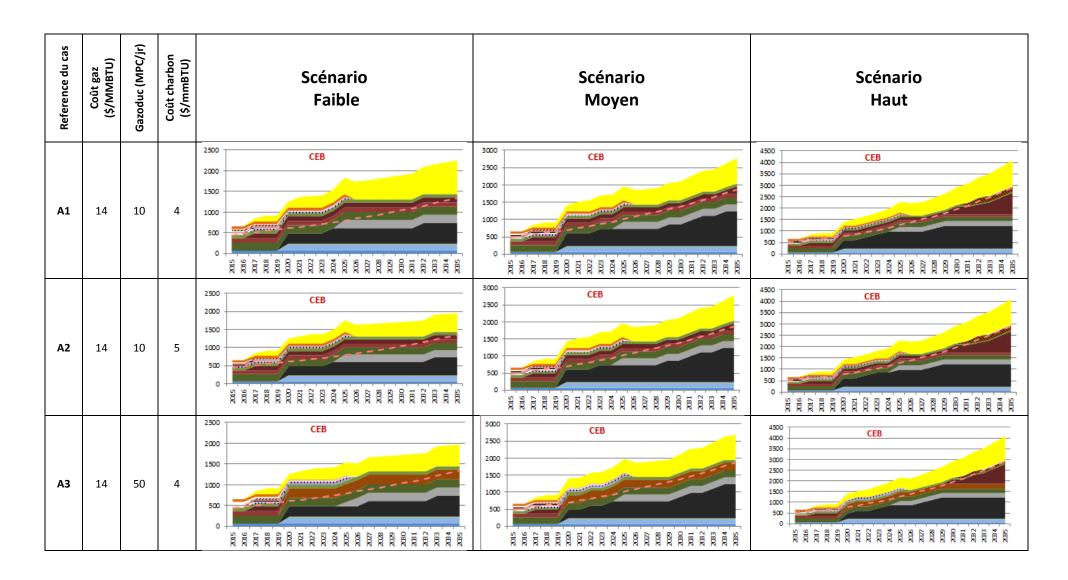
Durée de vie des unités de production thermiques existantes (hors Contour Global)

Les calculs montrent que les centrales existantes sont mobilisées de façon significative jusqu'en 2027-2030. Elles sont cependant retirées du système en 2025 parce qu'il est considéré qu'elles auront atteint la fin de leur durée de vie.

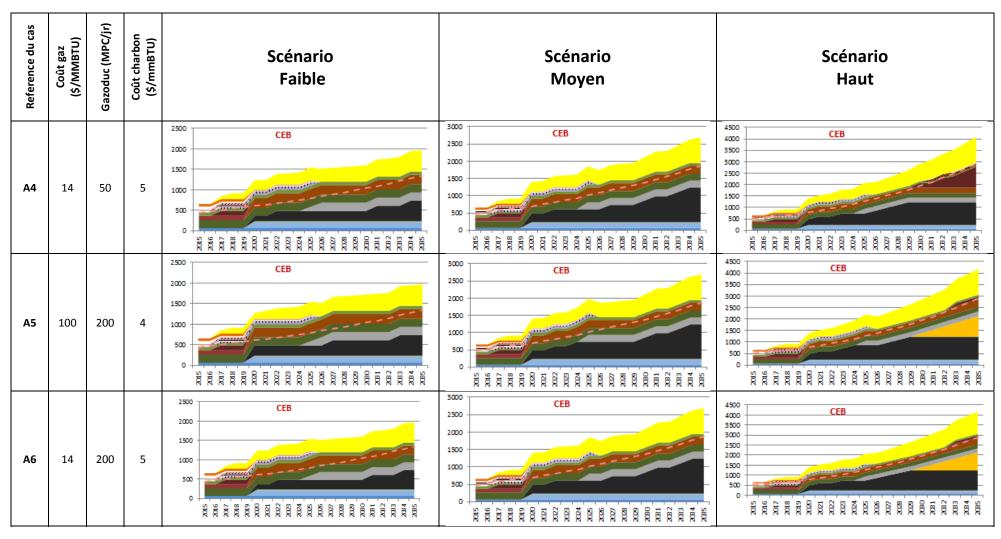
Annexe 5 - Capacité installée et importable sur l'espace CEB dans la période 2015 - 2035

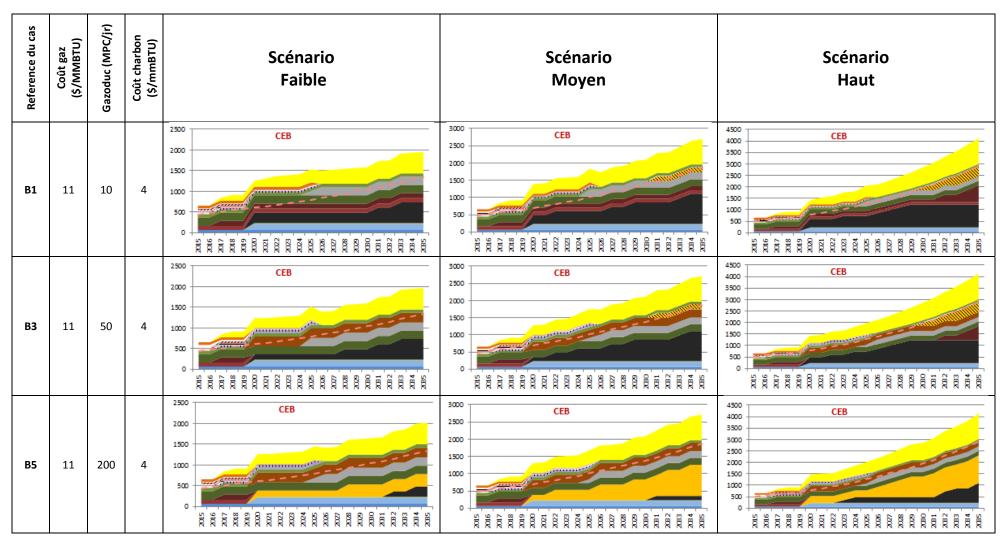
La terminologie des cas est comme suit :

Reference du cas	Prix du pétrole brut (Brent) à partir 2020	Coût gaz à partir 2020 (US\$/MMBTU)	Gazoduc. Limite d'import (MPC/jour)	Coût charbon (US\$/MMBTU)
A1	100 US\$/bbl	14	10	4
A2	100 US\$/bbl	14	10	5
А3	100 US\$/bbl	14	50	4
A4	100 US\$/bbl	14	50	5
A5	100 US\$/bbl	14	200	4
A6	100 US\$/bbl	14	200	5
B1	Prix actuel de	11	10	4
В3	50 – 65 US\$ par	11	50	4
В5	baril	11	200	4


Tous les cas ont été étudiés pour tous les scénarios de demande

Les figures suivantes présentent le parc de production et les importations maximales en puissance (Nigéria – TCN, Ghana et Côte d'Ivoire – VRA/CIE, Niger) suivant les cas et scénarios considérés.


Le code couleur utilisé est le suivant :



Annexe 6 - Résultats détaillés d'un cas à prédominance de gaz et d'un cas à prédominance de charbon

A6.1 Résultats d'un cas à prédominance Gaz : B5

A6.1.1 Caractéristiques du cas

- Disponibilité du gaz en provenance du Nigéria : jusqu'à 200 MPC/jour.
- Coût du gaz : 11 US\$/MMBTU (coût au prix 2015).
- Coût d'importation du charbon : 4 US\$/MMBTU (coût au prix 2015).
- Coûts des émissions : 20 US\$ par tonne de CO2 équivalent (au prix 2015).
- Coûts d'investissement des systèmes PV : 1000 US\$/kW (au prix 2015).

A6.1.2 Capacité sur l'espace CEB et capacité disponible pour le Bénin

Dans les configurations présentées ci-dessous les centrales multi fuel (Contour Global et Maria Gléta) tournent au HFO jusqu'en 2019 puis au gaz naturel. La centrale CAI tourne au Jet A1 jusqu'en 2019 puis au gaz naturel.

A6.1.2.1 Scénario Haut

Tableau A6.1 : Cas B5. Scénario Haut. Capacitée sur l'espace CEB (MW)

	2015	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	2035
Nangbeto (hydro)	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65
Adjarala (hydro)	0	0	0	0	0	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148
Biomasse	0	0	0	0	0	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
TAVCF (charbon)	0	0	0	0	0	0	0	0	125	250	250	250	250	250	250	250	250	500	625	625	875
CCGN (gaz)	0	0	0	0	0	300	300	300	300	300	300	450	600	750	900	900	1050	1050	1050	1200	1200
Contour Glob. (multi fuel)	102	102	102	102	102	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108
Maria Gleta (multi fuel)	0	0	0	119	119	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126
Import Nigéria (TCN)	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
Import Niger	0	0	0	0	0	0	0	0	0	0	100	200	200	200	200	200	200	200	200	200	200
Import Ghana (VRA/CIE)	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
Centrale CAI (Jet A1, gaz)	64	64	64	64	64	64	64	64	64	64	64	0	0	0	0	0	0	0	0	0	0
TAG CEB (gaz)	40	40	40	40	40	40	40	40	40	40	40	0	0	0	0	0	0	0	0	0	0
Centrales diesel SBEE	24	24	24	24	24	24	24	24	24	24	24	0	0	0	0	0	0	0	0	0	0
Centrales diesel location	80	80	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solaire PV	0	0	70	140	140	300	340	360	400	440	500	540	580	640	700	760	820	880	960	1040	1120
Total hors solaire	655	655	655	774	774	1176	1176	1176	1301	1426	1526	1648	1798	1948	2098	2098	2248	2498	2623	2773	3023
Total, solaire inclus	655	655	655	914	914	1476	1516	1536	1701	1866	2026	2188	2378	2588	2798	2858	3068	3378	3583	3813	4143
Pointe	506	558	607	661	720	784	863	950	1044	1148	1270	1394	1516	1649	1793	1947	2112	2289	2479	2682	2897
Réserve hors PV	149	97	48	113	54	392	313	226	257	278	256	254	282	299	305	151	136	209	144	91	126

Tableau A6.2 : Cas B5. Scénario Haut. Capacité disponible pour le Bénin (MW)

	2015	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	2035
Nangbeto (hydro)	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5
Adjarala (hydro)	0	0	0	0	0	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
Biomasse	0	0	0	0	0	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
TAVCF (charbon)	0	0	0	0	0	0	0	0	125	250	250	250	250	250	250	250	250	500	625	625	875
CCGN (gaz)	0	0	0	0	0	0	0	0	0	0	0	0	0	150	300	300	300	300	300	300	300
Maria Gleta (multi fuel)	0	0	0	119	119	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126
Import Nigéria (TCN)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Import Niger	0	0	0	0	0	0	0	0	0	0	50	100	100	100	100	100	100	100	100	100	100
Import Ghana (VRA/CIE)	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Centrale CAI (Jet A1, gaz)	64	64	64	64	64	64	64	64	64	64	64	0	0	0	0	0	0	0	0	0	0
TAG CEB (gaz)	20	20	20	20	20	20	20	20	20	20	20	0	0	0	0	0	0	0	0	0	0
Centrales diesel SBEE	24	24	24	24	24	24	24	24	24	24	24	0	0	0	0	0	0	0	0	0	0
Centrales diesel location	80	80	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solaire PV	0	0	70	140	140	220	240	250	270	290	320	340	360	390	420	450	480	510	550	590	630
Total hors solaire	297	297	297	416	416	628	628	628	753	878	928	870	870	1020	1170	1170	1170	1420	1545	1545	1795
Total, solaire inclus	297	297	367	556	556	848	868	878	1023	1168	1248	1210	1230	1410	1590	1620	1650	1930	2095	2135	2425
Pointe	205	225	250	277	306	339	382	429	481	537	598	664	736	813	897	987	1082	1184	1292	1407	1527
Réserve hors PV	156	136	113	206	177	168	126	79	154	224	213	90	20	93	160	72	-23	127	144	30	161

A6.1.2.2. Scénario Moyen

Tableau A6.3 : Cas B5. Scénario Moyen. Capacité sur l'espace CEB (MW)

	2015	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	2035
Nangbeto (hydro)	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65
Adjarala (hydro)	0	0	0	0	0	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148
Biomasse	0	0	0	0	0	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
TAVCF (charbon)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	125	125	125	125	125
CCGN (gaz)	0	0	0	0	0	150	150	300	300	300	300	450	450	450	600	600	600	750	750	900	900
Contour Glob. (multi fuel)	102	102	102	102	102	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108
Maria Gleta (multi fuel)	0	0	0	119	119	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126
Import Nigéria (TCN)	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
Import Niger	0	0	0	0	0	0	0	0	0	0	100	200	200	200	200	200	200	200	200	200	200
Import Ghana (VRA/CIE)	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
Centrale CAI (Jet A1, gaz)	64	64	64	64	64	64	64	64	64	64	64	0	0	0	0	0	0	0	0	0	0
TAG CEB (gaz)	40	40	40	40	40	40	40	40	40	40	40	0	0	0	0	0	0	0	0	0	0
Centrales diesel SBEE	24	24	24	24	24	24	24	24	24	24	24	0	0	0	0	0	0	0	0	0	0
Centrales diesel location	80	80	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solaire PV	0	0	70	140	140	280	300	320	340	360	400	420	440	480	500	540	580	600	640	680	740
Total hors solaire	655	655	655	774	774	1026	1026	1176	1176	1176	1276	1398	1398	1398	1548	1548	1673	1823	1823	1973	1973
Total, solaire inclus	655	655	725	914	914	1306	1326	1496	1516	1536	1676	1818	1838	1878	2048	2088	2253	2423	2463	2653	2713
Pointe	481	526	567	609	652	699	755	812	873	936	1014	1084	1157	1225	1298	1383	1472	1565	1664	1769	1878
Réserve hors PV	174	129	88	165	122	327	271	364	303	240	262	314	241	173	250	165	201	258	159	204	95

Tableau A6.4 : Cas B5. Scénario Moyen. Capacité disponible au Bénin (MW)

												-									
	2015	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	2035
Nangbeto (hydro)	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5
Adjarala (hydro)	0	0	0	0	0	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
Biomasse	0	0	0	0	0	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
TAVCF (charbon)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	125	125	125	125	125
CCGN (gaz)	0	0	0	0	0	0	0	0	0	0	0	150	150	150	300	300	300	450	450	600	600
Maria Gleta (multi fuel)	0	0	0	119	119	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126
Import Nigéria (TCN)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Import Niger	0	0	0	0	0	0	0	0	0	0	50	100	100	100	100	100	100	100	100	100	100
Import Ghana (VRA/CIE)	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Centrale CAI (Jet A1, gaz)	64	64	64	64	64	64	64	64	64	64	64	0	0	0	0	0	0	0	0	0	0
TAG CEB (gaz)	20	20	20	20	20	20	20	20	20	20	20	0	0	0	0	0	0	0	0	0	0
Centrales diesel SBEE	24	24	24	24	24	24	24	24	24	24	24	0	0	0	0	0	0	0	0	0	0
Centrales diesel location	80	80	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solaire PV	0	0	70	140	140	210	220	230	240	250	270	280	290	310	320	340	360	370	390	410	440
Total hors solaire	361	361	361	480	480	502	502	502	502	502	552	644	644	644	794	794	919	1069	1069	1219	1219
Total, solaire inclus	361	361	431	620	620	712	722	732	742	752	822	924	934	954	1114	1134	1279	1439	1459	1629	1659
Pointe	201	216	233	251	271	294	325	359	395	435	477	523	572	625	682	743	809	877	950	1027	1107
Réserve hors PV	160	145	26	229	209	208	177	143	107	67	75	121	72	19	112	51	110	192	119	192	112

A6.1.2.3 Scénario Faible

Tableau A6.5 : Cas B5. Scénario Faible. Capacité sur l'espace CEB (MW)

	2015	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	2035
Nangbeto (hydro)	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65
Adjarala (hydro)	0	0	0	0	0	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148
Biomasse	0	0	0	0	0	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
TAVCF (charbon)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	125	125	250	250
CCGN (gaz)	0	0	0	0	0	150	150	150	150	150	150	150	150	300	300	300	300	300	300	300	300
Contour Glob. (multi fuel)	102	102	102	102	102	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108
Maria Gleta (multi fuel)	0	0	0	119	119	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126
Import Nigéria (TCN)	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
Import Niger	0	0	0	0	0	0	0	0	0	0	100	200	200	200	200	200	200	200	200	200	200
Import Ghana (VRA/CIE)	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
Centrale CAI (Jet A1, gaz)	64	64	64	64	64	64	64	64	64	64	64	0	0	0	0	0	0	0	0	0	0
TAG CEB (gaz)	40	40	40	40	40	40	40	40	40	40	40	0	0	0	0	0	0	0	0	0	0
Centrales diesel SBEE	24	24	24	24	24	24	24	24	24	24	24	0	0	0	0	0	0	0	0	0	0
Centrales diesel location	80	80	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solaire PV	0	0	70	140	140	240	240	260	280	300	320	320	340	360	380	400	420	440	480	500	520
Total hors solaire	655	655	655	774	774	1026	1026	1026	1026	1026	1126	1098	1098	1248	1248	1248	1248	1373	1373	1498	1498
Total, solaire inclus	655	655	725	914	914	1266	1266	1286	1306	1326	1446	1418	1438	1608	1628	1648	1668	1813	1853	1998	2018
Pointe	438	476	501	555	581	608	642	678	714	755	798	840	885	933	983	1036	1092	1152	1214	1278	1343
Réserve hors PV	217	179	154	219	193	418	384	348	312	271	328	258	213	315	265	212	156	221	159	220	155

Tableau A6.613 : Cas B5. Scénario Faible. Capacité installée sur l'espace CEB (MW)

	2015	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	2035
Nangbeto (hydro)	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5	32,5
Adjarala (hydro)	0	0	0	0	0	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
Biomasse	0	0	0	0	0	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
TAVCF (charbon)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	125	125	250	250
CCGN (gaz)	0	0	0	0	0	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150
Maria Gleta (multi fuel)	0	0	0	119	119	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126
Import Nigéria (TCN)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Import Niger	0	0	0	0	0	0	0	0	0	0	50	100	100	100	100	100	100	100	100	100	100
Import Ghana (VRA/CIE)	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Centrale CAI (Jet A1, gaz)	64	64	64	64	64	64	64	64	64	64	64	0	0	0	0	0	0	0	0	0	0
TAG CEB (gaz)	20	20	20	20	20	20	20	20	20	20	20	0	0	0	0	0	0	0	0	0	0
Centrales diesel SBEE	24	24	24	24	24	24	24	24	24	24	24	0	0	0	0	0	0	0	0	0	0
Centrales diesel location	80	80	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solaire PV	0	0	70	140	140	190	190	200	210	220	230	230	240	250	260	270	280	290	310	320	330
Total hors solaire	361	361	361	480	480	652	652	652	652	652	702	644	644	644	644	644	644	769	769	894	894
Total, solaire inclus	361	361	431	620	620	842	842	852	862	872	932	874	884	894	904	914	924	1059	1079	1214	1224
Pointe	197	210	224	238	254	272	295	321	348	377	408	441	476	514	554	596	641	689	740	793	847
Réserve hors PV	124	111	216	202	186	380	357	331	304	275	294	203	168	130	90	48	3	80	29	101	47

A6.1.3 Mix énergétique

Le code couleur utilisé est le suivant :

Figure A6.1 : Energie fournie (GWh). Cas B5. Scénario Haut. Espace CEB.

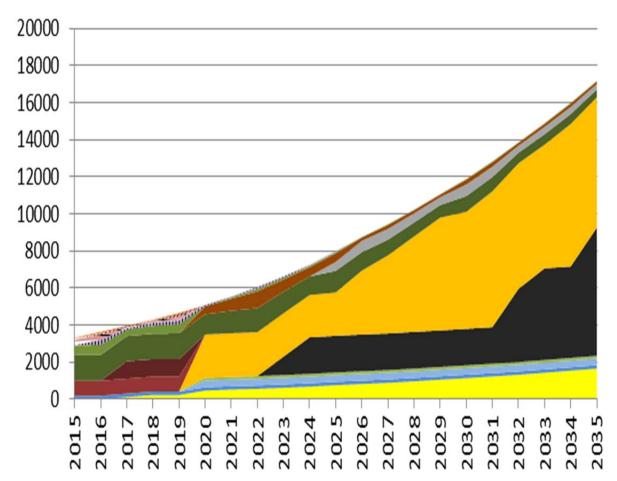


Figure A6.2: Energie fournie (GWh). Cas B5. Scénario Moyen. Espace CEB.

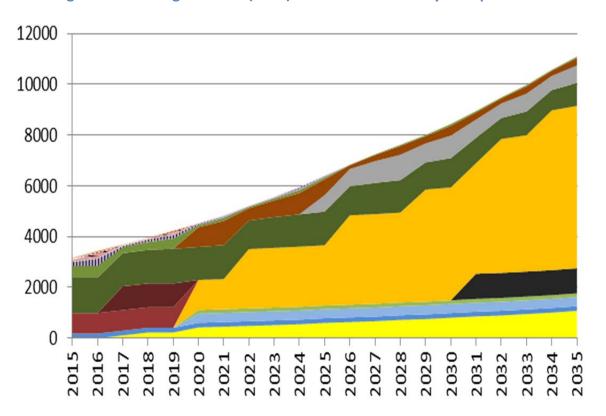
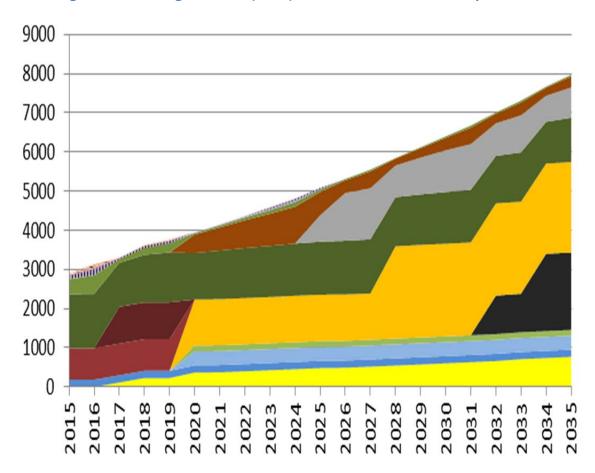



Figure A6.3: Energie fournie (GWh). Cas B5. Scénario Faible. Espace CEB.

A6.1.4 Besoins en carburants et émissions de CO2

Tableau A6.7: Emissions et besoins en carburant. Cas B5. Scénario Haut.

	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
LOLP (%)	0,31	0,62	0,92	0,22	0,59	0,11	0,29	0,63	0,71	0,53	0,46	0,39	0,66	0,47	0,35	0,79	0,66	0,32	0,42	0,47	0,32
kTCO2	921	1178	1395	1520	1743	1113	1251	1421	2109	2836	2838	3079	3383	3720	4057	4199	4574	6005	6820	7202	8620
kT charbon	0	0	0	0	0	0	0	0	413	823	824	827	825	827	824	824	823	1650	2066	2061	2891
MPC/jr moy	6,1	7,9	3,0	4,5	6,6	52,7	58,4	65,4	59,0	54,4	54,5	67,5	82,4	98,9	115,7	122,3	140,7	128,7	127,1	146,2	133,2
MPC/jour max	10,1	10,1	9,5	10,1	10,1	77,1	81,8	86,1	80,2	74,2	75,0	81,7	102,3	121,6	142,4	152,6	173,8	166,9	163,5	186,8	174,7
Renouvelable	6%	5%	8%	10%	9%	23%	22%	21%	20%	19%	18%	17%	17%	16%	16%	15%	15%	14%	14%	14%	14%
TCO2/MWh	0,277	0,322	0,352	0,353	0,373	0,219	0,225	0,233	0,316	0,388	0,353	0,351	0,356	0,362	0,366	0,351	0,354	0,432	0,456	0,448	0,500

Tableau A6.8: Emissions et besoins en carburant. Cas B5. Scénario Moyen

	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
LOLP (%)	0,20	0,40	0,60	0,10	0,19	0,30	0,52	0,15	0,29	0,55	0,34	0,20	0,38	0,58	0,76	0,99	0,99	0,56	0,98	0,58	0,99
kTCO2	815	1012	1318	1376	1485	869	980	1149	1256	1378	1255	1409	1460	1514	1817	1877	2635	2942	3018	3327	3410
kT charbon	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	413	412	411	411	411
MPC/jr moy	4,8	6,9	1,5	2,5	4,0	39,4	43,9	54,2	58,6	63,6	58,6	68,3	70,4	72,7	87,7	90,3	86,6	102,0	105,5	120,8	124,6
MPC/jour max	9,9	10,0	8,7	9,9	9,7	59,6	63,5	77,9	81,1	84,5	81,3	79,8	84,3	89,9	104,1	109,2	106,2	125,3	128,3	147,3	152,9
Renouvelable	6%	5%	8%	10%	10%	25%	24%	23%	22%	21%	20%	19%	19%	19%	18%	18%	17%	17%	16%	16%	16%
TCO2/MWh	0,258	0,293	0,356	0,347	0,351	0,192	0,201	0,220	0,225	0,231	0,195	0,206	0,201	0,198	0,225	0,220	0,292	0,308	0,300	0,313	0,304

Tableau A6.9: Emissions et besoins en carburant. Cas B5. Scénario Faible.

	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
LOLP (%)	0,09	0,19	0,30	0,04	0,08	0,10	0,16	0,23	0,35	0,51	0,19	0,44	0,77	0,23	0,32	0,53	0,89	0,58	0,89	0,49	0,81
kTCO2	691	799	1265	1295	1327	691	757	826	894	970	769	609	658	982	1016	1054	1106	1850	1890	2653	2696
Tcharbon	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	409	411	824	826
MPC/jr moy	2,6	4,5	0,5	1,1	1,6	32,0	34,7	37,6	40,4	43,5	35,2	28,6	30,6	47,3	48,8	50,4	52,6	48,7	50,3	46,9	48,6
MPC/jour max	9,5	10,1	6,3	8,0	9,1	55,6	57,1	58,2	60,1	63,5	55,2	45,3	48,2	60,5	62,7	67,6	69,1	61,9	66,2	60,2	64,0
Renouvelable	6%	6%	9%	11%	11%	27%	26%	25%	24%	24%	23%	22%	22%	21%	21%	20%	20%	19%	19%	19%	18%
TCO2/MWh	0,238	0,255	0,384	0,357	0,351	0,175	0,182	0,189	0,195	0,201	0,151	0,114	0,118	0,168	0,165	0,164	0,164	0,262	0,256	0,344	0,335

A6.1.5 Répartition des centrales installées

Etant donné que les deux pays doivent avoir en 2035 à peu près la même puissance installée puisque la puissance appelée par les deux pays est équivalente, le consultant propose la répartition de centrales suivante : les centrales à charbon seront installées sur le territoire béninois, les cycles combiné au gaz naturels sont installé alternativement au Bénin et au Togo pour que chaque pays aient suffisamment de moyen de production pour couvrir sa propre pointe afin de réduire les transferts de puissance et réduire ainsi les pertes en ligne.

Les résultats présentés ci-dessous reprennent les données des tableaux.

A6.1.5.1 Scénario Haut

- 2020 : 300 MW de Cycles Combinés au gaz naturel (CCGN) au Togo
- 2023 2024 : 125 MW de charbon par an au Bénin pour un total de 250 MW
- 2026-2027: 150 MW de CCGN par an au Togo pour un total de 300 MW
- 2028-2029 : 150 MW de CCGN par an au Bénin pour un total de 3000 MW
- 2031: 150 MW de CCGN au Togo
- 2032-2033 : 250 puis 125 MW de charbon par an au Bénin pour un total de 375 MW
- 2034: 150 MW de CCGN au Togo
- 2035 : 250 MW de charbon au Bénin
- Environ 20 MW de PV par an sont à installer au Togo et au Bénin pour un total final de 490 MW par pays sur la période 2020-2035. Au total 630 MW de PV seront présent au Bénin et 490 MW au Togo

Au total il y aura 875 MW de charbon au Bénin et 300 MW de CCGN. En prenant en compte les importations et les autres centrales déjà présentes dans le pays, la capacité totale disponible hors solaire sera d'environ 1700 MW pour une pointe d'environ 1500 MW en 2035. Le Togo se verra installer 900 MW de CCGN entre 2020 et 2035. Les deux pays installeront 490 MW de solaire sur leur territoire entre 2020 et 2035; portant la capacité totale installée en 2035 à 630 MW pour le Bénin.

La capacité installée au Bénin (en comptant les importations) sera toujours supérieure à la pointe du Bénin sauf en 2031 où environ 40 MW devront être importés du Togo pour couvrir la pointe. Mais au vu des dates d'apparition optimales des centrales, la solution présentée est le meilleur compromis possible. Sur la période 2020-2034 la pointe du Togo est toujours couverte par la puissance installée au Togo (en comptant les importations) ; le bilan est négatif de 2015 à 2019 et en 2035.

A6.1.5.2 Scénario Moyen

- 2020 : 150 MW de CCGN au Togo
- 2022: 150 MW de CCGN au Togo
- 2026 : 150MW de CCGN au Bénin
- 2029 : 150 MW de CCGN au Bénin
- 2031 : 125 MW de charbon au Bénin
- 2032: 150 MW de CCGN au Bénin
- 2034 : 150 MW de CCGN au Bénin
- Environ 15 MW de solaire PV sont à installer dans les deux pays pour un total final de 600 MW supplémentaire entre 2020 et 2035 sur l'espace CEB.

Au total il y aura 125 MW de charbon et 600 MW de CCGN au Bénin ; en prenant en compte les importations et les autres centrales déjà présentes dans le pays, la capacité totale installée hors solaire sera d'environ 1240 MW pour une pointe d'environ 1100 MW en 2035. Le Togo se verra installer 300 MW de CCGN. Les deux pays installeront 300 MW de solaire entre 2020 et 2035 sur leur territoire, portant la capacité totale du Bénin à 440 MW.

La capacité installée au Bénin (en comptant les importations) sera toujours supérieure à la pointe du Bénin. Sur la période 2020-2034 la pointe du Togo est toujours couverte par la puissance installée au Togo (en comptant les importations) ; le bilan est négatif de 2016 à 2019 et en 2035.

A6.1.5.3 Scénario Faible

2020 : 150 MW de CCGN au Bénin
2028 : 150 MW de CCGN au Togo
2032 : 125 MW de charbon au Bénin
2035 : 125 MW de charbon au Bénin

• Environ 9MW de solaire PV par an seront à installer sur les deux pays pour atteindre une capacité supplémentaire de 380MW entre 2020 et 2035.

Au total il y aura 250 MW de charbon et 150 de CCGN au Bénin; en prenant en compte les importations et les autres centrales déjà présentes dans le pays, la capacité totale installée hors solaire sera d'environ 900 MW pour une pointe d'environ 800MW en 2035. Le Togo se verra installer 150MW de CCGN. Les deux pays installeront 190MW de solaire entre 2020 et 2035 sur leur territoire, portant la capacité totale du Bénin à 330 MW.

La capacité installée au Bénin (en comptant les importations) sera toujours supérieure à la pointe du Bénin. Le bilan de puissance du Togo sera également positif sauf en 2018 ; 2019 et 2024.

A6.1.6 Réserve de marge

La réserve de marge est la différence entre la capacité installée mobilisable sur commande (c'est-à-dire : hors solaire) et la pointe. Dans tous les cas la réserve de marge est environ entre +3% et +70% de la pointe, ce qui signifie qu'on peut arrêter un groupe pour maintenance tout en restant capable de faire face à la pointe. De plus le système étant fortement interconnecté avec ses voisins, il est envisageable de faire appel plus fortement aux importations en cas de problème passager. Cette bonne réserve de marge se traduit par une LOLP (Loss of Load Probability) toujours inférieure à 1% et ce quel que soit le scénario de demande, montrant bien que les problèmes de délestage seront résolus.

A6.2 Résultats d'un cas à prédominance Charbon : A6

A6.2.1 Caractéristiques du cas

- Disponibilité du gaz en provenance du Nigéria : jusqu'à 200 MPC/jour.
- Coût du gaz : 2015 2019 : 11 US\$/MMBTU ; 2020 2035 : 14 US\$/MMBTU (coût au prix 2015).
- Coût d'importation du charbon : 5 US\$/MMBTU (coût au prix 2015).
- Coûts des émissions : 20 US\$ par tonne de CO2 équivalent (au prix 2015).
- Coûts d'investissement des systèmes PV : 1000 US\$/kW (au prix 2015).

A6.2.2 Capacité sur l'espace CEB et capacité disponible pour le Bénin

Dans les configurations présentées ci-dessous les centrales multi fuel (Contour Global et Maria Gléta) tournent au HFO jusqu'en 2019 puis au gaz naturel. La centrale CAI tourne au Jet A1 jusqu'en 2019 puis au gaz naturel.

A6.2.2.1 Scénario Haut

Tableau A6.10 : Cas A6 - Scénario Haut - Capacité installée sur l'espace CEB (MW)

	2015	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
Nangbeto	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65
Adjarala	0	0	0	0	0	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148
Biomasse	0	0	0	0	0	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
TAVCF (Centrale charbon)	0	0	0	0	0	250	375	375	500	500	500	625	750	875	1000	1000	1000	1000	1000	1000	1000
CCGN (Cycle combiné)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	150	300	450	600	750	900
Import Niger	0	0	0	0	0	0	0	0	0	0	200	200	200	200	200	200	200	200	200	200	200
Import Nigéria (TCN)	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
Contour Global	102	102	102	102	102	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108
Maria Gleta Multi Fuel	0	0	0	119	119	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126
Centrale HFO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	102	102	102
Import Ghana/Côte d'Ivoire (VRA/CIE)	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
Centrale CAI	64	64	64	64	64	64	64	64	64	64	64	0	0	0	0	0	0	0	0	0	0
TAG CEB	40	40	40	40	40	40	40	40	40	40	40	0	0	0	0	0	0	0	0	0	0
Centrales Diesel SBEE	24	24	24	24	24	24	24	24	24	24	24	0	0	0	0	0	0	0	0	0	0
Centrales en location	80	80	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solaire PV	0	0	70	140	140	280	280	360	400	440	500	540	580	640	700	760	820	880	960	1040	1120
Total hors solaire	655	655	655	774	774	1126	1251	1251	1376	1376	1576	1573	1698	1823	1948	2098	2248	2398	2650	2800	2950
Total solaire inclus	655	655	725	914	914	1406	1531	1611	1776	1816	2076	2113	2278	2463	2648	2858	3068	3278	3610	3840	4070
Pointe (Bénin + Togo)	506	558	607	661	720	784	863	950	1044	1148	1270	1394	1516	1649	1793	1947	2112	2289	2479	2682	2897
Réserve hors PV	149	97	48	113	54	342	388	301	332	228	306	179	182	174	155	151	136	109	171	118	53

Tableau A6.11 : Cas A6 - Scénario Haut - Capacité installée au Bénin (MW)

	2015	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	2035
Nangbeto (hydro)	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
Adjarala (hydro)	0	0	0	0	0	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
Biomasse	0	0	0	0	0	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
TAVCF (charbon)	0	0	0	0	0	250	375	375	500	500	500	625	750	875	1000	1000	1000	1000	1000	1000	1000
CCGN (gaz)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	150
Maria Gleta (multi fuel)	0	0	0	0	0	0	0	0	0	0	100	100	100	100	100	100	100	100	100	100	100
Import Nigéria (TCN)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Import Niger	0	0	0	119	119	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126
Import Ghana (VRA/CIE)	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Centrale CAI (Jet A1, gaz)	64	64	64	64	64	64	64	64	64	64	64	0	0	0	0	0	0	0	0	0	0
TAG CEB (gaz)	20	20	20	20	20	20	20	20	20	20	20	0	0	0	0	0	0	0	0	0	0
Centrales diesel SBEE	24	24	24	24	24	24	24	24	24	24	24	0	0	0	0	0	0	0	0	0	0
Centrales diesel location	80	80	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solaire PV	0	0	70	140	140	210	210	250	270	290	320	340	360	390	420	450	480	510	550	590	630
Total hors solaire	361	361	361	480	480	752	877	877	1002	1002	1102	1119	1244	1369	1494	1494	1494	1494	1494	1494	1644
Total, solaire inclus	361	361	431	620	620	962	1087	1127	1272	1292	1422	1459	1604	1759	1914	1944	1974	2004	2044	2084	2274
Pointe	205	225	250	277	306	339	382	429	481	537	598	664	736	813	897	987	1082	1184	1292	1407	1527
Réserve hors PV	156	136	111	203	174	413	495	448	521	465	504	455	508	556	597	507	412	310	202	87	117

A6.2.2.2 Scénario Moyen

Tableau A6.12 : Cas A6 - Scénario Moyen - Capacité installée sur l'espace CEB (MW)

	2015	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	2035
Nangbeto (hydro)	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65
Adjarala (hydro)	0	0	0	0	0	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148
Biomasse	0	0	0	0	0	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
TAVCF (charbon)	0	0	0	0	0	250	250	375	375	375	375	375	500	500	500	625	750	750	875	1000	1000
CCGN (gaz)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Import Niger	0	0	0	0	0	0	0	0	0	0	200	200	200	200	200	200	200	200	200	200	200
Import Nigéria (TCN)	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
Contour Glob. (multi fuel)	102	102	102	102	102	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108
Maria Gleta (multi fuel)	0	0	0	119	119	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126
Import Ghana (VRA/CIE)	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
Centrale CAI (Jet A1, gaz)	64	64	64	64	64	64	64	64	64	64	64	0	0	0	0	0	0	0	0	0	0
TAG CEB (gaz)	40	40	40	40	40	40	40	40	40	40	40	0	0	0	0	0	0	0	0	0	0
Centrales diesel SBEE	24	24	24	24	24	24	24	24	24	24	24	0	0	0	0	0	0	0	0	0	0
Centrales diesel location	80	80	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solaire PV	0	0	70	140	140	280	300	320	340	360	400	420	440	480	500	540	580	600	640	680	740
Total hors solaire	655	655	655	774	774	1126	1126	1251	1251	1251	1451	1323	1448	1448	1448	1573	1698	1698	1823	1948	1948
Total, solaire inclus	655	655	725	914	914	1406	1426	1571	1591	1611	1851	1743	1888	1928	1948	2113	2278	2298	2463	2628	2688
Pointe	481	526	567	609	652	699	755	812	873	936	1014	1084	1157	1225	1298	1383	1472	1565	1664	1769	1878
Réserve hors PV	174	129	88	165	122	427	371	439	378	315	437	239	291	223	150	190	226	133	159	179	70

Tableau A6.13 : Cas A6 - Scénario Moyen - Capacité installée au Bénin (MW)

	2015	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	2035
Nangbeto (hydro)	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
Adjarala (hydro)	0	0	0	0	0	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
Biomasse	0	0	0	0	0	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
TAVCF (charbon)	0	0	0	0	0	250	250	375	375	375	375	375	500	500	500	625	750	750	875	1000	1000
CCGN (gaz)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Import Niger	0	0	0	0	0	0	0	0	0	0	100	100	100	100	100	100	100	100	100	100	100
Import Nigéria (TCN)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Import Ghana (VRA/CIE)	0	0	0	119	119	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126
Import Ghana (VRA/CIE)	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Centrale CAI (Jet A1, gaz)	64	64	64	64	64	64	64	64	64	64	64	0	0	0	0	0	0	0	0	0	0
TAG CEB (gaz)	20	20	20	20	20	20	20	20	20	20	20	0	0	0	0	0	0	0	0	0	0
Centrales diesel SBEE	24	24	24	24	24	24	24	24	24	24	24	0	0	0	0	0	0	0	0	0	0
Centrales diesel location	80	80	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solaire PV	0	0	70	140	140	210	220	230	240	250	270	280	290	310	320	340	360	370	390	410	440
Total hors solaire	361	361	361	480	480	752	752	877	877	877	977	869	994	994	994	1119	1244	1244	1369	1494	1494
Total, solaire inclus	361	361	431	620	620	962	972	1107	1117	1127	1247	1149	1284	1304	1314	1459	1604	1614	1759	1904	1934
Pointe	201	216	233	251	271	294	325	359	395	435	477	523	572	625	682	743	809	877	950	1027	1107
Réserve hors PV	160	145	128	229	209	458	427	518	482	442	500	346	422	369	312	376	435	367	419	467	387

A6.2.2.3 Scénario Faible

Tableau A6.14 : Cas A6 - Scénario Faible - Capacité installée sur l'espace CEB (MW)

	2015	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	2035
Nangbeto (hydro)	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65
Adjarala (hydro)	0	0	0	0	0	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148
Biomasse	0	0	0	0	0	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
TAVCF (charbon)	0	0	0	0	0	125	125	250	250	250	250	250	250	250	250	250	375	375	375	500	500
CCGN (gaz)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Import Niger	0	0	0	0	0	0	0	0	0	0	100	200	200	200	200	200	200	200	200	200	200
Import Nigéria (TCN)	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
Contour Glob. (multi fuel)	102	102	102	102	102	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108
Maria Gleta (multi fuel)	0	0	0	119	119	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126
Import Ghana (VRA/CIE)	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
Centrale CAI (Jet A1, gaz)	64	64	64	64	64	64	64	64	64	64	64	0	0	0	0	0	0	0	0	0	0
TAG CEB (gaz)	40	40	40	40	40	40	40	40	40	40	40	0	0	0	0	0	0	0	0	0	0
Centrales diesel SBEE	24	24	24	24	24	24	24	24	24	24	24	0	0	0	0	0	0	0	0	0	0
Centrales diesel location	80	80	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solaire PV	0	0	70	140	140	240	240	260	280	300	320	320	340	360	380	400	420	440	480	500	520
Total hors solaire	655	655	655	774	774	1001	1001	1126	1126	1126	1226	1198	1198	1198	1198	1198	1323	1323	1323	1448	1448
Total, solaire inclus	655	655	725	914	914	1241	1241	1386	1406	1426	1546	1518	1538	1558	1578	1598	1743	1763	1803	1948	1968
Pointe	438	476	501	555	581	608	642	678	714	755	798	840	885	933	983	1036	1092	1152	1214	1278	1343
Réserve hors PV	217	179	154	219	193	393	359	448	412	371	428	358	313	265	215	162	231	171	109	170	105

Tableau A6.15 : Cas A6 - Scénario Faible - Capacité installée au Bénin (MW)

	2015	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	2035
Nangbeto (hydro)	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
Adjarala (hydro)	0	0	0	0	0	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
Biomasse	0	0	0	0	0	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
TAVCF (charbon)	0	0	0	0	0	125	125	250	250	250	250	250	250	250	250	250	375	375	375	500	500
CCGN (gaz)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maria Gleta (multi fuel)	0	0	0	0	0	0	0	0	0	0	50	100	100	100	100	100	100	100	100	100	100
Import Nigéria (TCN)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Import Niger	0	0	0	119	119	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126
Import Ghana (VRA/CIE)	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Centrale CAI (Jet A1, gaz)	64	64	64	64	64	64	64	64	64	64	64	0	0	0	0	0	0	0	0	0	0
TAG CEB (gaz)	20	20	20	20	20	20	20	20	20	20	20	0	0	0	0	0	0	0	0	0	0
Centrales diesel SBEE	24	24	24	24	24	24	24	24	24	24	24	0	0	0	0	0	0	0	0	0	0
Centrales diesel location	80	80	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solaire PV	0	0	70	140	140	190	190	200	210	220	230	230	240	250	260	270	280	290	310	320	330
Total hors solaire	361	361	361	480	480	627	627	752	752	752	802	744	744	744	744	744	869	869	869	994	994
Total, solaire inclus	361	361	431	642	620	817	817	952	962	972	1032	974	984	994	1004	1014	1149	1159	1179	1314	1324
Pointe	197	210	224	238	254	272	295	321	348	377	408	441	476	514	554	596	641	689	740	793	847
Réserve hors PV	164	151	137	242	226	355	332	431	404	375	394	303	268	230	190	148	228	180	129	201	147

A6.2.3 Mix énergétique

Le code couleur utilisé est le suivant :

Figure A6.4 : Energie fournie (GWh). Cas A6. Scénario Haut. Espace CEB.

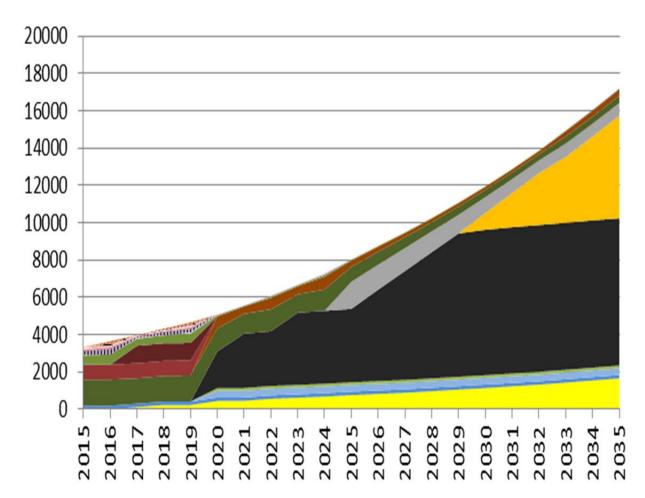


Figure A6.5: Energie fournie (GWh). Cas A6. Scénario Moyen. Espace CEB.

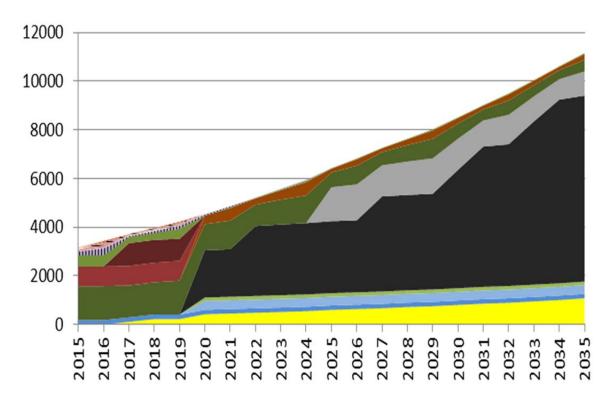
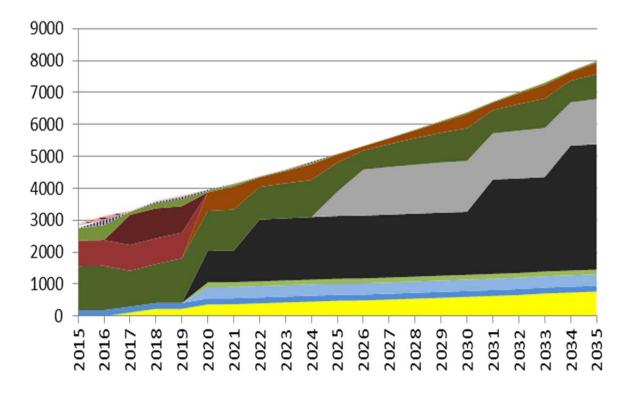



Figure A6.6 : Energie fournie (GWh). Cas A6. Scénario Faible. Espace CEB.

A6.2.4 Besoins en carburants et émissions de CO2

Tableau A6.16: Emissions et besoins en carburant. Cas A6. Scénario Haut

	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
LOLP (%)	0,31	0,63	0,94	0,22	0,51	0,17	0,10	0,21	0,13	0,35	0,11	0,37	0,28	0,24	0,22	0,25	0,27	0,27	0,13	0,18	0,21
kTCO2	922	1177	1395	1520	1741	2011	2687	2830	3523	3713	3523	4300	5071	5846	6620	7047	7441	7824	8191	8595	8993
kT charbon	0	0	0	0	0	823	1218	1227	1618	1634	1642	2048	2439	2827	3210	3256	3276	3287	3292	3300	3297
MPC/jr moy	6,1	7,9	3,0	4,5	6,7	14,0	8,7	13,8	9,6	16,0	7,5	5,6	4,5	3,9	3,7	20,0	37,3	54,9	70,8	89,3	108,6
MPC/jour max	9,9	10,1	9,7	9,9	10,1	46,4	38,9	43,9	39,4	43,9	33,0	21,6	18,2	16,6	16,7	32,4	53,9	76,9	97,7	121,4	145,4
Renouvelable	6%	5%	8%	10%	9%	22%	20%	20%	20%	19%	18%	17%	17%	16%	16%	15%	15%	14%	14%	14%	14%
TCO2/MWh	0,277	0,322	0,352	0,353	0,372	0,396	0,483	0,464	0,527	0,508	0,438	0,490	0,534	0,569	0,596	0,588	0,576	0,563	0,548	0,535	0,522

Tableau A6.17 : Emissions et besoins en carburant. Cas A6. Scénario Moyen

	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
LOLP (%)	0,21	0,40	0,60	0,10	0,18	0,06	0,11	0,04	0,09	0,19	0,04	0,36	0,14	0,31	0,57	0,32	0,21	0,46	0,29	0,18	0,42
kTCO2	816	1012	1316	1376	1458	1830	1929	2573	2674	2786	2598	2641	3396	3447	3510	4247	4978	5072	5793	6482	6611
kT charbon	0	0	0	0	0	810	817	1200	1214	1224	1236	1236	1632	1637	1643	2032	2409	2433	2803	3152	3192
MPC/jr moy	4,8	6,9	1,5	2,5	4,1	7,6	11,1	5,5	8,5	12,2	3,5	5,3	3,2	4,8	6,9	4,7	3,2	5,1	3,8	2,9	4,9
MPC/jour max	9,9	10,1	8,8	9,4	9,9	39,0	43,0	33,4	38,0	43,3	25,7	24,5	18,7	21,5	24,7	17,9	15,7	18,7	15,4	10,8	17,5
Renouvelable	6%	5%	8%	10%	10%	25%	24%	23%	22%	21%	20%	19%	19%	18%	18%	18%	17%	17%	16%	16%	16%
TCO2/MWh	0,258	0,293	0,355	0,347	0,344	0,404	0,397	0,493	0,479	0,467	0,404	0,386	0,467	0,450	0,435	0,497	0,551	0,532	0,575	0,610	0,590

Tableau A6.18: Emissions et besoins en carburant. Cas A6 Scénario Faible

	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
LOLP (%)	0,10	0,20	0,30	0,04	0,07	0,11	0,18	0,05	0,07	0,11	0,04	0,12	0,22	0,33	0,50	0,84	0,34	0,54	0,93	0,45	0,71
kTCO2	691	799	1266	1295	1238	1139	1211	1795	1852	1921	1798	1738	1762	1797	1840	1893	2630	2678	2725	3453	3507
kT charbon	0	0	0	0	0	411	411	807	812	817	820	822	823	824	825	823	1234	1236	1235	1634	1639
MPC/jr moy	2,6	4,5	0,5	1,1	1,6	12,6	15,6	6,4	8,3	10,7	5,3	2,7	3,7	5,0	6,8	9,1	4,9	6,8	8,9	5,4	7,2
MPC/jour max	9,4	9,5	6,8	8,5	9,6	46,6	48,8	36,5	39,5	43,5	35,1	22,9	24,4	25,8	27,3	27,2	24,2	27,3	26,3	22,4	23,5
Renouvelable	6%	6%	9%	11%	11%	27%	26%	25%	24%	24%	23%	22%	22%	21%	21%	20%	20%	19%	19%	19%	18%
TCO2/MWh	0,238	0,255	0,384	0,357	0,327	0,288	0,291	0,410	0,403	0,397	0,353	0,326	0,315	0,307	0,300	0,294	0,391	0,380	0,370	0,448	0,436

A6.2.5 Répartition des moyens de production

Le même principe de répartition est appliqué dans ce cas que dans le cas précédent ; c'est-à-dire que les centrales au charbon sont installées au Bénin, et que dans le cas d'installation de centrale au gaz une équité entre les deux pays est respectée afin de minimiser les transports d'énergie. Cependant comme les résultats montrent une prédominance du charbon cela mène à un fort déséquilibre entre les deux pays, le Bénin exportant une bonne partie de l'énergie produite vers le Togo. Les conclusions pour le solaire sont les même que dans le cas précédent et ne seront par reprise dans le présent paragraphe.

A6.2.5.1 Scénario Haut

2020 : 250 MW charbon au Bénin

• 2021 : 125 MW charbon au Bénin

• 2023 : 125 MW charbon au Bénin

• 2026: 125 MW charbon au Bénin

2027 : 125 MW charbon au Bénin

• 2028 : 125 MW charbon au Bénin

2029 : 125 MW charbon au Bénin

• 2030: 150 MW CCGN au Togo

2031: 150 MW CCGN au Togo

2032: 150 MW CCGN au Togo

• 2033: 150 MW CCGN au Togo

2034: 150 MW CCGN au Togo

• 2035 : 150 MW CCGN au Bénin

Au total il y aura 1000 MW de charbon au Bénin et 150 MW de CCGN; en prenant en compte les importations et les autres centrales déjà présentes dans le pays, la capacité totale installée hors solaire sera d'environ 1700 MW pour une pointe d'environ 1500 MW en 2035. Le Togo se verra installer 750 MW de CCGN entre 2030 et 2034. Les deux pays installeront 490 MW de solaire sur leur territoire entre 2020 et 2035; portant la capacité totale installée en 2035 à 630 MW pour le Bénin.

La capacité installée au Bénin (en comptant les importations) sera toujours supérieure à la pointe du pays. Au Togo par contre la demande est toujours supérieure à l'offre de 2015 à 2032 ; ce n'est qu'en 2033 que l'offre dépasse la demande. Sur l'espace CEB par contre il y a bien toujours suffisamment de moyen de production pour faire face à la demande : la réserve de marge est quasiment toujours de 100 MW (sauf en 2019)B.

A6.2.5.2 Scénario Moyen

2020 : 250 MW charbon au Bénin
2022 : 125 MW charbon au Bénin
2027 : 125 MW charbon au Bénin
2030 : 125 MW charbon au Bénin
2031 : 125 MW charbon au Bénin
2033 : 125 MW charbon au Bénin
2034 : 125 MW charbon au Bénin

Au total il y aura 1000 MW de charbon au Bénin; en prenant en compte les importations et les autres centrales déjà présentes dans le pays, la capacité totale installée hors solaire sera d'environ 1500MW pour une pointe d'environ 1100 MW en 2035. Le Togo ne se verra installer aucune centrale si ce n'est du solaire. Les deux pays installeront 300 MW de solaire sur leur territoire entre 2020 et 2035; portant la capacité totale installée en 2035 à 440MW pour le Bénin.

La capacité installée au Bénin (en comptant les importations) sera toujours supérieure à la pointe du pays. Au Togo par contre la demande est toujours supérieure à l'offre à partir de 2016, cette situation s'explique par l'hypothèse faite qu'il n'y aura qu'un seul port minéralier sur l'espace CEB et que celui-ci se trouvera au Bénin. Sur l'espace CEB par contre il y a bien toujours suffisamment de moyen de production pour faire face à la demande : la réserve de marge est quasiment toujours de 100MW (sauf en 2035).

A6.2.5.2 Scénario Faible

2020 : 125 MW charbon au Bénin
2022 : 125 MW charbon au Bénin
2031 : 125 MW charbon au Bénin
2034 : 125 MW charbon au Bénin

Au total il y aura 500 MW de charbon au Bénin; en prenant en compte les importations et les autres centrales déjà présentes dans le pays, la capacité totale installée hors solaire sera d'environ 1000 MW pour une pointe d'environ 850 MW en 2035. Le Togo ne se verra installer aucune centrale si ce n'est du solaire. Les deux pays installeront 190 MW de solaire sur leur territoire entre 2020 et 2035; portant la capacité totale installée en 2035 à 330 MW pour le Bénin.

A6.2.6 Réserve de marge

La capacité installée au Bénin (en comptant les importations) sera toujours supérieure à la pointe du pays. Au Togo par contre l'offre n'est supérieure à la demande que de 2015 à 2017 et de 2020 à 2031, cette situation s'explique par l'hypothèse faite qu'il n'y aura qu'un seul port minéralier sur l'espace CEB et que celui-ci se trouvera au Bénin. Sur l'espace CEB par contre il y a bien toujours suffisamment de moyen de production pour faire face à la demande : la réserve de marge est toujours supérieure à 100MW. La LOLP est toujours inférieure à 100% montrant bien que la demande est parfaitement satisfaite et que les délestages sont quasiment éliminés.

Plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

DAEM - MERPMEDER

Tome 3

Développement du réseau de transport

Rapport Final Aout 2015

RAPPORT FINAL

Elaboration du plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

Tome 3 : Développement du réseau de transport

Références du contrat : DAEM : 206/MEF/MERPMEDER/DNCMP/SP

IED: 2014/007

Client IDA

Consultant IED Innovation Energie Développement

2 chemin de la Chauderaie 69340 Francheville, France Tel: +33 (0)4 72 59 13 20 Fax: +33 (0)4 72 59 13 39

Site web: www.ied-sa.fr

Rédaction du document

	VERSION 1	VERSION 2	VERSION 3
Date	Avril 2015	Aout 2015	
Rédaction	CA/HP/PS	CA/HP/PS	
Relecture	CA/HP/PS	CA/HP/PS	
Validation	НР	HP	

Ce rapport a été rédigé par IED dans le cadre du contrat Elaboration du plan directeur de développement du sous-secteur de l'énergie électrique au Bénin à parti des informations collectées au cours des missions effectuées au Bénin et des échanges avec les personnes rencontrées. Il ne reflète pas nécessairement les opinions de la Banque Mondiale, du Ministère de l'Energie du Bénin, de la SBEE, de l'ABERME.

PLAN DIRECTEUR DE DEVELOPPEMENT DU SOUS-SECTEUR DE L'ENERGIE ELECTRIQUE AU BENIN

LISTE DES TOMES:

TOME 0: RESUME EXECUTIF

TOME 1: SCENARIOS DE DEMANDE

TOME 2: PLAN D'EXPANSION DES MOYENS DE PRODUCTION

TOME 3: DEVELOPPEMENT DU RESEAU DE TRANSPORT

TOME 4: ELECTRIFICATION RURALE

TOME 5 : ANALYSE FINANCIERE

TOME 6: PLAN D'ACTION

TOME 3 - TABLE DES MATIERES

1	INTRODUCTION	11
2	MODELISATION DU RESEAU	11
- 2.1		
2.2		
2.2.1		
2.2.2		
2.3	Générateurs	19
2.4	Réseau de transport	21
2.4.1	.1 Conducteurs utilisés	21
2.4.2	2 Lignes	22
2.5	Transformateurs	26
2.5.1	.1 Transformateurs existants	26
2.5.2	.2 Transformateurs futurs	27
2.5.2	2.1 Scénario haut	28
2.5.2	,	
2.5.2		
2.6	•	
2.6.1	·	
2.6.1 2.6.1		
2.6.1	,	
2.6.2		
2.6.2	2.1 Scénario Haut	35
2.6.2	,	
2.6.2	2.3 Scénario Faible	36
3	VALORISATION DES OUVRAGES	36
3.1	Références de coûts	36
3.2	Hypothèses de coûts	37

4 C c	DHERENCE AVEC LE PLAN PRODUCTION TRANSPORT DU WAPP	38
5 Ec	COULEMENT DE CHARGE	38
5.1	Ecoulement de charge 2015	39
5.1.1	Scénario Haut	
5.1.2	Scénario Moyen et Faible	
5.1.3	Ecoulement de charge en situation de contingence	
5.1.3.1	Lignes	40
5.1.3.2	Générateurs	
5.1.3.3 5.2	Transformateurs	
	Ecoulement de charge 2020.	
5.2.1	Ecoulement de charge simplifié – Scénario Haut	
5.2.2	Ecoulement de charge en situation de contingence	
5.2.2.1 5.2.2.2	Lignes	
5.2.2.3	Transformateurs	
5.3	Ecoulement de charges 2025	42
5.3.1	Ecoulement de charge en situation de contingence N-1	43
5.3.1.1	Lignes	43
5.3.1.2	Générateurs	
5.3.1.3	Transformateurs	
5.4	Ecoulement de charges 2030	
5.4.1	Scénario haut	
5.4.2	Ecoulement de charge en situation de contingence	
5.4.2.1 5.4.2.2	Lignes	
5.4.2.3	Transformateurs	
5.5	Ecoulement de charges 2035	
5.5.1	Ecoulement de charge en situation de contingence	46
6 Sт	ABILITE DYNAMIQUE	
6.1	Hypothèses	47
6.2	Résultats	48
6.2.1	CEB en ilotage	48
6.2.1.1	Fréquence	
6.2.1.2 6.2.1.3	Puissance Tension	
6.2.1.3	Court-circuit triphasé à SèmèKpodji	
6.2.2.1	2020	
6.2.2.2	2025	
6.2.3	Déconnexion-Reconnexion avec le Nigéria	52
6.2.3.1	Fréquence	
6.2.3.2	Puissance	
6.2.3.3 6.3	Tension Analyse des résultats	
	•	
ANNEX	E 1 : CARACTERISTIQUES DES NŒUDS	55

ANNEXE	2 : CHARGE AUX NŒUDS	. 58
ANNEXE	3 : CARACTERISTIQUES DES LIGNES	. 61
ANNEXE	4 : SCHEMAS UNIFILAIRES	65
7.1	Code couleur utilisé	65
7.2	Symboles utilisés	65

TABLE DES ILLUSTRATIONS

Liste des tableaux

Tableau 1 : Charges modélisées – Togo - Bénin	13
Tableau 2 : Postes sources ruraux	14
Tableau 3 : Groupes modélisés	19
Tableau 4 : Caractéristiques des conducteurs	22
Tableau 5 : lignes modélisées	22
Tableau 6 : Capacités de transformation au Togo	2 6
Tableau 7 : Capacité de transformation au Bénin	27
Tableau 8 : Transformateurs en service – scénario haut	2 8
Tableau 9 : Transformateurs de réserve – scénario haut	2 8
Tableau 10 : Nombre total de transformateurs – scénario haut	2 9
Tableau 11 : Date et nombre de transformateurs à acquérir – scénario Haut	29
Tableau 12: Nb de transformateurs en service	30
Tableau 13 : Nb de transformateurs de réserve	30
Tableau 14 : Nb total de transformateurs – scénario moyen	31
Tableau 15: Nb de transformateurs à acheter – scénario moyen	31
Tableau 16: Nb de transformateurs en service – scénario faible	32
Tableau 17 : Nb de transformateurs de réserve – scénario faible	32
Tableau 18 : Nb total de transformateurs – scénario faible	33
Tableau 19: Nb de transformateurs à acheter – scénario faible	33
Tableau 20: Moyens de compensation – Capacités – Scénario Haut	34
Tableau 21: Moyens de compensation – Capacités – Scénario Moyen	35
Tableau 22: Moyens de compensation – Capacités – Scénario Faible	35
Tableau 23: Moyens de compensation – Inductances – Scénario Haut	35
Tableau 24: Moyens de compensation – Inductances – Scénario Moyen	36
Tableau 25 : Moyens de compensation – Inductances – Scénario Faible	36
Liste des figures	
Figure 1 : Evolution des charge de la CEET	12
Figure 2 : Ecoulement de charge simplifié - 2015	39
Figure 3 : Ecoulement de charge simplifié - 2020	41
Figure 4 : Ecoulement de charges simplifié - 2025	42
Figure 5 : Ecoulement de charges simplifié 2030	44
Figure 6 : Ecoulement de charges simplifié 2035	46
Figure 7 : CEB en Ilotage - Evolution de la fréquence	48
Figure 8 : CEB en Ilotage – Evolution de la puissance	48
Figure 9 : CEB en Ilotage – Evolution de la tension	49
Figure 10 : Court-circuit triphasé à la production – Evolution de la fréquence – 2020	50
Figure 11 : Court-circuit triphasé à la production – Evolution de la puissance - 2020	50
Figure 12 : Court-circuit triphasé à la production – Evolution de la tension – 2020	51
Figure 13 : Court-circuit triphasé à la production – Evolution de la fréquence - 2025	51
Figure 14 : Court-circuit triphasé à la production – Evolution de la Puissance - 2025	52

Figure 15 : Court-circuit triphasé à la production – Evolution de la tension – 2025	52
Figure 16 : Court-circuit Ikéja – évolution de la fréquence	53
Figure 17 : Court-circuit Ikéja – évolution de la Puissance	53
Figure 18 : Court-circuit Ikéja – évolution de la Tension	54
Liste des cartes	
Carte 1 : Bénin, carte des réseaux Cotonou Porto-Novo Abomey-Calavi	16
Carte 2 : Bénin - carte des réseaux HTB (Nord)	17
Carte 3 : Bénin – carte des réseaux HTB (Sud)	18
Carte 4 : Localisation des postes de Lomé-Port	24

RESUME

1. Situation actuelle, travaux en cours et envisagés

Le réseau de la CEB est actuellement en train de subir des modifications conséquentes :

Interconnexion en 330 kV des postes de Sakété (Bénin) et Davié (Togo) pour renforcer les interconnexions avec les pays voisins (Ghana et Nigéria). Toutefois le plein bénéfice de cette interconnexion ne sera obtenu qu'après la résolution des problèmes de réglage et de stabilité du réseau nigérian qui permettra l'interconnexion effective entre le Nigéria et le Ghana.

Raccordement du nord du Bénin dans un avenir proche au poste de Sakété via une ligne double terne entre Onigbolo et Parakou qui se prolongera jusqu'à l'extrême nord du Bénin à Malanville. Ces lignes vont sécuriser l'approvisionnement des zones septentrionales alimentées jusque-là via l'unique ligne raccordant Atakpamé à Kara.

Le bouclage du nord du réseau de la CEB sera réalisé par la connexion Natitingou-Kara.

La construction de la centrale hydroélectrique d'Adjarala sera associée à la construction de plusieurs lignes qui viendront compléter le bouclage du sud du Bénin : Adjarala-Notsé et Adjarala-Avakpa

La situation décrite présente un réseau de la CEB dont l'ossature principale est largement dessinée. Le Bénin et le Togo sont deux pays longilignes qu'il parait naturel d'organiser d'un point de vue électrique par rapport à deux dorsales nord-sud. Ces deux dorsales reliant Davié à Kara (Togo) et Sakété à Malanville (Bénin) sont déjà réalisées ou en cours de construction. Afin d'avoir un schéma d'exploitation sécurisé, il est nécessaire de boucler en plusieurs points ces deux axes Sud - Nord, ce qui est déjà réalisé.

La majorité de la consommation et de la production, tant au Bénin qu'au Togo se trouve le long de la côte au niveau des capitales. Il était nécessaire de relier ces deux points de consommation – production par une interconnexion forte d'un niveau de tension élevé, ce qui est en cours de réalisation au moyen de la ligne 330 kV Sakété-Davié.

2. Résultats de l'étude concernant le développement des réseaux et la stabilité dynamique

L'enjeu principal de la présente étude est double : trouver des solutions pour évacuer la puissance générée sur la côte à Lomé et Cotonou et amener cette énergie à tous les consommateurs sur l'ensemble du territoire.

Le plan d'expansion des moyens de production ne précise pas la localisation géographique des futures centrales au-delà de leur répartition nationale. Etant donné que les ressources primaires devront être importées par la mer les centrales se trouveront près des ports de Lomé et Cotonou, ou

au débouché du gazoduc, c'est-à-dire au niveau du poste du site de Lomé-Port ou de Maria-Gléta. A partir de cette hypothèse, l'étude du réseau a identifié les investissements suivants :

2.1 Développement du réseau de transport de la CEB

Ligne 330 kV Davié - Lomé

Les lignes en 161 kV existantes à Lomé ne permettront pas d'évacuer la puissance générée dans le scénario haut. Il sera nécessaire de construire une liaison en 330 kV vers Davié depuis Lomé. Cette ligne est nécessaire dans les Scénario Haut (2030) mais ne paraît pas nécessaire dans les Scénarios Moyen et Faible. La construction de cette ligne devra être coordonnée avec la construction de nouvelles centrales débitant sur le poste de Lomé-Port. En effet les lignes actuelles ne pourront faire transiter plus de 150 MW supplémentaires.

Ligne 330 kV SèmèKpodji -Saketé

Le site de Maria-Gléta ne permettra pas d'implanter plus de 450 MW supplémentaires environ. En effet l'évacuation de la puissance doit se faire par quatre lignes 161 kV permettant tout au plus de véhiculer chacune 150-200 MW, le reste étant consommé sur place. Il faudra donc créer un nouveau poste d'envergure dans les environs de Cotonou. L'ouest de Cotonou est bien alimenté par Maria-Gléta qui dispose d'infrastructures de production et de transport. Le poste de Védoko est situé en plein centre-ville et il parait très compliqué de rajouter des lignes pour augmenter l'importation d'énergie vers Cotonou au niveau de ce poste. Il manque un point d'injection de puissance à l'est de Cotonou. Le site de SèmèKpodji paraît une bonne option, surtout s'il est couplé à la construction de nouvelles centrales de production. Il conviendra de construire une nouvelle ligne 330kV entre SèmèKpodji et Saketé pour amener vers Cotonou l'énergie disponible sur la dorsale sud. La construction de cette ligne sera nécessaire aux alentours de 2020 si la demande suit le Scénario Haut ou Moyen et que la stratégie de production à prédominance charbon se réalise. Dans le Scénario Faible cette ligne n'est pas nécessaire d'ici à 2035.

Interconnexions Nord

Deux autres grosses infrastructures de transport seront nécessaires dans les trois scénarios de demande : l'interconnexion du nord du réseau de la CEB avec (1) le Niger et (2) le Nigéria. Ces interconnexions permettront d'alimenter les charges septentrionales sans avoir à faire transiter l'énergie le long des axes Atakpamé-Kara et Onigbolo-Parakou, ce qui engendrerait des pertes conséquentes. Des interconnexions 330 kV entre Malanville et Dosso au Niger et Bembéréké et Kainji seraient très profitables pour l'exploitation des réseaux nord de la CEB. Par contre le prolongement de la dorsale médiane prévu par le WAPP entre Kainji et Kara puis Yendi au Ghana ne parait pas nécessaire au vu des charges effectives au nord du Togo. Cette ligne poserait plus de problèmes de compensation de l'énergie réactive qu'elle n'apporterait de bénéfices à l'écoulement de charge dans cette zone. L'interconnexion avec le Niger devra être effective en 2025, celle avec le nord Nigéria en 2030.

Peu d'autres lignes importantes seront nécessaires. Il faudra cependant envisager de renforcer la liaison Parakou-Djougou et Onigbolo-Sakété dans le scénario haut.

2.2 Développement du réseau de transport de la SBEE

Le fort développement de la demande en dehors des grands centres urbains que sont Cotonou, Porto-Novo, Abomey-Calavi Abomey Bohicon et Parakou, va poser la question du développement d'un réseau 63 kV conséquent pour alimenter toutes ces charges éloignées des centres de production et du réseau de transport. Le consultant préconise la construction des lignes 63 kV suivantes:

Avakpa-Ouidah-Grand Popo

- Adjaralla-Aplahoué-Lalo

- Avakpa-Zé-Toffo

- Dassa-Savalou

- Bohicon-Agbanzinzoun

- Ogoutedo-Ouesse-Banté-Bassila

- Bembereke-Alafiarou-Perere

- Bembereké-Sinende-Pehunco-Kerou-Banikoara

- Lokossa-Houevogbe

La plupart de ces lignes étant en antenne, il sera possible de les boucler pour sécuriser l'approvisionnement, mais les investissements nécessaires seront importants au regard des gains de fiabilité, d'autant que le réseau MT pourra servir de secours partiel.

La plupart de ces zones sont déjà alimentées par des réseaux MT en 20 ou 33 kV, mais les distances à couvrir sont bien trop grandes pour qu'à terme, les conditions normales de tension soient respectées. Il faut dès à présent prévoir le développement de réseaux 63 kV. Des postes sources additionnels 161/MT seront également à prévoir le long des lignes 161 kV existantes :

- Adjohoun (ligne Sakété-Vedocko)
- Dogbo (Ligne Avakpa-Adjarala)
- Pobe (ligne Sakete-Onigbolo)
- Cove (Ligne Onigbolo-Bohicon) Bohicon-Rural (ligne Onigbolo-Bohicon)
- Tchatchou (ligne Onigbolo-Parakou)
- Ndali (ligne Parakou-Bembéréké)
- Tanguieta (ligne Natitingou-Porga)

Les villes de Cotonou et d'Abomey-Calavi ne sont aujourd'hui alimentées que par un nombre restreint de postes sources. Il faudra envisager de renforcer ce réseau par des postes secondaires pour soulager les jeux de barres et les transformateurs HTB/HTA. Un réseau de distribution 63 kV doit être développé entre Abomey-Calavi, Cotonou, SèmèKpodji et Porto-Novo. Quatre postes sources supplémentaires 63/15 kV doivent être créés à Cotonou et Abomey-Calavi pour soulager les postes existants. Le réseau 63 kV correspondant doit être développé. Une tranche 63 kV doit être rajoutée à Maria-Gléta pour évacuer la puissance qui y sera produite directement vers les postes sources avoisinants de Calavi, Cococodji et Godomey sans avoir à transiter par la ligne 161 kV entre Maria-Gléta et Védoko qui sinon sera très vite surchargée.

2.3 Stabilité dynamique

Les études de stabilité dynamique ont montré que le réseau était stable tant en fonctionnement iloté, c'est-à-dire coupé de ses voisins, que lorsque les interconnexions avec le Nigéria et le Ghana sont en service.

1 Introduction

Ce tome présente les résultats des études de réseau qui ont été effectuées dans le cadre de l'élaboration du plan directeur de développement du sous-secteur de l'énergie électrique au Bénin. Le champ de l'étude couvre le Bénin mais aussi le Togo. En effet ces deux pays sont les mandants de la CEB qui exploite le réseau de transport commun pour leur compte.

L'objet de l'étude est de déterminer quels ouvrages seront nécessaires au transport de l'énergie produite par les centrales de productions envisagées dans le tome 2 du plan directeur relatif aux moyens de production. Dans le cadre de cette étude, le réseau de la CEB a été modélisé pour analyser les écoulements de charge entre les sites de production et de consommation de l'électricité. Il a été vérifié que pour les trois scénarios de demande et les principaux cas envisagés pour la production, le transport et la répartition de l'énergie électrique puisse se faire dans des conditions satisfaisantes : plan de tension à +/-10% de la tension nominale, pertes dans des proportions acceptables.

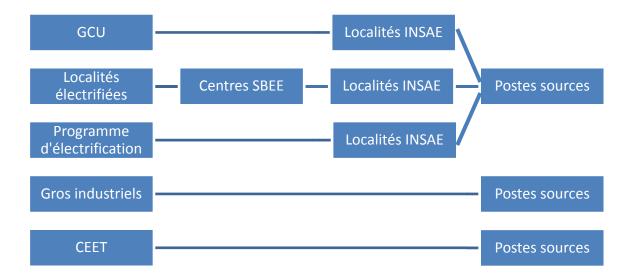
Le réseau a été analysé en fonctionnement normal et perturbé. Les études d'écoulement en contingence N-1 montrent que la perte de lignes, de groupes ou de transformateurs ne perturberont pas de façon significative le fonctionnement du réseau et la distribution de l'électricité aux consommateurs.

2 Modélisation du réseau

La modélisation du réseau existant de la CEB est principalement issue des données récoltées auprès de la direction des études de la CEB et notamment du modèle proposé par SNC-Lavalin dans le cadre de l'étude de l'exploitation en bouclage du réseau Sud de la CEB (Nov 2012) remise au consultant.

2.1 Nœuds

Les nœuds représentent les jeux de barres dont les niveaux de tensions modélisés sont : 20kV ; 33kV ; 63kV ; 161kV ; 330kV. Les charges de la SBEE et de la CEET sont modélisées sur les jeux de barre 20 et 33kV. Les gros industriels sont connectés sur les barres 63 kV ou 20/33 kV suivant leur connexion réelle.


La variation de tension admise est de +/- 10% de la tension nominale.

La liste, la localisation et le niveau de tension des nœuds sont présentés en annexes.

2.2 Charges

Toute la finesse du modèle de prévision de la demande ne peut être retranscrite au niveau du modèle du réseau de transport. Le schéma suivant explique comment les charges ont été réparties par poste :

La modélisation des charges est faite sur la base d'une année de référence et d'un taux moyen de croissance entre 2015 et 2035. Les charges pour le Bénin ont été calculées sur la base de la prévision de la demande réalisée pour la présente étude, les charges et leur évolution pour le Togo sont tirées de la prévision de la demande de la CEB. La répartition des charges suivant les postes sources du Togo est tirée de l'étude SNC-Lavallin. La présentation détaillée des charges par nœuds figure en annexe 2.

L'évolution de la charge de la CEET est la suivante :

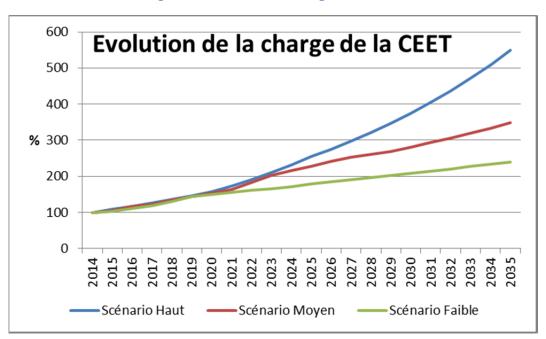


Figure 1 : Evolution des charge de la CEET

L'évolution de la charge est d'environ 9%, 6% et 4% par an suivant les scénarios.

Tableau 1 : Charges modélisées - Togo - Bénin

Chai	rge	e (MW)	2015	2020	2025	2030	2035
.e		Total Bénin	217	322	562	871	1390
Scénario	Haut	Total Togo	253	381	593	855	1237
Sce	_	Total CEB	470	703	1155	1726	2627
rio	u.	Total Bénin	216	291	465	660	966
Scénario	Moye	Total Togo	239	390	523	636	781
Sc	Σ	Total CEB	455	681	988	1296	1748
rio	e	Total Bénin	215,9	278	419	564	773
Scénario	Faible	Total Togo	193,1	286	338	389	445
S	Ľ	Total CEB	409,0	565	757	953	1218

2.2.1 Postes sources urbains

Deux types de postes sources ont été rajoutés : des postes sources dans les zones rurales pour éviter que le réseau MT soit surchargé, et des postes sources en zone urbaine dans les agglomérations de Cotonou et de Porto-Novo. Les plus gros transformateurs HTB/HTA utilisés ont une puissance nominale de 40 MVA. Tous les postes sources en zone urbaine dont la charge dépassait environ 2x40x0,9 = 70 MW ont été dédoublés pour pouvoir accueillir en 2035 deux transformateurs de 40 MVA sur leurs deux demi-jeux de barres.

Les postes concernés sont : Vedocko, Akpakpa et Porto-Novo. Trois nouveaux postes sources sont créés à Cotonou et Abomey-Calavi pour reprendre la charge du poste de Vedocko. Le consultant propose les renforcements suivants :

- transformer le poste de répartition de Godomey en poste source 63/15 éventuellement blindé.
- créer un nouveau poste source appelé Agamandin dans la présente étude, à Abomey-Calavi, à mi-chemin entre le poste de Calavi déjà à l'étude et le poste de répartition de Godomey.
- créer un nouveau poste à Cotonou qui reprendrait la dernière partie du poste de Vedoko. Ce dernier poste dont la localisation n'a pas été étudiée est appelé Cotonou dans la présente étude.

La charge actuelle du poste de Vedoko sera donc répartie entre quatre nouveaux postes. Ces postes apparaissent dès 2020. Le consultant estime que leur charge sera d'environ 65 MW à l'horizon 2035 dans le scénario haut, de 40 et 35 MW dans les scénarios moyen et faible. Les départs du poste de Vedoko devront être reconfigurés entre ces trois nouveaux postes.

De même, le poste d'Akpakpa devra être restructuré pour partager sa charge avec un nouveau poste qui sera à mi-chemin entre Akpakpa et Sémé. Il devra alimenter la moitié environ de la charge du poste d'Akpakpa. Ce nouveau poste est appelé Sekandji dans la présente étude et apparait en 2030. En 2035 la charge de ces deux postes sera d'environ 60 MW dans le scénario haut, et de 40 MW dans les scénarios moyen et faible.

Le poste de Porto-Novo devra également faire l'objet d'une reconfiguration pour ne pas dépasser une charge de 70 MW à l'horizon 2035 dans le scénario haut. Le consultant a considéré que la moitié de sa charge pouvait être reportée sur le nouveau poste de Tanzoun. En 2035, ces deux postes desserviront ensemble 55 MW dans le scénario haut, et environ 30 MW dans les scénarios moyen et faible.

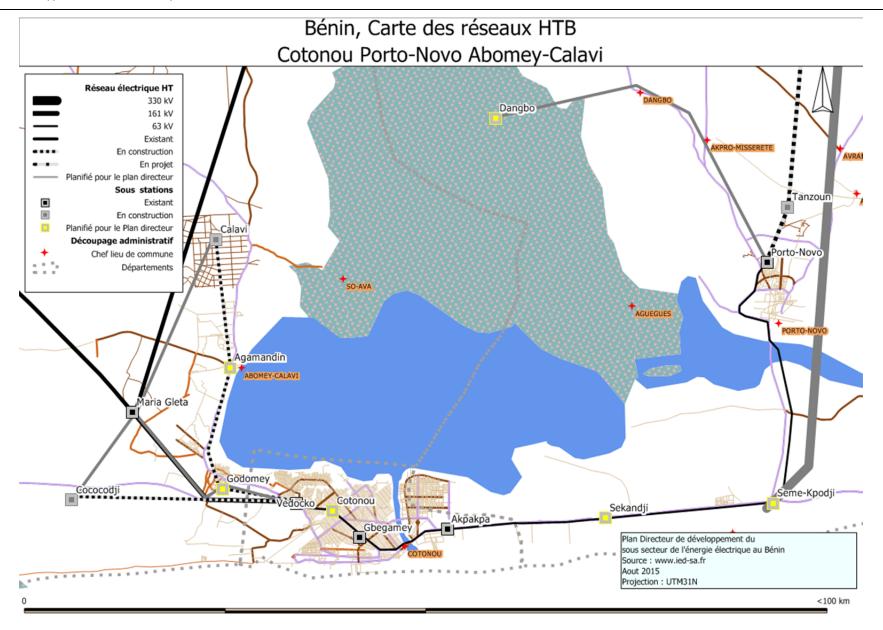
Un poste source est également créé à Sémé-Kpodji.

Une reconfiguration du poste source de Bohicon est également à prévoir. Il faudra créer un nouveau poste pour reprendre uniquement les départs ruraux. Le poste dédié à la zone urbaine desservira alors environ 60 MW dans le scénario haut, 40 et 35 MW dans les scénarios moyen et faible. Un poste au niveau d'Agbanzinzoun est également à prévoir pour alimenter la zone rurale au sud de Bohicon.

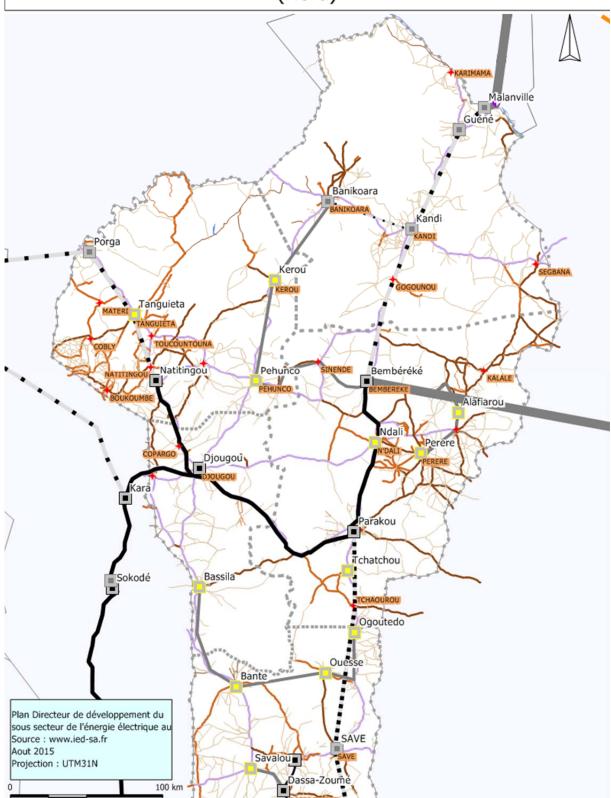
2.2.2 Postes sources ruraux

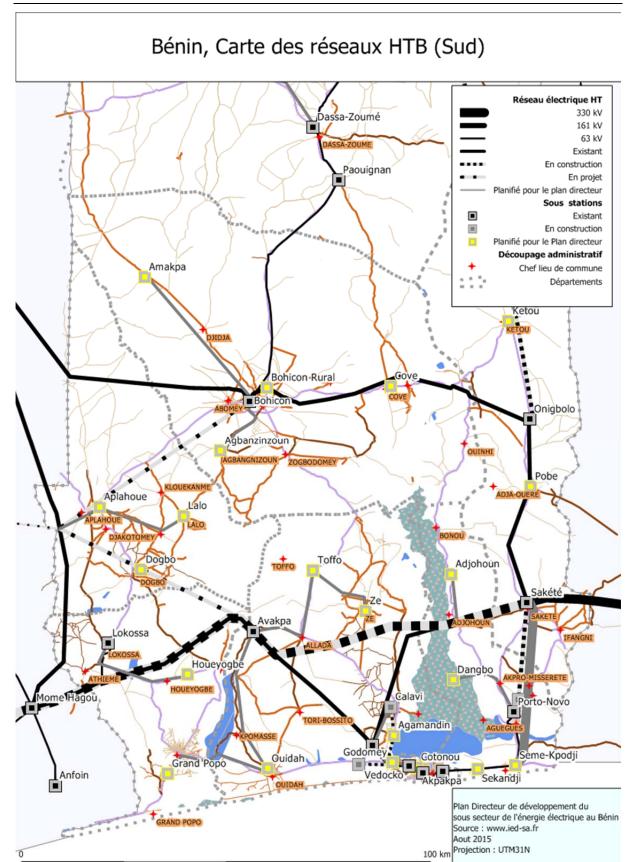
Les postes sources suivants ont été ajoutés en zone rurale pour réduire la distance à couvrir par les réseaux MT. L'horizon de mise en service de ces postes est 2025.

Tableau 2: Postes sources ruraux


Nœuds	Localisation	Tension (kV)	Alimentation
Adjohoun33	Adjohoun	33	en coupure sur la ligne Sakete-Vedocko
Agbanzin20	Agbanzinzoun	20	Nouvelle ligne 63kV
Alafiaro33	Alafiarou	33	Nouvelle ligne 63kV
Amakpa	Amakpa	63	Nouvelle ligne 63kV
Aplahoue20	Aplahoue	20	Nouvelle ligne 63kV
Banikoar33	Banikoara	33	Nouvelle ligne 63kV
Bante33	Bante	33	Nouvelle ligne 63kV
Bassila33	Bassila	33	Nouvelle ligne 63kV
BohicRur20	Bohicon- Rural	20	En coupure sur la ligne Onigbolo-Bohicon
Cove20	Cové	20	En coupure sur la ligne Onigbolo-Bohicon
Dangbo20	Dangbo	20	Nouvelle ligne 63kV
Dogbo20	Dogbo	20	En coupure sur la ligne Adjarala-Avakpa
GrandPop20	Grand Popo	20	Nouvelle ligne 63kV
Houeyogb20	Houeyogbe	20	Nouvelle ligne 63kV
Kerou33	Kerou	33	Nouvelle ligne 63kV
Ketou20	Ketou	20	En coupure sur la ligne Onigbolo-Parakou
Lalo20	Lalo	20	Nouvelle ligne 63kV
Ndali33	Ndali	33	En coupure sur la ligne Parakou-Bembéréké
Ogoutedo33	Ogoutedo	33	En coupure sur la ligne Onigbolo-Parakou
Ouesse33	Ouesse	33	Nouvelle ligne 63kV
Ouidah20	Ouidah	20	Nouvelle ligne 63kV
Pehunco33	Pehunco	33	Nouvelle ligne 63kV
Perere33	Perere	33	Nouvelle ligne 63kV
Pobe20	Pobe	20	En coupure sur la ligne Sakete-Onigbolo

Nœuds	Localisation	Tension (kV)	Alimentation
Savalou33	Savalou	33	Nouvelle ligne 63kV
Save_20	Save	20	En coupure sur la ligne Onigbolo-Parakou
Sinende33	Sinende	33	Nouvelle ligne 63kV
Tanguiet33	Tanguieta	33	En coupure sur la ligne Natitingou-Porga
Tchatcho33	Tchatchou	33	En coupure sur la ligne Onigbolo-Parakou
Toffo20	Toffo	20	Nouvelle ligne 63kV
Ze20	Ze	20	Nouvelle ligne 63kV


Une rame 63kV est ajoutée à Avakpa en 2025 pour alimenter les postes sources ruraux de Toffo, Zé, Ouidah et Grand Popo. Ces postes sources pourraient également être raccordés via les sous-stations de Calavi et Cococodji, mais il est préférable de séparer les réseaux urbains et ruraux. De plus l'option de l'alimentation via Avakpa permet de soulager les transits dans les réseaux souterrains urbains d'Abomey-Calavi. Pour des raisons de sécurité n-1 on peut tout à fait envisager de construire les liaisons Calavi-Ze et Cococodji-Ouidah ; cela sécuriserait à la fois les postes urbains et les postes ruraux.



Bénin, Carte des réseaux HTB (Nord)

Carte 2 : Bénin - carte des réseaux HTB (Nord)

Carte 3: Bénin – carte des réseaux HTB (Sud)

2.3 Générateurs

Les groupes suivants sont présents dans le modèle :

Tableau 3 : Groupes modélisés

		Puis	sance installé	e(MW)			
		2015	2020	2025	2030	2035	
	Scénario Haut prédominance Charbon (A5)	20+8x8=84	20+8x8+ 120= 204	20+8x8+ 120= 204	120	120	
	Scénario Haut prédominance Gaz (B5)	20+8x8=84	20+8x8+ 120= 204	20+8x8+ 120= 204	120	120	
Maria Gleta 161kV	Scénario Moyen prédominance Charbon (A5)	20+8x8=84	20+8x8+ 120= 204	20+8x8+ 120= 204	120	120	
Maria 16	Scénario Moyen prédominance Gaz (B5)	20+8x8=84	20+8x8+ 120= 204	20+8x8+ 120= 204	120	120	
	Scénario Faible prédominance Charbon (A5)	20+8x8=84	20+8x8+ 120= 204	20+8x8+ 120= 204	120	120	
	Scénario Faible prédominance Gaz (B5)	20+8x8=84	20+8x8+ 120= 204	20+8x8+ 120= 204	120	120	
	Scénario Haut prédominance Charbon (A5)	0	450	450	450	450	
	Scénario Haut prédominance Gaz (B5)	0	450	450	600	600	
Maria Gleta 330kV	Scénario Moyen prédominance Charbon (A5)	Nœud non présent					
Maria 33	Scénario Moyen prédominance Gaz (B5)	0	450	450	600	900	
	Scénario Faible prédominance Charbon (A5)		Nœ	ud non présent			
	Scénario Faible prédominance Gaz (B5)	0	450	450	600	600	

Puissance installée(MW)							
	2015	2020	2025	2030	2035		
Scénario Haut prédominance Charbon (A5)	20+100=120	20+100=120	20+100=120	100	100		
Scénario Haut prédominance Gaz (B5)	20+100=120	20+100+150 =270	20+100+150 =270	100+150=25 0	100+150=25 0		
Scénario Moyen prédominance Charbon (A5)	20+100=120	20+100=120	20+100=120	100	100		
Scénario Moyen prédominance Gaz (B5)	20+100=120	20+100=120	20+100+150 =270	20+100+2x1 50=420	20+100+2x1 50=420		
Scénario Faible prédominance Charbon (A5)	20+100=120	20+100=120	20+100=120	100	100		
Scénario Faible prédominance Gaz (B5)	20+100=120	20+100=120	20+100=120	20+100+150 =270	20+100+ 150 = 270		
Scénario Haut prédominance Charbon (A5)	0	0	0	0	100+5x150= 850		
Scénario Haut prédominance Gaz (B5)				3x150=450	5x150=750		
Scénario Moyen prédominance Charbon (A5)		No	eud non prése	nt			
Scénario Moyen prédominance Gaz (B5)	Nœud non présent						
Scénario Faible prédominance Charbon (A5)		No	eud non prése	nt			
Scénario Faible prédominance Gaz (B5)		No	eud non prése	nt			
	prédominance Charbon (A5) Scénario Haut prédominance Gaz (B5) Scénario Moyen prédominance Charbon (A5) Scénario Moyen prédominance Gaz (B5) Scénario Faible prédominance Charbon (A5) Scénario Faible prédominance Gaz (B5) Scénario Haut prédominance Charbon (A5) Scénario Haut prédominance Charbon (A5) Scénario Haut prédominance Charbon (A5) Scénario Moyen prédominance Charbon (A5) Scénario Moyen prédominance Charbon (A5) Scénario Faible prédominance Gaz (B5) Scénario Faible prédominance Charbon (A5) Scénario Faible prédominance Charbon (A5)	Scénario Haut prédominance Charbon (A5) Scénario Moyen prédominance Gaz (B5) Scénario Faible prédominance Charbon (A5) Scénario Faible prédominance Gaz (B5) Scénario Faible prédominance Gaz (B5) Scénario Haut prédominance Gaz (B5) Scénario Haut prédominance Gaz (B5) Scénario Moyen prédominance Gaz (B5) Scénario Moyen prédominance Charbon (A5) Scénario Moyen prédominance Gaz (B5) Scénario Faible prédominance Gaz (B5) Scénario Faible prédominance Charbon (A5) Scénario Faible prédominance Gaz (B5)	Scénario Haut prédominance (Charbon (A5) Scénario Moyen prédominance Gaz (B5) Scénario Faible prédominance Gaz (B5) Scénario Haut prédominance Gaz (B5) Scénario Moyen prédominance Gaz (B5) Scénario Faible prédominance Gaz (B5) Scénario Faible prédominance Gaz (B5) Scénario Haut prédominance Gaz (B5) Scénario Moyen prédominance Gaz (B5) Scénario Moyen prédominance Gaz (B5) Scénario Moyen prédominance Gaz (B5) Scénario Faible Prédominance Gaz (B5) Scénario F	Scénario Haut prédominance Gaz (B5) Scénario Faible prédominance Gaz (B5) Scénario Haut prédominance Gaz (B5) Scénario Moyen prédominance Gaz (B5) Scénario Moyen prédominance Gaz (B5) Scénario Moyen prédominance Gaz (B5) Scénario Faible prédominance Gaz (B5) Scénario Haut prédominance Gaz (B5) Scénario Moyen prédominance Gaz (B5) Scénario Moyen prédominance Gaz (B5) Scénario Moyen prédominance Gaz (B5) Scénario Faible prédominance Gaz (B5)	Scénario Haut prédominance Charbon (AS) 20+100=120 20+100=120 20+100=120 20+100=120 20+100=120 100 Scénario Haut prédominance Gaz (BS) 20+100=120 20+100=120 20+100=150 20+100=150 100+150=25 20 Scénario Moyen prédominance Charbon (AS) 20+100=120 </td		

		Puissa	nce installée(N	ИW)		
		2015	2020	2025	2030	2035
	Scénario Haut prédominance Charbon (A5) Scénario Haut		250	500	1000	1000
	prédominance Gaz (B5)			250	250	875
Seme Kpodji	Scénario Moyen prédominance Charbon (A5)		250	500	625	1000
Seme	Scénario Moyen prédominance Gaz (B5)					125
	Scénario Faible prédominance Charbon (A5)		250	250	375	500
	Scénario Faible prédominance Gaz (B5)					250
	Adajaralla		147	147	147	147
les	Nangbéto	65	65	65	65	65
Groupes présents dans tous les Scénarios	Importation TCN Sakete	200	200	200	100	100
ésents dan Scénarios	Importation TCN Bembereke				100	100
sen cén	Importations Niger			200	200	200
pré S	Contour Global	100	100	100	100	100
sadno.	Centrale Dual Fuel Maria-Gléta		120	120	120	120
้ อั	Production Diesel SBEE	84	84	84	0	0

Les caractéristiques des diagrammes P,Q des groupes n'ont pas pu être collectées. Comme la plus grande partie des groupes étudiés n'existe pas encore les simplifications suivantes ont été faites :

Qmax = 0,66*Pmax Qmin = -0,5*Qmax

2.4 Réseau de transport

2.4.1 Conducteurs utilisés

Comme l'étude de référence de SNC-Lavalin, la présente étude base ses résultats sur un catalogue de 4 conducteurs :

Tableau 4 : Caractéristiques des conducteurs

Nom du type de ligne	Résistance série (ohms/km)	Réactance série (ohms/km)	Susceptance de shunt (nF/km)	Courant max. (A)	Résistance homopolaire (ohms/km)	Réactance homopolaire (ohms/km)
177mm²	0,1835	0,4207	17,5	500	0,36	1,37
185mm²	0,14	0,39	16,1	871	0,014	81,135
253mm²	0,1372	0,4095	18,1	516	0,375	1,138
430mm²	0,0446	0,332	24,1	1358	0,14	0,707

2.4.2 Lignes

Les caractéristiques des lignes (longueurs, type de conducteur utilisé) sont présentées en annexe.

Les études ont été faites pour les années 2015, 2020, 2025, 2030 et 2035. La date optimale de mise en service de ces nouvelles lignes peut être intermédiaire. Des études plus fines seraient nécessaires pour déterminer les dates optimales. Le tableau suivant reprend les principales lignes ajoutées au réseau. Plus de détails sur l'opportunité de certaines de ces lignes sont donnés plus bas.

Tableau 5 : lignes modélisées

		Date d'arrivée		
Ligne	Tension (kV)	Scénario Haut	Scénario Moyen	Scénario Faible
Onigbolo-Malanville	161	2020	idem	Idem
Kara-Cinkasse	161	2020	idem	Idem
Mango-Porga-Natitingou	161	2020	idem	idem
Boucle Calavi-Cococodji- Vedocko	63	2020	idem	idem
Sakete-Tanzoun	161	2020	idem	idem
Davie-Legbassito	161	2020	idem	idem
Notse-Adjarala Notse-Davie Notse-Atakpame	161	2020	idem	idem
Doublement liaison Parakou- Djougou	161	2025	N'apparait pas dans ce scénario	N'apparait pas dans ce scénario
Lome Port-Davie (330kV)	330	2030	N'apparait pas dans ce scénario	N'apparait pas dans ce scénario
Dosso-Malanville (330kV)	330	2025	2025	2025
Doublement de la liaison Malanville-Guéné	161	2025	2025	2025
Extension du réseau 63kV de la SBEE pour l'électrification rurale	63	2025	idem	ldem
Kainji-Bembereke (330kV)	330	2030	idem	idem
Sakete-SemeKpodji (330kV)	330	2020 (Charbon) 2023 (Gaz)	2020 (Charbon) 2031 (Gaz)	2020 (Charbon) 2032 (Gaz)
Renforcement de la liaison Akapakpa-SemeKpodji	63	2025	2035	2035

- <u>Doublement de la liaison Parakou-Djougou.</u>

Cette ligne est nécessaire uniquement dans le scénario haut et sert à transiter de la puissance vers le nord Togo. Elle est aussi nécessaire en cas de perte de la première ligne pour assurer la continuité de service en secours. Elle n'est pas nécessaire dans les scénarios moyen et faible.

- Ligne Kainji-Bembereke

Cette ligne fait partie de la dorsale médiane envisagée par le WAPP. Elle n'est nécessaire qu'à partir de 2030. Le prolongement de cette ligne jusqu'à Kara, puis vers le Ghana, comme envisagé par le WAPP pose plus de problèmes qu'elle n'en résout. En effet le modèle de charge utilisé dans cette étude montre que les charges de Kara ne sont pas suffisantes pour justifier sa construction. Par contre la mise en service d'une telle ligne 330 kV sur une telle distance engendre de grands appels d'énergie réactive qu'il faut compenser aux nœuds de Kara et Bembéréké. Le maintien du plan de tension avec la mise en service de cette ligne n'est pas facile. C'est pourquoi le consultant a préféré ne pas poursuivre la dorsale médiane au-delà de Bembereke. Dans le cadre strict de l'alimentation des charges de la CEB la ligne Bembereke-Kara n'est pas nécessaire. Des études plus poussées prenant en compte les charges du Ghana pourraient conduire à justifier la construction de cette interconnexion entre le Nigéria et le Ghana.

- Ligne 330 kV Dosso-Malanville et doublement de la ligne Malanville – Guéné (161kV)

Le plan d'expansion des moyens de production table sur l'import de 200 MW en provenance du Niger. Ces importations se feront par la construction d'une ligne 330 kV entre Dosso (Niger) et le Bénin. Selon les informations collectées à la CEB, la ligne partant de Parakou vers le Nord n'est en double terne que jusqu'à Guéné. Le transit des 200 MW du Niger vers les centres de consommation du nord Bénin nécessite le doublement de la liaison Guéné-Malanville en 161 kV.

La construction de ces deux interconnexions permettra d'éviter de faire transiter beaucoup de puissance entre le sud et le nord de l'espace de la CEB. Le nord du Bénin et du Togo seront quasi-exclusivement alimentés via ces deux interconnexions.

Lomé-Port-Davié (330 kV)

La construction de centrales à cycles combinés au gaz au Togo, se fera certainement à proximité du site actuel d'implantation de la TAG de la CEB et de Contour Global, là où débouche le gazoduc au niveau du poste de Lomé-Port. La liaison actuelle entre Lomé-Port et Lomé-Aflao ne permet pas de faire transiter plus d'environ 300 MW. Il est prévu, selon les scénarios, d'installer jusqu'à 900 MW. Ainsi la construction de nouvelles infrastructures de transport seront nécessaires pour évacuer la puissance générée. Le consultant table sur la construction d'une ligne double terne entre Lomé-Port et Davié pour injecter cette puissance sur la dorsale en 330 kV. L'énergie ainsi produite peut alors facilement transiter vers les plus grands centres de consommation : Lomé, Cotonou, Momé-Hagou. Seul le scénario haut nécessite la construction de cette ligne. Toute la puissance générée à Lomé Port qui n'est pas directement consommée sur place peut être évacuée par les lignes 161 kV existantes.

La création de cette ligne 330kV pose la question de la localisation précise de ce nouveau poste. Deux solutions sont envisageables : sur le site existant (Solution 1) ou 2 km au nord de ce site.

Carte 4 : Localisation des postes de Lomé-Port

La solution 1 a l'avantage d'éviter la création d'un nouveau poste et de pouvoir installer les centrales à gaz directement au débouché du gazoduc mais le passage de la ligne 330kV au travers de la zone urbaine sera compliqué.

La solution 2 permet d'éviter de construire une ligne 330 kV en zone urbaine, mais il faudra alors étendre le gazoduc pour construire les centrales directement sur ce nouveau site 330 kV.

- Sakété-SéméKpodji

Le réseau 330 kV sera complété par la construction d'une ligne double terne entre Sémé-Kpodji et Saketé. Il n'est pas envisageable de construire toutes les nouvelles centrales prévues au Bénin par le plan d'expansion des moyens de production sur le seul site de Maria-Gléta. On ne peut pas évacuer plus de 450-500 MW de ce site sans renforcer les infrastructures de transport. Le site de Maria-Gléta étant en zone urbaine, la construction de nouvelles lignes haute tension parait très problématique. Il paraît plus judicieux d'injecter de la puissance à l'Est de Cotonou via la création d'un nouveau poste source 330kV à Sémé-Kpodji qui accueillerait les centrales à cycle combiné au gaz dans le cas d'import de GNL via une barge. Il accueillerait également les centrales à charbon dans le cas où cette ressource serait privilégiée. Il a de plus l'avantage de permettre d'injecter de la puissance vers l'est de Cotonou en créant un poste 330-63kV. Alimenter tout

Cotonou et Abomey-Calavi uniquement à partir du poste de Maria-Gléta n'est possible dans aucun scénario.

- Renforcement de la ligne Vedoko-SemeKpodji (63kV)

Le niveau de charge aux postes d'Akpakpa et Gbégamey nécessitera de renforcer leur alimentation en doublant la ligne venant de Vedoko. Etant donné que de la puissance sera injectée depuis SèmèKpodji il faudra renforcer la ligne Vedoko-SemeKpodji.

-Ligne Maria-Gleta-Calavi; Maria-Gleta-Cococodji et création d'une liaison Maria-Gléta-Godomey

Les postes de Calavi et Cococodji n'existent pas encore en 2015 mais sont prévus par la SBEE. En cas de forte production à Maria-Gleta il sera judicieux de connecter ces postes directement à Maria-Gleta pour évacuer la production réalisée à cet endroit. Pour la même raison il faudra créer un poste 63/15 à Godomey et le connecter à Maria-Gleta.

-Extension du réseau 63kV de la SBEE

Afin d'assurer une qualité de service suffisante, il sera nécessaire de rajouter des postes sources sur le territoire béninois pour alimenter les charges sur l'ensemble du pays. Leur alimentation est envisagée en 63kV pour rester cohérent avec les niveaux de tension sur lesquels travaille déjà la SBEE. Un certain nombre de lignes et de postes sont à prévoir :

- Avakpa-Ouidah-Grand-Popo
- Avakpa- Toffo-Ze
- Adjarrala-Aplahoue-Lalo
- Bohicon-Amakpa
- Dassa-Savalou
- Bohicon-Agbanzinzoun
- Ogoutedo-Ouesse-Bante-Bassila
- Bembereke-Alafiarou-Perere
- Bembereke-Sinende-Pehunco-Kérou-Banikoara
- Lokossa-Houeyogbé

La programmation exacte de ces lignes dépendra des extensions du réseau MT et du développement des charges associées. Pour les études du réseau de transport le consultant a considéré que toutes ces lignes seraient mises en service à l'horizon 2025.

La plupart de ces lignes 63kV seront construites en double terne. Presque toutes ces lignes peuvent être bouclées moyennant un surcoût d'environ 25-30% :

- Avakpa-Ouidah-Grand-Popo peut être bouclée sur Cococodji ou sur Houeyogbe
- Avakpa-Toffo-Ze peut être bouclée sur Calavi
- Ogoutedo-Bassila peut être bouclée vers Djougou ou Sokodé au Togo
- Bembéréké-Banikoara peut être bouclée sur Kandi
- Bembereké-Perere peut être bouclée sur Ndali
- Cococodji-Grand-Popo peut être bouclée avec Lokossa-Houeyogbé

- Aplahoué-Lalo peut être bouclée avec Calavi-Toffo
- Porto-Novo-Dangbo peut être bouclée sur Calavi en traversant le bassin versant du lac de la Nokoué.
- Bohicon-Dassa-Savalou peut être bouclée sur Glazoué et Savé

Presque tous ces bouclages nécessiteraient de rajouter une rame 63kV sur des postes 161/MT ce qui augmenterait encore les coûts. Ces bouclages pourraient être réalisés dans un second temps.

2.5 Transformateurs

2.5.1 Transformateurs existants

Les transformateurs suivants sont présents sur le réseau de la CEB :

Tableau 6 : Capacités de transformation au Togo

	CAPACITES AL	J TOGO (MVA)			
POSTES	LIVRAISON CL	ENTS	INTERMEDIAIR	Observations	
	EXISTANT	EN PROJET	EXISTANT	EN PROJET	
Lomé AFLAO	85		0	0	Dont 35 MVA: transformateur secours
LOME PORT	80	0	0	0	161/20 kV 35 MVA pour la CEB, le reste soit 25+20 à l'Etat Togolais
MOME- HAGOU	0	0	100	0	2x50 MVA intermédiaire alimentant néanmoins IFG (Togo) et Lokossa (Bénin) en 63 kV
ANFOIN	16	0	0	0	63/20 kV : Alimente Hilla Condji au Bénin
TABLIGBO	70	0	0	0	63/20 kV
ATAKPAME	16	5	0	0	161/20 et 161/34,5 kV
KARA	20	0	0	0	Tension 161/20/34,5 kV
DAPAONG	10	0	0	0	5 MVA à la CEET en 5,5 kV et 5 MVA à la CEB en 20 kV
CINKASSE	5,16	0	0	0	Equipements appartenant à la CEET

Tableau 7 : Capacité de transformation au Bénin

	CAPACITES AL				
POSTES	LIVRAISON CL	IENTS	INTERMEDIAIR	Observations	
	EXISTANT	EN PROJET	EXISTANT	EN PROJET	
Cotonou Vèdoko	114	80	0	0	Tensions : 161/63/15 kV
Avakpa	19	0	0	0	161/20 kV
Bohicon	40	0	0	0	20 MVA en 63 kV et 20 MVA en 20 kV
Onigbolo	70	0	0	0	161/20 kV
Lokossa	32	0	0	0	63/20 kV : alimentation venant de Momé-Hagou; Lokossa alimente aussi Tohoun via Aplahoué
Sakété	0	12	0	400	2x200 MVA 330/161 kV: mise en service du T1 prévue le 15/02/07 et du T2 fin mai 2007.
Djougou	20	0	0	0	161/34,5/20 kV
Parakou	20	0	0	0	161/34,5/20 kV
Maria Gléta	19	0	0	0	Le transformateur prévu pour Maria Gléta est celui démonté à Vèdoko.

^(*) La capacité de transformation intermédiaire suppose qu'il y a une autre transformation par la CEB avant d'atteindre le client. Dans le cas de Momé-Hagou, l'alimentation de IFG est directe, mais pour les autres (Tabligbo, Anfoin et Lokossa), il y a une deuxième transformation à l'arrivée.

Source: www.cebnet.org

2.5.2 Transformateurs futurs

Le consultant table sur une standardisation des transformateurs dans le futur :

HTA-HTB: 5 - 20 - 40 MVA

HTB-HTB: 50 - 100 - 200 MVA

De cette façon la garantie transformateur des postes pourra être réalisée en maintenant toujours un transformateur de chaque type en réserve. Aujourd'hui la CEB n'a pas de garantie transformateur car elle ne dispose d'aucune réserve en cas de défaillance d'un transformateur.

Dans tous les scénarios le consultant suggère d'investir dans trois transformateurs 161/MT et 63/MT en raison des différentes tensions MT possibles : 33/20/15kV.

Tous les résultats ci-dessous sont obtenus si la stratégie de production charbon est retenue (A5). Des résultats voisins sont toutefois obtenus dans le cas de la stratégie du gaz naturel prédominant (B5).

2.5.2.1 Scénario haut

Tableau 8 : Transformateurs en service – scénario haut

		1	Nb de 1	TFO en	service	e
	P (MVA)	2015	2020	2025	2030	2035
63-MT	5	2	2	19	14	13
63-MT	20	3	7	7	19	19
63-MT	40	1	8	13	18	21
161-MT	5	1	5	14	14	15
161-MT	20	2	4	7	11	12
161-MT	40	2	4	4	8	11
161-63	50	2	4	7	5	7
161-63	100	0	0	0	2	2
161-63	200	0	2	3	5	7
330-63	50	0	0	0	0	0
330-63	100	0	0	0	0	0
330-63	200	0	2	2	2	3
330-161	200	2	6	8	13	16

Tableau 9 : Transformateurs de réserve – scénario haut

		Nb de TFO de marge				j
	P (MVA)	2015	2020	2025	2030	2035
63-MT	5					
63-MT	20	1	1	1		
63-MT	40	1				
161-MT	5					
161-MT	20	1	1	1		
161-MT	40	1				
161-63	50					
161-63	100	1				
161-63	200					
330-63	50					
330-63	100					
330-63	200		1			
330-161	200		1			

			Nb de	TFO de	marge	<u>;</u>
	P (MVA)	2015	2020	2025	2030	2035
63-MT	5					
63-MT	20	1	1	1		
63-MT	40	1				
161-MT	5					
161-MT	20	1	1	1		
161-MT	40	1				
161-63	50					
161-63	100	1				
161-63	200					
330-63	50					
330-63	100					
330-63	200		1			
330-161	200		1			

Tableau 10 : Nombre total de transformateurs – scénario haut

			Nb d	e TFO	total	
	P (MVA)	2015	2020	2025	2030	2035
63-MT	5	2	2	19	14	13
63-MT	20	4	9	10	22	22
63-MT	40	2	9	14	19	22
161-MT	5	1	5	14	14	15
161-MT	20	3	6	10	14	15
161-MT	40	3	5	5	9	12
161-63	50	2	4	7	5	7
161-63	100	1	1	1	3	3
161-63	200	0	2	3	5	7
330-63	50	0	0	0	0	0
330-63	100	0	0	0	0	0
330-63	200	0	3	3	3	4
330-161	200	2	7	9	14	17

Tableau 11: Date et nombre de transformateurs à acquérir – scénario Haut

			Nb de TFO à acheter				
	P (MVA)	2015	2020	2025	2030	2035	
63-MT	5		0	17	0	0	
63-MT	20		5	1	12	0	
63-MT	40		7	5	5	3	
161-MT	5		4	9	0	1	
161-MT	20		3	4	4	1	
161-MT	40		2	0	4	3	

161-63	50	2	3	0	2
161-63	100	0	0	2	0
161-63	200	2	1	2	2
330-63	50	0	0	0	0
330-63	100	0	0	0	0
330-63	200	3	0	0	1
330-161	200	5	2	5	3

2.5.2.2 Scénario moyen

Tableau 12: Nb de transformateurs en service

		١	Nb de 1	FO en	service	ē
	P (MVA)	2015	2020	2025	2030	2035
63-MT	5	2	2	19	26	16
63-MT	20	3	4	7	8	16
63-MT	40	1	5	9	11	18
161-MT	5	1	6	17	24	15
161-MT	20	2	3	4	5	12
161-MT	40	2	2	3	4	8
161-63	50	2	4	7	5	7
161-63	100	0	0	0	4	4
161-63	200	0	2	3	3	4
330-63	50	0	0	0	0	0
330-63	100	0	2	2	2	2
330-63	200	0	0	0	0	1
330-161	200	2	4	6	7	7

Tableau 13 : Nb de transformateurs de réserve

		Nb de TFO de marge				
	P (MVA)	2015	2020	2025	2030	2035
63-MT	5					
63-MT	20	1	1	1		
63-MT	40	1				
161-MT	5					
161-MT	20	1	1	1		
161-MT	40	1				
161-63	50					
161-63	100				1	
161-63	200		1			
330-63	50					
330-63	100		1			
330-63	200					
330-161	200		1			

Tableau 14 : Nb total de transformateurs – scénario moyen

			Nb d	e TFO	total	
	P (MVA)	2015	2020	2025	2030	2035
63-MT	5	2	2	19	26	16
63-MT	20	4	6	10	11	19
63-MT	40	2	6	10	12	19
161-MT	5	1	6	17	24	15
161-MT	20	3	5	7	8	15
161-MT	40	3	3	4	5	9
161-63	50	2	4	7	5	7
161-63	100	0	0	0	5	5
161-63	200	0	3	4	4	5
330-63	50	0	0	0	0	0
330-63	100	0	3	3	3	3
330-63	200	0	0	0	0	1
330-161	200	2	5	7	8	8

Tableau 15 : Nb de transformateurs à acheter – scénario moyen

			Nb de ⁻	TFO à a	acheter	-
	P (MVA)	2015	2020	2025	2030	2035
63-MT	5		0	17	7	0
63-MT	20		2	4	1	8
63-MT	40		4	4	2	7
161-MT	5		5	11	7	0
161-MT	20		2	2	1	7
161-MT	40		0	1	1	4
161-63	50		2	3	0	2
161-63	100		0	0	5	0
161-63	200		3	1	0	1
330-63	50		0	0	0	0
330-63	100		3	0	0	0
330-63	200		0	0	0	1
330-161	200		3	2	1	0

2.5.2.3 Scénario faible

Tableau 16 : Nb de transformateurs en service – scénario faible

		1	Nb de 1	ΓFO en	service	9
	P (MVA)	2015	2020	2025	2030	2035
63-MT	5	2	2	21	26	27
63-MT	20	3	4	7	8	9
63-MT	40	1	5	8	10	15
161-MT	5	1	6	19	24	20
161-MT	20	3	4	4	5	8
161-MT	40	1	1	2	2	4
161-63	50	2	4	6	4	4
161-63	100	0	0	0	4	4
161-63	200	0	2	3	3	4
330-63	50	0	1	1	1	1
330-63	100	0	1	1	1	2
330-63	200	0	0	0	0	0
330-161	200	2	4	6	6	6

Tableau 17 : Nb de transformateurs de réserve – scénario faible

			Nb de ⁻	ΓFO de	marge	?
	P (MVA)	2015	2020	2025	2030	2035
63-MT	5	1	1	1		
63-MT	20	1				
63-MT	40	1				
161-MT	5					
161-MT	20	1	1	1		
161-MT	40	1				
161-63	50	1				
161-63	100				1	
161-63	200		1			
330-63	50					
330-63	100		1			
330-63	200					
330-161	200		1			

Tableau 18 : Nb total de transformateurs – scénario faible

		Nb de TFO total					
	P (MVA)	2015	2020	2025	2030	2035	
63-MT	5	3	4	24	29	30	
63-MT	20	4	5	8	9	10	
63-MT	40	2	6	9	11	16	
161-MT	5	1	6	19	24	20	
161-MT	20	4	6	7	8	11	
161-MT	40	2	2	3	3	5	
161-63	50	3	5	7	5	5	
161-63	100	0	0	0	5	5	
161-63	200	0	3	4	4	5	
330-63	50	0	1	1	1	1	
330-63	100	0	2	2	2	3	
330-63	200	0	0	0	0	0	
330-161	200	2	5	7	7	7	

Tableau 19: Nb de transformateurs à acheter – scénario faible

		Nb de TFO à acheter				
	P (MVA)	2015	2020	2025	2030	2035
63-MT	5		1	20	5	1
63-MT	20		1	3	1	1
63-MT	40		4	3	2	5
161-MT	5		5	13	5	0
161-MT	20		2	1	1	3
161-MT	40		0	1	0	2
161-63	50		2	2	0	0
161-63	100		0	0	5	0
161-63	200		3	1	0	1
330-63	50		1	0	0	0
330-63	100		2	0	0	1
330-63	200		0	0	0	0
330-161	200		3	2	0	0

2.6 Moyens de compensation

A part dans le scénario fort, le futur réseau est assez peu chargé, surtout au nord où il se compose de longues lignes à faible transit. Plusieurs nœuds sont alors soumis au risque de surtension à la mise en service ou même en période de faibles charges. Dans le scénario haut un certain nombre de nœuds sont potentiellement en sous tension et nécessitent l'installation de capacités pour rehausser la tension.

Les moyens de compensation de l'énergie réactive ont été calculés pour la pointe et le creux de charge. Les valeurs proposées ci-dessous sont valables dans ces deux configurations.

2.6.1 Capacités

2.6.1.1 Scénario haut

Tableau 20 : Moyens de compensation – Capacités – Scénario Haut

		Сара	acité (MVAr)		
Bancs de compensation	2015	2020	2025	2030	2035
Alafiarou					10
Alafiarou 2			5	5	5
Banikoara					5
Bante					5
Bassila			5	5	5
Bassila 2					5
Bohicon161					10
Calavi				20	20
Dassa					10
Dassa 2			5	5	5
Djougou					30
Glazoue					10
Glazoue 2			5	5	5
GrandPopo			5	5	5
GrandPopo 2					10
GrandPopo 3				10	10
Houeyogbe			20	20	20
Houeyogbe 2					10
Kara					15
Kara 2				30	30
Kerou					5
Lokossa					10
Lokossa 2				30	30
Ouidah					10
Ouidah 2				10	10
Parakou					40
Perere					10
Savalou					5
Savalou 2				5	5
Toffo			5	5	5
Toffo 2				10	10
Ze				10	10
Total	0	0	50	175	375

2.6.1.2 Scénario moyen

Tableau 21: Moyens de compensation – Capacités – Scénario Moyen

		Capa	cité (MVAr)		
Bancs de compensation	2015	2020	2025	2030	2035
Banikoara					5
Bante					5
Bassila			5	5	5
Calavi				20	20
Dassa (1)					10
Dassa (2)			5	5	5
Glazoue			5	5	5
GrandPopo					10
Kerou					5
Lokossa					10
Pehunco					5
Perere					5
Savalou				5	5
Total			15	40	95

2.6.1.3 Scénario faible

Tableau 22: Moyens de compensation – Capacités – Scénario Faible

		Сара	acité (MVAr)		
Bancs de compensation	2015	2020	2025	2030	2035
Banikoara					5
Calavi				20	20
Lokossa					10
Perere					5
Savalou				5	5
Total	0	0	0	25	45

2.6.2 Inductances

2.6.2.1 Scénario Haut

Tableau 23: Moyens de compensation – Inductances – Scénario Haut

Bancs de compensation	2015	2020	2025	2030	2035
Cinkasse		5	5	-	
Dyodyonga			30	30	
Kandi	60	60			
Kara		60			
Parakou		60			
Parakou 2			75	75	
Total	60	185	110	105	0

2.6.2.2 Scénario Moyen

Tableau 24 : Moyens de compensation – Inductances – Scénario Moyen

Bancs de compensation	2015	2020	2025	2030	2035
Cinkasse	·	5	5	5	5
Dapaong			5	5	5
Dapaong					5
Dyodyonga			30	30	
Kandi	60	60			
Kara		60			
Parakou		60			
Parakou 2			100	100	
Total	60	185	140	140	15

2.6.2.3 Scénario Faible

Tableau 25: Moyens de compensation – Inductances – Scénario Faible

Bancs de compensation	2015	2020	2025	2030	2035
Cinkasse		5	5	5	5
Dapaong			20	20	20
Dapaong 2					5
Dyodyonga			30	30	
Kandi	60	60			
Kara		60	60	60	
Parakou		60			
Parakou 2			120		
Total	60	185	235	115	30

3 Valorisation des ouvrages

3.1 Références de coûts

Afin d'intégrer les coûts d'investissement aux analyses financières une étude sur les coûts de référence des ouvrages HTB a été menée pour estimer les montants des investissements. Les principaux éléments sont repris ci-dessous :

- Poste de Sokodé 18 Millions d'euros (source : cebnet.org)
- Ligne souterraine 63kV: 280-300k€/km (source: Eiffage pour le projet Calavi)
- Ligne aérienne 63kV : 155k€/km (source : Eiffage pour le projet Calavi)
- Extension poste de Maria-Gléta 2,4 Million d'euros (source : rapport d'activité de la CEB 2012)
- Ligne Bembéréké-Kandi-Malanville (218km + 3 postes): 45,2 millions d'euros (source : rapport d'activité de la CEB 2012)

- Ligne Atakpamé-Lomé (140 km + 1 poste) : 30,5 Millions d'euros (source : rapport d'activité de la CEB 2012)
- Ligne 330kV Simple terne : 250k€/km (source : consultant)
- Ligne 161 kV simple terne : 130k€/km (source : consultant)
- Ligne 63kV simple terne : 48k€/km (source : consultant)
- Ligne Porto-Novo-Sakété / Onigbolo-Parakou (28+240 km; double terne): 38 M€ (source: plan d'action CEB 2011-2020 octobre 2010)
- Interconnexion Nigéria-Bénin-Togo-Ghana (70+173+155 km) 51M€ (source : plan d'action CEB 2011-2020 octobre 2010)
- Interconnexion Niger-Bénin : 40M€ (source : plan d'action CEB 2011-2020 octobre 2010)
- Ligne 161kV simple terne : 110k€/km (source étude d'APD d'Adjarala)
- Ligne 161kV double terne : 225k€/km (source étude d'APD d'Adjarala)

3.2 Hypothèses de coûts

Au regard des différents coûts exposés plus haut, les hypothèses suivantes ont été retenues :

ligne aérienne 63kV	75	k€/km
lignes souterraine 63kV	200	k€/km
poste 63/20 ou 63/33 hors TFO	2	M€
poste 161/20 ou 161/33 hors TFO	2	M€
poste 161/63 hors TFO	2	M€
poste 330/161 ou 330/63	3	M€
ligne 161kV simple terne	110	k€/km
ligne 161kV double terne	200	k€/km
ligne 330 simple terne	150	k€/km
ligne 330 double terne	266	k€/km
TFO 63-MT 5 MVA	64	k€
TFO 63-MT 20 MVA	129	k€
TFO 63-MT 40 MVA	257	k€
TFO 161-MT 5 MVA	420	k€
TFO 161-MT 20 MVA	840	k€
TFO 161-MT 40 MVA	1680	k€
TFO 161-63 50 MVA	2	M€
TFO 161-63 100 MVA	4	M€
TFO 161-63 200 MVA	8	M€
TFO 330-161 200MVA	10	M€
TFO 330-63 200MVA	10	M€
capacité	0,5	k€/MVAR
inductance 161kV	42	k€/MVAr

4 Cohérence avec le plan Production Transport du WAPP

L'actualisation du plan production transport d'énergie électrique de la CEDEAO de septembre 2011 prévoit les infrastructures suivantes sur l'espace CEB :

- 1. Dorsale Sud: Ikeja (Nigéria) Sakété (Bénin) Davié (Togo) Téma (Ghana) en 330kV
- 2. Dorsale Médiane : Kainji (Nigéria) Bembéréké (Bénin) Kara (Togo) Yendi (Ghana)
- 3. Corridor Nord: Birnin-Kébi (Nigéria) Malanville (Bénin) Niamey (Niger)
- 4. Centrale à vocation régionale à Maria-Gléta : 450 MW (Cycles combinés au gaz naturel)

1. Dorsale Sud:

Cette ligne 330 kV est retenue intégralement dans le présent plan directeur. C'est un composant majeur du volet transport. Toutefois le plein bénéfice de cette interconnexion ne sera obtenu qu'après la résolution des problèmes de réglage et de stabilité du système électrique du Nigéria. Des études en ce sens sont en cours au WAPP.

2. Dorsale Médiane :

Les études d'écoulement de charge montrent que cette interconnexion avec le nord du Nigéria est très intéressante pour maintenir le plan de tension dans la zone de Bembéréké. Par contre la poursuite de la ligne 330kV vers le Togo et le Ghana pose des problèmes de compensation de l'énergie réactive en raison de la faiblesse des charges en bout de ligne. Le consultant préconise de ne construire cette dorsale que sur le tronçon Kainji-Bembéréké.

3. Corridor Nord:

Dans la perspective de la construction de moyens de production basés sur l'exploitation des ressources en charbon du Niger, il est intéressant pour le Bénin d'importer de l'énergie depuis son voisin du nord ; cela permet de maintenir le plan de tension dans le nord du pays.

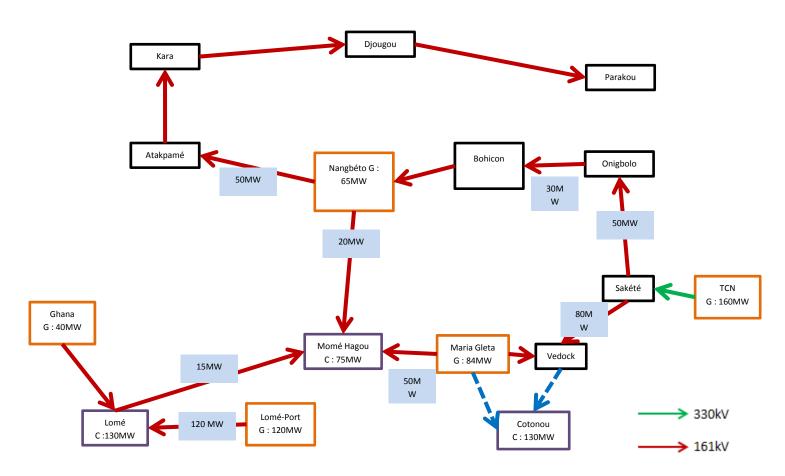
4. Centrale Régionale :

Une centrale de 450 MW basé sur des cycles combinés au gaz naturel importé depuis le gazoduc de l'Afrique de l'ouest est mentionnée dans le plan directeur du WAPP. Cette centrale serait à vocation régionale. 150 MW pourraient être consommés sur place pour la CEB; 200 MW seraient exportés vers le Nigéria et 100 MW vers le Ghana. L'opportunité économique d'une telle centrale a été discutée dans le plan production. D'un point de vue transport, une telle centrale nécessite d'étendre le réseau 330 kV vers Maria-Gléta pour évacuer la puissance sur la dorsale sud. Elle a aussi pour effet d'inverser le sens de l'écoulement de puissance entre Sakété et Ikéja et entre Lomé et Akossombo; le Bénin devenant exportateur d'électricité.

5 Ecoulement de charge

Les schémas unifilaires et les résultats détaillés des études d'écoulement de charge pour les trois scénarios et les cinq années d'études sont présentés en annexe.

Les schémas simplifiés suivants montrent l'écoulement de charge pour la pointe pour les principaux points de consommation (>100MW) et les lignes faisant transiter une puissance conséquente


(>25MW), les autres points de charges ne sont pas mentionnés pour faciliter la lecture des schémas. Si aucun transit n'est indiqué c'est que la ligne fait transiter moins de 25MW.

Les écoulements de charges présentés ci-après ne sont qu'une des solutions du problème d'écoulement de charge. Il y a de très nombreuses possibilités selon les points de fonctionnement de chacun des groupes. Les écoulements présentés le sont pour le scénario haut à prédominance de génération à base de gaz.

5.1 Ecoulement de charge 2015

5.1.1 Scénario Haut

Figure 2 : Ecoulement de charge simplifié - 2015

Ce schéma est très simplifié. La somme des puissances aux nœuds n'est pas nécessairement nulle. Certaines charges ne sont pas représentées.

5.1.2 Scénario Moyen et Faible

L'écoulement de charge pour les deux autres scénarios est très similaire.

5.1.3 Ecoulement de charge en situation de contingence

Les scénarios moyen et faible sont très similaires au scénario haut en 2015. Seul le scénario haut a été étudié.

5.1.3.1 Lignes

En 2015 le réseau présente plusieurs antennes importantes. En cas de perte d'une des lignes alimentant ces antennes, les charges ne peuvent plus être alimentées :

- Ligne Nangbéto-Atakpamé-Nord Togo-Bénin
- Tous les réseaux en 63kV (dont Porto-Novo)
- Si la ligne Ikéja-Sakété est perdue c'est tout le réseau de la CEB qui est en déficit de production.

Les autres lignes ne posent pas de problème n-1 car presque toutes sont doublées ou bouclées. Dans tous les cas un plan de tension satisfaisant est trouvé.

5.1.3.2 Générateurs

En 2015 le système est fortement contraint en cas de pertes de moyens de production. Seule la TAG de Lomé-Port peut être perdue sans effet sur le système. En cas de pertes des moyens de production à Akpakpa, Maria Gléta ou de la VRA le plan de tension n'est plus respecté.

En cas de perte de Contour Global ou de la TCN la charge dépasse la production disponible.

5.1.3.3 Transformateurs

Outre les branches en antenne alimentées par un seul transformateur (ici seulement l'antenne de Savalou) seule la perte d'un transformateur 161-63 à Vedoko entraine des conditions de fonctionnement inadmissibles: détérioration du plan de tension et surcharge du second transformateur. La perte d'un transformateur 330-161 de Sakete ou d'un transformateur 161/63 de Momé-Hagou ne pose pas de problème.

5.2 Ecoulement de charge 2020

5.2.1 Ecoulement de charge simplifié - Scénario Haut

Dapaong Djougou Kara 20MW Parakou 40MW 40MW Atakpamé Bohicon Onigbolo Nangbéto +Adjaralla 10MW 40MW G: 210MW 35MW 90MW 55MW 40MW 85MW 110MW Davié 210MW 65MW Sakété TCN G:50MW Ghana 20MW C: 200MW 35MW G:0MW Maria Gleta C: 100MW G:80 MW Momé Hagou 160MW 180MW Vedock C: 100MW 10MW 60MW Cotonou Lomé-Port C: 200MW 50MW SèmèKpodji Lomé G:40 MW C:110MW G: 250MW C:90MW

Figure 3 : Ecoulement de charge simplifié - 2020

Dans cette configuration les échanges de puissance entre le Bénin et le Togo sont importants, 210 MW transitant sur la ligne 330 kV. Il y a très peu d'échanges entre le nord du Bénin et le Nord du Togo.

5.2.2 Ecoulement de charge en situation de contingence

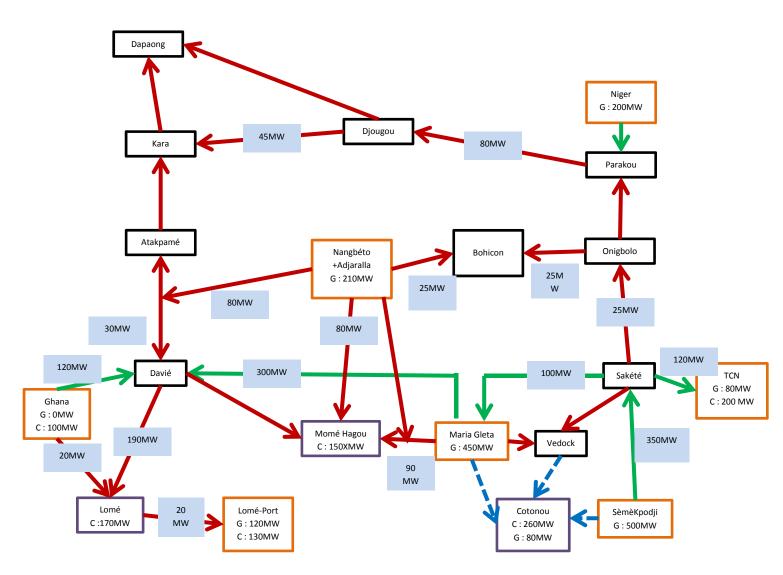
5.2.2.1 Lignes

En 2020 le réseau est suffisamment maillé pour faire face à quasiment toutes les configurations de perte de lignes, si on exclut les problèmes intrinsèques aux antennes :

- Karimama

- Malanville
- Savalou
- Lokossa
- Ikeja
- Cinkassé

5.2.2.2 Générateurs


Aucune perte de groupe ne pose de problème dans aucun scénario.

5.2.2.3 Transformateurs

En 2020 il n'y a pas de problème à perdre un transformateur de puissance HTB-HTB, le réseau est suffisamment maillé pour faire face à ces situations.

5.3 Ecoulement de charges 2025

Figure 4 : Ecoulement de charges simplifié - 2025

L'imbrication des deux systèmes est plus forte ici : 300MW transitent entre Maria-Gléta et Davié ; 90MW vont de Maria-Gléta vers Momé-Hagou, et 45 MW quittent le nord du Bénin pour le Togo.

5.3.1 Ecoulement de charge en situation de contingence N-1

5.3.1.1 Lignes

En cas de perte de lignes les antennes suivantes se retrouvent sans alimentation :

- Alafiarou
- Amakpa
- Banté
- Cinkassé
- Lalo
- Ouidah
- Karimama
- Malanville
- Lokossa
- Banikoara

Seule la perte de la ligne Parakou-Guéné entraine une situation de contingence dans le scénario haut, la ligne restante étant surchargée d'environ 10%.

5.3.1.2 Générateurs

La perte de la production au Niger pose un problème de réactif sur le réseau nord. Il faut alors ouvrir la ligne Malanville Dosso. Les capacités de transit et de production sont suffisantes pour alimenter le nord du Bénin et du Togo sans cette interconnexion.

En 2025 le réseau est suffisamment maillé, et les groupes suffisamment diversifiés pour que la perte d'un groupe ne pose pas de problèmes particulier dans un scénario quelconque.

5.3.1.3 Transformateurs

La perte de transformateurs en 2025 pose des problèmes pour les branches en antenne : Savalou, Lalo, Ogoutedo, Banikoara et Alafiarou. La perte du transformateur 63/MT de Maria-Gleta entraine la surcharge des lignes 63kV (jusqu'à +50% à la pointe). Ce cas est couvert par le fait qu'il est prévu qu'à cette date la CEB ait un transformateur de rechange à installer.

5.4 Ecoulement de charges 2030

5.4.1 Scénario haut

Dapaong NIGELEC 200MW Djougou 55MW Kara 110MW TCN Parakou 50MW 12MW Atakpamé Onigbolo Bohicon Nangbéto+ Adjaralla 12MW G: 210 MW 56MW 70MW 70 MW 20 MW 50MW 100 MW Davié 350MW 430MW Sakete TCN 15MW Ghana 150MW Maria-Gleta Mome-Hagou 80 VEdock 650MW 45 MW 280MW 10 MW MW Lomé-Port Lomé 240 MW SèmèKpodji Cotonou C: 400 MW G:720 C:390MW G: 250MW

Figure 5 : Ecoulement de charges simplifié 2030

Dans cette configuration également les deux systèmes sont fortement imbriqués : 430 MW vont de Maria Gléta vers Davié et 60 MW transitent entre le nord Bénin et le nord Togo. Le nord Bénin est excédentaire en puissance du fait de sa double connexion avec le Niger et le Nigéria.

5.4.2 Ecoulement de charge en situation de contingence

C: 200MW

5.4.2.1 Lignes

En 2030 le système est davantage contraint, quelques pertes de lignes entrainant des surcharges :

- La perte de la ligne Maria-Gléta Davié entraine la surcharge importante des autres interconnexions entre le sud de Bénin et le sud du Togo (uniquement dans le scénario haut, les scénarios moyens et faible ne sont pas contraints par cette perte de ligne)
- La perte d'une ligne Parakou-Guéné entraine la surcharge de la seconde ligne d'environ 50% à la pointe dans le scénario haut.
- La perte de la ligne Sokode-Atakpame entraine une surcharge d'environ 10% sur les autres lignes d'alimentation du nord du système
- La perte d'une ligne pour Maria Gleta-Vedoko entraine la surcharge de la ligne restante d'environ 20%
- Idem pour Gbegamey -Akpakpa

Pour les scénarios moyen et faible la situation est meilleure.

5.4.2.2 Générateurs

Dans tous les scénarios le fait de perdre une centrale de 150 MW ou une interconnexion avec les pays voisins ne pose pas de problème.

5.4.2.3 Transformateurs

En 2030 il n'y a pas de problème en cas de perte de transformateur hormis quelques légères surcharges de ligne (5% à la pointe) et les problèmes inhérents aux antennes.

Ghana

5.5 **Ecoulement de charges 2035**

Dapaong Niger G: 200MW Djougou 70MW 140MW Kara Nigeria Parakou G:100MW 90MW 80MW Atakpamé Bohicon Onigbolo Nangbéto C:-àMW 60MW +Adjaralla 70MW 70MW G: 200MW 70MW 210MW 70MW 45MW 100MW 60M 140MW 180MW Davié Sakété G: 100MW G:80MW 130 C: 200 MW 210MW C: 100MW MW Momé Hagou Maria Gleta 100MW Vedock C: 280MW G:550MW 40MW 440MW 650 Porto-Novo 100 MW C:110MW MW 250MW Lomé-Port Lomé SèmèKpodji Cotonou C:380MW G:940MW C:530MW G: 1000MW

Figure 6 : Ecoulement de charges simplifié 2035

Dans cette configuration seulement 140 MW transitent de Maria-Gléta vers Davié. Le transit vers Momé-Hagou est particulièrement élevé. Comme dans la situation précédente le nord du Bénin exporte vers le nord du Togo en raison des interconnexions avec le Niger et le Nigéria.

5.5.1 Ecoulement de charge en situation de contingence

C: 290 MW

Le développement du réseau en 2035 est trop incertain pour que des études d'écoulement de charge en situation de contingence soient significatives.

6 Stabilité dynamique

6.1 Hypothèses

Les études de stabilité dynamique ont été faites pour des réseaux dont les groupes de production n'existent pas encore. Des valeurs standards ont été prises pour les paramètres modélisant les alternateurs, les régulateurs de vitesse et de tension.

Le réseau de la CEB étant largement interconnecté avec ses voisins, il a été considéré que les réseaux adjacents étaient une référence stable. Cette hypothèse est optimiste quant au réseau du Nigéria qui est aujourd'hui très instable. Cependant des travaux sont en cours pour améliorer la situation. Il a été considéré dans cette étude que ces travaux aboutiraient et que le réseau du Nigéria serait stable à partir de 2020. La charge et la production au Nigéria étant très largement supérieures à celles de l'espace de la CEB, il est raisonnable de faire l'approximation selon laquelle ce réseau est infiniment stable comparé à celui de la CEB. Si le réseau de la TCN est instable, celui de la CEB le sera également tant qu'ils seront interconnectés.

L'étude de la stabilité transitoire du réseau de la CEB en ilotage (non connecté aux autres réseaux voisins) a également été effectuée.

De même que la plupart des groupes inclus de cette étude n'existent pas encore, une bonne partie des lignes et de leurs protections n'est pas encore mise en service. La présente étude n'a donc pour ambition que de montrer qu'il n'y a pas de raison intrinsèque qui mettrait en jeu sa stabilité. Ainsi des évènements très perturbants pour le réseau ont été simulés afin d'étudier la tendance de sa réaction aux perturbations.

Etant donné que de très nombreuses variantes sont possibles il a été choisi de faire les études de stabilité transitoire dans une variante où la production était localisée de façon très déséquilibrée afin de simuler une plus grande instabilité potentielle du système. Ainsi les études concernent une variante où 500 MW de production au charbon sont concentrées à Sémé-Kpodji et raccordés en 330 kV au poste de Saketé. Le reste de la production prise en compte s'établit comme il suit (2025 Scénario haut):

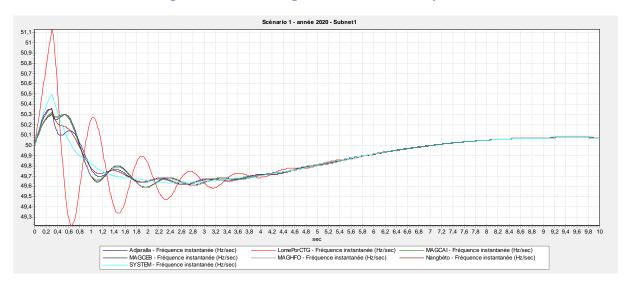
- HFO 120 MW à Maria Gleta
- HFO 120 MW à Lomé
- CCGT 300 MW à Lomé
- Adjarala et Nangbéto

Les charges sont modélisées principalement à Lomé, Cotonou, Momé-Hagou, Bohicon, Parakou, Kara, Porto-Novo. Toutes les simulations ont été faites à la pointe.

Les cas suivants ont été simulés :

- CEB en ilotage
- Court-circuit triphasé sur le jeu de barres de Seme-Kpodji en 2020 et 2025.
- Court-circuit à Ikéja, ouverture, puis reconnexion de la ligne

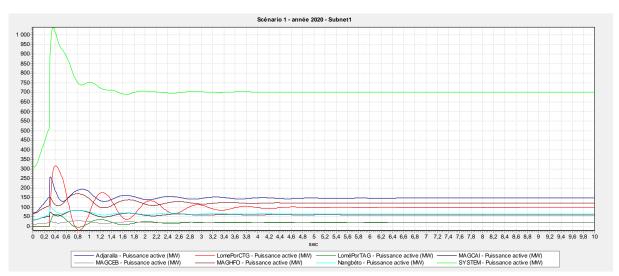
6.2 Résultats


6.2.1 CEB en ilotage

Description du cas:

La CEB fonctionne sans être interconnectée à ses voisins de la TCN et de la VRA. Un court-circuit a lieu au niveau du jeu de barre présentant la plus forte production, dans le cas présent (2020) à Lomé.

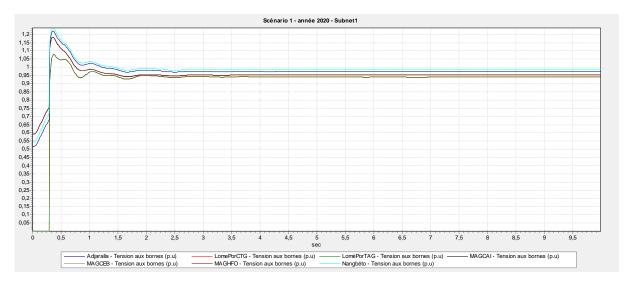
6.2.1.1 Fréquence


Figure 7 : CEB en Ilotage - Evolution de la fréquence

La fréquence de fonctionnement de tous les groupes en production est représentée sur le graphique précédent. La fréquence du système varie de 49,6 Hz à 50,4 Hz, et reste donc dans une plage acceptable. La fréquence de fonctionnement des groupes de Lomé passe par deux extremums plus marqués : 49,3 et 51,1 Hz mais finit par se stabiliser en environ 5 secondes pour tendre de nouveau vers 50 Hz.

6.2.1.2 Puissance

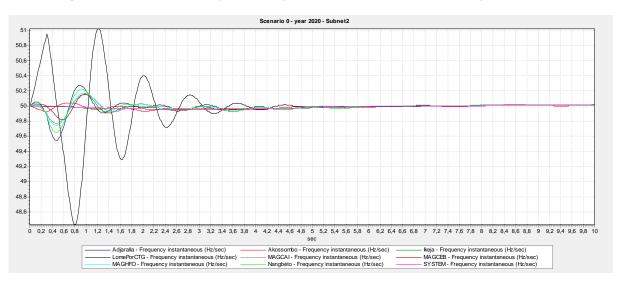
Figure 8 : CEB en Ilotage – Evolution de la puissance



Le groupe connaissant les plus grosses variations de puissance électrique est le groupe de production de Lomé, mais le système se stabilise en environ 5s.

6.2.1.3 Tension

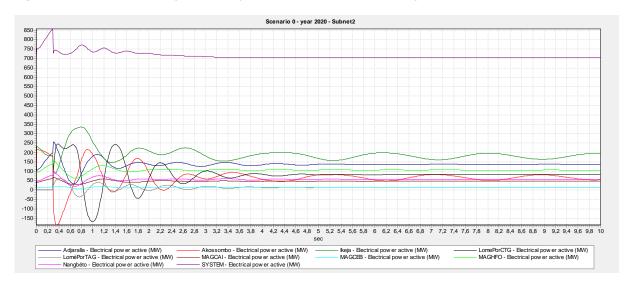
Une surtension de 20% est vue au niveau d'Adjarala, cette valeur est aux limites de l'acceptable. Il est probable que dans ces conditions Adjarala se déconnectera. Les autres groupes n'ont pas de surtension dépassant cette valeur critique, ils resteront donc accrochés. Au bout d'environ 2 secondes le système est redevenu stable.


6.2.2 Court-circuit triphasé à SèmèKpodji

Les paragraphes qui suivent s'intéressent à la réponse du système à un court-circuit triphasé sur le jeu de barres 330 kV de la centrale de Sémé-Kpodji où 1 000 MW sont produits en 2035. Le court-circuit dure pendant 0,3 secondes, le temps nécessaire à l'élimination du défaut.

6.2.2.1 2020

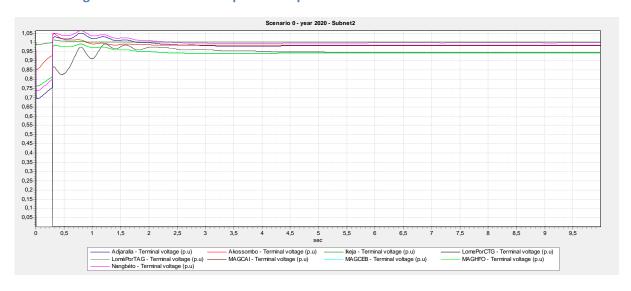
6.2.2.1.1 Fréquence


Figure 10 : Court-circuit triphasé à la production – Evolution de la fréquence – 2020

La fréquence du groupe le plus distant du défaut oscille fortement entre 48 Hz et 51 Hz mais revient rapidement à l'équilibre ; en moins de 5s le système est de nouveau à 50 Hz

6.2.2.1.2 Puissance

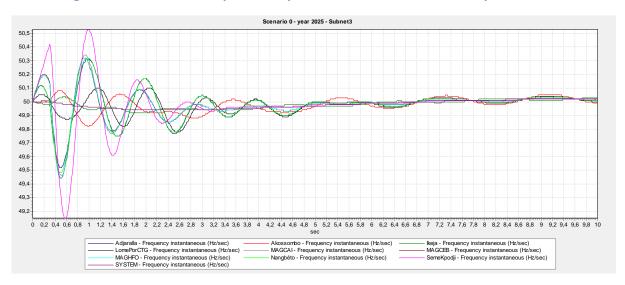
Figure 11 : Court-circuit triphasé à la production – Evolution de la puissance - 2020


La courbe des variations de la puissance se stabilise rapidement. Certains groupes ont leur rotors qui glissent par rapport à la fréquence synchrone et passent transitoirement d'alternateur à moteur (Puissance négative puis positive) mais ce phénomène n'est pas dangereux tant qu'il reste limité

dans le temps. Dans ce cas précis ce phénomène ne se produit que sur quelques périodes pendant moins de 3s. Au bout de ce délai le système est globalement stable. On remarque cependant que les groupes équivalents du Ghana et du Nigéria sont en opposition de phase : ils pompent autour d'une valeur d'équilibre, mais les oscillations se réduisent rapidement. On peut donc s'attendre à ce qu'en moins d'une minute la situation soit revenue à l'équilibre.

6.2.2.1.3 Tension

Figure 12 : Court-circuit triphasé à la production – Evolution de la tension – 2020



La surtension vue par l'ensemble des groupes est inférieure à 5%, il n'y a donc aucun problème de ce côté-là. Aucune oscillation n'est visible : le système est stable.

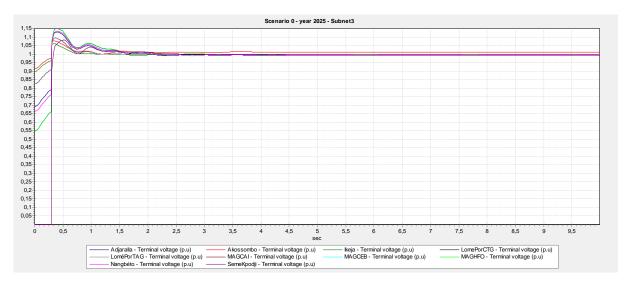
6.2.2.2 2025

6.2.2.2.1 Fréquence

Figure 13 : Court-circuit triphasé à la production – Evolution de la fréquence - 2025

De même qu'en 2025 la situation se stabilise en plus ou moins 5s. Le système retourne à la fréquence de 50hz. Une oscillation résiduelle peut être observée mais elle s'amortie.

6.2.2.2.2 Puissance


Figure 14 : Court-circuit triphasé à la production – Evolution de la Puissance - 2025

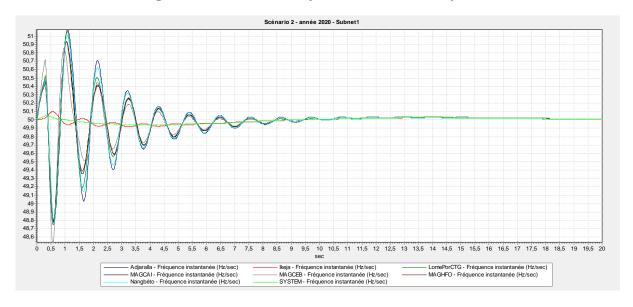
Ici aussi la situation se stabilise en quelques secondes. Le Nigéria et le Ghana pompent, mais le phénomène s'atténue au cours du temps.

6.2.2.2.3 Tension

Figure 15 : Court-circuit triphasé à la production – Evolution de la tension – 2025

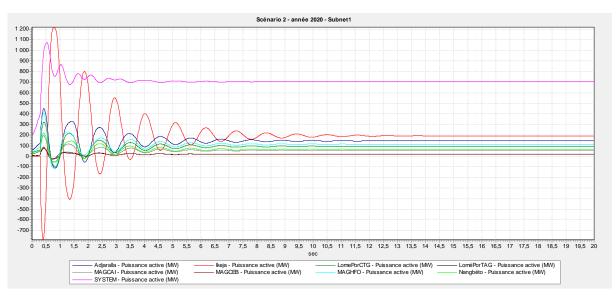
Le système est stable, les surtensions observées ne dépassent pas 15%.

Des simulations ont été faites aussi pour les années 2030 et 2035. Le système reste stable.


6.2.3 Déconnexion-Reconnexion avec le Nigéria

Le cas simulé dans ce paragraphe considère que la CEB n'est connectée qu'au réseau de TCN. Un court-circuit triphasé se produit sur le jeu de barres à lkeja pendant 0,3s avant d'être éliminé. C'est la pire configuration que l'on puisse imaginer : pendant quelques instants la CEB opère en ilotage avant de devoir se reconnecter sur un système qui n'est plus en phase.

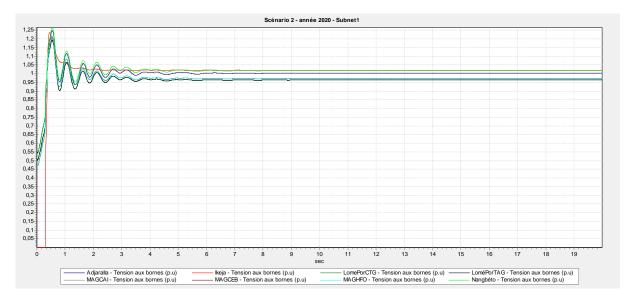
6.2.3.1 Fréquence


Figure 16 : Court-circuit Ikéja – évolution de la fréquence

Dans cette configuration extrême le système reste stable en fréquence même si de fortes oscillations transitoires peuvent être observées, les valeurs extrêmes atteintes restant dans les plages admissibles d'exploitation.

6.2.3.2 Puissance

Figure 17 : Court-circuit Ikéja – évolution de la Puissance



Le nœud qui connait les plus fortes variations de tension est le nœud d'Ikeja, mais celui-ci n'est pas un groupe de production réel, sa réponse n'est donc pas réelle. Le reste du système est perturbé mais se stabilise en quelques secondes.

6.2.3.3 Tension

Figure 18 : court-circuit Ikéja – évolution de la Tension

Des surtensions conséquentes ont lieu qui pourraient faire craindre la déconnexion de certains groupes, mais le système est stable.

6.3 Analyse des résultats

Toutes les configurations étudiées montrent que le réseau est stable si toutefois la stabilité du réseau Nigérian est rétablie. Les réseaux de la CEB seront peu étendus, il n'y a pas à craindre de phénomène de pompage entre plusieurs groupes dû à des liaisons trop « molles ». Les groupes de production et les points de charges sont proches. Les groupes sont reliés par des interconnexions fortes. Ces aspects fondamentaux ainsi que les études menées laissent à penser que le réseau à de fortes chances d'être stable. Cette stabilité est intrinsèque à la configuration de la CEB comme le montrent les études menées en ilotage. Si les voisins de la CEB sont stables cette situation en sera renforcée.

Cependant, étant donné que le système de la CEB reste très petit au regard de ses voisins (VRA et TCN) si ces réseaux étaient instables les groupes de la CEB ne pourraient qu'en subir les conséquences sans pouvoir réellement contribuer au réglage de la fréquence. Il est donc primordial pour la stabilité de la CEB que les réseaux de la TCN et de la VRA soient stables et connectables entre eux.

Annexes

Annexe 1 : caractéristiques des nœuds

Nœud	Année de mise en service	Année de mise hors service	Tension	Localisation
Adjarala	Existant	>2035	161	Bénin
Adjarall63	2025	>2035	63	Bénin
Adjohoun	2025	>2035	161	Bénin
Agamandin	2020	>2035	63	Bénin
Agbanzin	2025	>2035	63	Bénin
Akossombo	Existant	>2035	161	Ghana
Akpakpa	Existant	>2035	63	Bénin
Alafiarou	2025	>2035	63	Bénin
Amakpa	2025	>2035	63	Bénin
Aplahoue	2025	>2035	63	Bénin
Atakpame	Existant	>2035	161	Togo
Avakpa	Existant	>2035	161	Bénin
Banikoara	2025	>2035	63	Bénin
Bante	2025	>2035	63	Bénin
Bassila	2025	>2035	63	Bénin
Bembere330	2030	>2035	330	Bénin
Bemberek63	2025	>2035	63	Bénin
Bembereke	2016	>2035	161	Bénin
Bohicon161	Existant	>2035	161	Bénin
Bohicon63	Existant	>2035	63	Bénin
BohiconRur	2025	>2035	161	Bénin
Calavi	2020	>2035	63	Bénin
Cinkasse	2020	>2035	161	Togo
Cococodji	2020	>2035	63	Bénin
Cotonou	2020	>2035	63	Bénin
Cove	2025	>2035	161	Bénin
Dangbo	2025	>2035	63	Bénin
Dapaong	2020	>2035	161	Togo
Dassa	Existant	>2035	63	Bénin
Davie161	2020	>2035	161	Bénin
Davie330	2020	>2035	330	Bénin
Djougou	Existant	>2035	161	Bénin
Dogbo	2025	>2035	161	Bénin
Dosso	2025	>2035	330	Niger
Dyodyonga	2020	>2035	161	Bénin
Gbegamey	Existant	>2035	63	Bénin
Glazoue	Existant	>2035	63	Bénin
Godomey	2020	>2035	63	Bénin

Nœud	Année de mise en service	Année de mise hors service	Tension	Localisation
GrandPopo	2025	>2035	63	Bénin
Guéné	2020	>2035	161	Bénin
Houeyogbe	2025	>2035	63	Bénin
Ikeja	Existant	>2035	330	Bénin
Kainji	2030	>2035	330	Nigéria
Kandi	2020	>2035	161	Bénin
Kara	Existant	>2035	161	Togo
Karimama	2020	>2035	161	Bénin
Kerou	2025	>2035	63	Bénin
Ketou	2025	>2035	161	Bénin
Lalo	2025	>2035	63	Bénin
Legbassito	2020	>2035	161	Togo
Lokossa	Existant	>2035	63	Bénin
LomPort330	2030	>2035	330	Togo
LomeAflao	Existant	>2035	161	Togo
LomePort	Existant	>2035	161	Togo
Malanvi161	2020	>2035	161	Bénin
Malanvi330	2025	>2035	330	Bénin
Mango	2020	>2035	161	Togo
MariaGle63	2020	>2035	63	Bénin
MariaGleta	Existant	>2035	161	Bénin
MomeHag161	Existant	>2035	161	Togo
MomeHag63	Existant	>2035	63	Togo
Nangbeto	Existant	>2035	161	Togo
Natitingou	Existant	>2035	161	Bénin
Ndali	2025	>2035	161	Bénin
Notse	2020	>2035	161	Togo
Ogoutedo	2025	>2035	161	Bénin
Ogoutedo63	2025	>2035	63	Bénin
Onigbolo	Existant	>2035	161	Bénin
Ouesse	2025	>2035	63	Bénin
Ouidah	2025	>2035	63	Bénin
Parakou	Existant	>2035	161	Bénin
Pehunco	2025	>2035	63	Bénin
Perere	2025	>2035	63	Bénin
Pobe	2025	>2035	161	Bénin
Porga	2020	>2035	161	Bénin
Porto-Novo	Existant	>2035	63	Bénin
Sakete161	Existant	>2035	161	Bénin
Sakete330	Existant	>2035	330	Bénin
Savalou	2025	>2035	63	Bénin
Save	2016	>2035	161	Bénin
Sekandji	2030	>2035	63	Bénin

Nœud	Année de mise en service	Année de mise hors service	Tension	Localisation
SemeKpod63	2024	>2035	63	Bénin
SemeKpodji	2030	>2035	330	Bénin
Sinende	2025	>2035	63	Bénin
Sokode	Existant	>2035	161	Togo
Tanguieta	2025	>2035	161	Bénin
Tanzoun161	2020	>2035	161	Bénin
Tanzoun63	2020	>2035	63	Bénin
Tchatchou	2025	>2035	161	Bénin
Tema	2020	>2035	330	Ghana
Toffo	2025	>2035	63	Bénin
Vedocko161	Existant	>2035	161	Bénin
Vedocko63	Existant	>2035	63	Bénin
Ze	2025	>2035	63	Bénin

Annexe 2 : Charge aux nœuds

Nœud	Mise en service	Mise hors service	Tension (kV)	Charge 2015	Evolution de la charge Scénario Haut	Evolution de la charge Scénario Moyen	Evolution de la charge Scénario Faible	Loc.
Adjohoun33	2025	>2035	33	0,965	14%	12%	9%	Bénin
Agamandi15	2020	>2035	15	16	7%	5%	4%	Bénin
Agbanzin20	2025	>2035	20	0,739	14%	12%	9%	Bénin
Akpakp15_2	2030	>2035	15	15	7%	5%	4%	Bénin
Akpakpa15	Existant	2029	15	29,664	7%	5%	4%	Bénin
Alafiaro33	2025	>2035	33	0,495	17%	16%	13%	Bénin
Amakpa	2025	>2035	63	0,038	22%	15%	15%	Bénin
Aplahoue20	2025	>2035	20	1,4	13%	11%	8%	Bénin
Atakpame20	Existant	>2035	20	6,1	CEET Haut	CEET Moyen	CEET Faible	Togo
Avakpa20	Existant	2024	20	3,6	12%	10%	7%	Bénin
Avakpa20_2	2025	>2035	20	1,8	12%	10%	7%	Bénin
Banikoar33	2025	>2035	33	0,5	18%	16%	14%	Bénin
Bante33	2025	>2035	33	0,26	17%	16%	14%	Bénin
Bassila33	2025	>2035	33	0,6	15%	13%	11%	Bénin
Bemberek33	Existant	>2035	33	0,342	15%	13%	11%	Bénin
BohicRur20	2025	>2035	20	0,32	22%	19%	17%	Bénin
Bohicon20	Existant	>2035	33	11,1	9%	7%	6%	Bénin
Calavi15	2020	>2035	15	5,104	11%	9%	8%	Bénin
Cinkasse20	2020	>2035	20	0,6	CEET Haut	CEET Moyen	CEET Faible	Togo
Cococodj15	2020	>2035	15	7,5	10%	9%	8%	Bénin
Cotonou15	2020	>2035	15	16,5	7%	5%	4%	Bénin
Cove20	2025	>2035	20	0,7	15%	13%	11%	Bénin
Dangbo20	2025	>2035	20	0,472	14%	13%	10%	Bénin
Dapaong20	2020	>2035	20	2,6	CEET Haut	CEET Moyen	CEET Faible	Togo
Dassa20	Existant	>2035	20	3	7%	6%	4%	Bénin
Djougou20	Existant	>2035	20	4,2	10%	8%	6%	Bénin
Dogbo20	2025	>2035	20	1,9	11%	9%	6%	Bénin
Dyodyong20	2020	>2035	20	0,025	22%	20%	17%	Bénin
Gbegamey15	Existant	>2035	15	20	6%	4%	3%	Bénin
Glazoue20	Existant	>2035	20	0,8	13%	11%	8%	Bénin
Godomey15	2020	>2035	15	16,5	7%	5%	4%	Bénin
GrandPop20	2025	>2035	20	1,55	9%	7%	5%	Bénin
Guéné33	2016	>2035	33	0,025	22%	20%	17%	Bénin
Houeyogb20	2025	>2035	20	1,29	13%	11%	9%	Bénin
Kandi33 Kara33	2016 Existant	>2035 >2035	33 33	2 17,25	13% CEET Haut	11% CEET Moyen	9% CEET Faible	Bénin Togo

Nœud	Mise en service	Mise hors service	Tension (kV)	Charge 2015	Evolution de la charge Scénario Haut	Evolution de la charge Scénario Moyen	Evolution de la charge Scénario Faible	Loc.
Karimama20	2020	>2035	20	0,025	22%	20%	17%	Bénin
Kerou33	2025	>2035	33	0,2	18%	16%	14%	Bénin
Ketou20	2025	>2035	20	1,1	15%	13%	11%	Bénin
Lalo20	2025	>2035	20	0,381	16%	13%	11%	Bénin
Legbassi20	2020	>2035	20	12,7	CEET Haut	CEET Moyen	CEET Faible	Togo
Lokossa20	Existant	>2035	20	5,8	9%	7%	6%	Bénin
LomeAfla15	Existant	>2035	15	69,69	CEET Haut	CEET Moyen	CEET Faible	Togo
LomePort	Existant	>2035	161	9	Constant	Constant	Constant	Togo
LomePort15	Existant	>2035	15	52,44	CEET Haut	CEET Moyen	CEET Faible	Togo
Malanvil33	2020	>2035	33	0,025	22%	20%	17%	Bénin
Mango33	2020	>2035	33	0,5	CEET Haut	CEET Moyen	CEET Faible	Togo
MariaG15_2	2020	>2035	15	7	10%	9%	8%	Bénin
MariaGle15	Existant	2019	15	7	10%	9%	8%	Bénin
MomeHag63	Existant	>2035	63	27	Constant	Constant	Constant	Togo
MomeHago20	Existant	>2035	33	46	CEET	CEET	CEET	Togo
Natiting33	Existant	>2035	33	4,6	Haut 7%	Moyen 5%	Faible 4%	Bénin
Ndali33	2025	>2035	33	0,26	18%	16%	14%	Bénin
Notse20	2020	>2035	20	3	CEET	CEET	CEET	Togo
.1013020	2020	, 2000		3	Haut	Moyen	Faible	. 080
Ogoutedo33	2025	>2035	33	0,15	22%	21%	19%	Bénin
Onigbolo	Existant	>2035	161	23	Constant	Constant	Constant	Bénin
Onigbolo20	Existant	>2035	20	0,268	15%	13%	11%	Bénin
Ouesse33	2025	>2035	33	0,11	22%	21%	21%	Bénin
Ouidah20	2025	>2035	20	3,9	11%	9%	7%	Bénin
Parakou33	Existant	>2035	33	10	9%	7%	6%	Bénin
Pehunco33	2025	>2035	33	0,226	15%	13%	11%	Bénin
Perere33	2025	>2035	33	0,4	19%	17%	15%	Bénin
Pobe20	2025	>2035	20	1,2	13%	12%	9%	Bénin
Porga33	2020	>2035	15	0,05	22%	22%	19%	Bénin
PortoN15_2	2025	>2035	15	12	8%	5%	5%	Bénin
PortoNov15	Existant	2024	15	21,8	8%	5%	5%	Bénin
Sakete15	Existant	>2035	15	1,08	15%	13%	11%	Bénin
Savalou33	2025	>2035	33	1,161	12%	10%	8%	Bénin
Save_20	2025	>2035	20	0,365	13%	11%	9%	Bénin
Sekandji15	2030	>2035	15	15	7%	5%	5%	Bénin
SemeKpod15	2024	>2035	15	3,939	15%	13%	12%	Bénin
Sinende33	2025	>2035	33	0,069	22%	21%	19%	Bénin

Nœud	Mise en service	Mise hors service	Tension (kV)	Charge 2015	Evolution de la charge Scénario Haut	Evolution de la charge Scénario Moyen	Evolution de la charge Scénario Faible	Loc.
Sokode	Existant	>2035	161	7,5	CEET Haut	CEET Moyen	CEET Faible	Togo
Tanguiet33	2025	>2035	33	0,45	12%	10%	8%	Bénin
Tanzoun15	2025	>2035	15	12	8%	5%	5%	Bénin
Tchatcho33	2025	>2035	33	0,16	22%	21%	19%	Bénin
Toffo20	2025	>2035	20	1,2	13%	11%	9%	Bénin
Vedoc_15_2	2020	>2035	15	17	7%	5%	4%	Bénin
Vedocko15	Existant	2019	15	70,738	7%	5%	4%	Bénin
Ze20	2025	>2035	20	0,3	17%	14%	12%	Bénin

Annexe 3 : caractéristiques des lignes

Lignes	Année de mise en service	Année de mise hors service	Type de ligne	Longueur (km)	Amplitude de la tension (kV)	
Adjarala - Dogbo	2025	>2035	253mm²	21	161	
Adjarala - MomeHag161 (1)	Existant	>2035	253mm ²	43	161	
Adjarala - Nangbeto	Existant	>2035	253mm ²	67	161	
Adjarala - Notse	2020	>2035	253mm ²	50	161	
Adjarall63 - Aplahoue	2025	>2035	185mm²	11	63	
Adjohoun - Sakete161	2025	>2035	253mm ²	17	161	
Adjohoun - Vedocko161	2025	>2035	253mm ²	68	161	
Agamandin - Calavi (1)	2020	>2035	185mm²	7	63	
Agamandin - Godomey (1)	2020	>2035	185mm²	7	63	
Agbanzin - Bohicon63	2025	>2035	185mm²	17,5	63	
Akossombo - LomeAflao (1)	Existant	>2035	177mm²	129	161	
Akossombo - LomeAflao (2)	Existant	>2035	177mm²	129	161	
Akpakpa - Gbegamey (1)	Existant	>2035	185mm²	5,5	63	
Akpakpa - Gbegamey (3)	2025	>2035	185mm²	5,5	63	
Akpakpa - Porto-Novo	Existant	2023	185mm²	33	63	
Akpakpa - Sekandji (1)	2030	>2035	185mm²	9,5	63	
Akpakpa - Sekandji (2)	2030	>2035	185mm²	9,5	63	
Akpakpa - SemeKpod63 (1)	2024	2029	185mm²	19	63	
Akpakpa - SemeKpod63 (2)	2025	2029	185mm²	19	63	
Alafiarou - Bemberek63	2025	>2035	185mm²	78	63	
Alafiarou - Perere	2025	>2035	185mm²	40	63	
Amakpa - Bohicon63	2025	>2035	185mm²	40	63	
Aplahoue - Lalo	2025	>2035	185mm²	22	63	
Atakpame - Nangbeto	Existant	>2035	253mm²	37,5	161	
Atakpame - Notse	2020	>2035	253mm ²	63	161	
Atakpame - Sokode (1)	Existant	>2035	253mm²	194	161	
Avakpa - Dogbo	2025	>2035	253mm²	35	161	
Avakpa - MariaGleta	Existant	>2035	177mm²	38	161	
Avakpa - MomeHag161	Existant	>2035	177mm²	54	161	
Banikoara - Kerou	2025	>2035	185mm²	60	63	
Bante - Bassila	2025	>2035	185mm²	77	63	
Bante - Ouesse	2025	>2035	185mm²	60	63	
Bembere330 - Kainji	2030	>2035	430mm ²	220	330	
Bemberek33 - Parakou33	Existant	2015	253mm²	108	33	
Bemberek63 - Sinende	2025	>2035	185mm²	37	63	
Bembereke - Kandi (1)	2020	>2035	253mm²	109	161	
Bembereke - Kandi (2)	2020	>2035	253mm ²	109	161	
Bembereke - Ndali	2025	>2035	253mm²	42	161	

Lignes	Année de mise en service	Année de mise hors service	Type de ligne	Longueur (km)	Amplitude de la tension (kV)	
Bembereke - Parakou (1)	2016	>2035	253mm²	108	161	
Bembereke - Parakou (2)	2016	2024	253mm²	108	161	
Bohicon161 - BohiconRur	2025	>2035	253mm²	5,8	161	
Bohicon161 - Nangbeto	Existant	>2035	253mm²	80,3	161	
Bohicon161 - Onigbolo (1)	Existant	2024	253mm²	80	161	
Bohicon161 - Onigbolo (2)	2035	>2035	253mm²	80	161	
Bohicon63 - Dassa	Existant	>2035	185mm²	77	63	
BohiconRur - Cove	2025	>2035	253mm ²	32	161	
Calavi - MariaGle63 (2)	2020	>2035	185mm²	10,4	63	
Calavi - MariaGle63 (3)	2024	>2035	185mm²	10,4	63	
Calavi - Ze	2025	>2035	185mm²	35	63	
Cinkasse - Dapaong	2020	>2035	253mm²	20	161	
Cococodji - Godomey	2020	>2035	185mm²	8,7	63	
Cococodji - MariaGle63 (1)	2020	>2035	185mm²	5,9	63	
Cococodji - Ouidah	2025	>2035	185mm²	20	63	
Cotonou - Gbegamey (1)	2025	>2035	185mm²	2,2	63	
Cotonou - Gbegamey (2)	2020	>2035	185mm²	2,2	63	
Cotonou - Vedocko63 (1)	2020	>2035	185mm²	2,2	63	
Cotonou - Vedocko63 (2)	2025	>2035	185mm²	2,2	63	
Cove - Onigbolo	2025	>2035	253mm²	43	161	
Dangbo - Porto-Novo	2025	>2035	185mm²	20	63	
Dapaong - Mango	2020	>2035	253mm²	76	161	
Dapaong - Porga	2020	>2035	253mm ²	90	161	
Dassa - Glazoue	Existant	>2035	185mm²	24	63	
Dassa - Savalou	2025	>2035	185mm²	28	63	
Davie161 - Legbassito (1)	2020	>2035	177mm²	15	161	
Davie161 - Legbassito (2)	2020	>2035	177mm²	15	161	
Davie161 - LomeAflao (1)	2020	>2035	177mm²	30	161	
Davie161 - LomeAflao (2)	2020	>2035	177mm²	30	161	
Davie161 - MomeHag161 (1)	2020	>2035	177mm²	41	161	
Davie161 - MomeHag161 (2)	2020	>2035	177mm²	41	161	
Davie161 - Notse	2020	>2035	253mm ²	61	161	
Davie330 - LomPort330 (1)	2025	>2035	430mm ²	30	330	
Davie330 - LomPort330 (2)	2025	>2035	430mm ²	30	330	
Davie330 - Sakete330	2020	>2035	430mm ²	173	330	
Davie330 - Tema	2020	>2035	430mm²	155	330	
Djougou - Kara (1)	Existant	>2035	253mm ²	66	161	
Djougou - Natitingou (1)	Existant	>2035	253mm ²	72	161	
Djougou - Parakou (1)	Existant	>2035	253mm ²	131	161	
Djougou - Parakou (2)	2025	>2035	253mm ²	131	161	
Dosso - Malanvi330	2025	>2035	430mm ²	100	330	
Dyodyonga - Karimama	2020	>2035	253mm ²	40	161	

Lignes	Année de mise en service	Année de mise hors service	Type de ligne	Longueur (km)	Amplitude de la tension (kV)
Gbegamey - Vedocko63	Existant	2019	185mm²	4,4	63
Godomey - MariaGle63 (1)	2025	>2035	185mm²	7	63
Godomey - Vedocko63 (1)	2020	>2035	185mm²	4	63
GrandPopo - Ouidah	2025	>2035	185mm²	28,9	63
Guéné - Kandi (1)	2020	>2035	253mm ²	83	161
Guéné - Kandi (2)	2020	>2035	253mm ²	83	161
Guéné - Karimama	2020	>2035	253mm ²	23	161
Guéné - Malanvi161 (1)	2020	>2035	253mm²	26	161
Guéné - Malanvi161 (2)	2025	>2035	253mm ²	26	161
Houeyogbe - Lokossa	2025	>2035	185mm²	27	63
Ikeja - Sakete330	Existant	>2035	430mm ²	70	330
Kara - Mango	2020	>2035	253mm ²	164	161
Kara - Sokode (1)	Existant	>2035	253mm ²	76	161
Kerou - Pehunco	2025	>2035	185mm²	68	63
Ketou - Onigbolo	2025	>2035	253mm²	25	161
Ketou - Save	2025	>2035	253mm²	75	161
Lokossa - MomeHag63	Existant	>2035	185mm²	29	63
LomeAflao - LomePort (1)	Existant	>2035	253mm²	17,2	161
LomeAflao - LomePort (2)	Existant	>2035	253mm²	17,2	161
LomeAflao - MomeHag161 (1)	Existant	2019	177mm²	56	161
LomeAflao - MomeHag161 (2)	Existant	2019	177mm²	56	161
MariaGleta - MomeHag161	Existant	>2035	177mm²	92	161
MariaGleta - Vedocko161 (1)	Existant	>2035	253mm ²	11	161
MariaGleta - Vedocko161 (2)	Existant	>2035	177mm²	11	161
Natitingou - Porga	2020	2024	253mm ²	97	161
Natitingou - Tanguieta	2025	>2035	253mm ²	45	161
Ndali - Parakou	2025	>2035	253mm ²	66	161
Ogoutedo - Save	2025	>2035	253mm ²	76	161
Ogoutedo - Tchatchou	2025	>2035	253mm ²	41	161
Ogoutedo63 - Ouesse	2025	>2035	185mm²	50	63
Onigbolo - Pobe	2025	>2035	253mm ²	17	161
Onigbolo - Sakete161 (1)	Existant	2024	253mm ²	47	161
Onigbolo - Sakete161 (4)	Existant	>2035	253mm²	47	161
Onigbolo - Save (1)	2016	>2035	253mm²	100	161
Onigbolo - Save (2)	2020	2024	253mm²	100	161
Parakou - Save (1)	2016	>2035	253mm²	140	161
Parakou - Save (2)	2016	2024	253mm²	140	161
Parakou - Tchatchou	2025	>2035	253mm²	25	161
Pehunco - Sinende	2025	>2035	185mm²	51	63
Pobe - Sakete161	2025	>2035	253mm²	30	161

Lignes	Année de mise en service	Année de mise hors service	Type de ligne	Longueur (km)	Amplitude de la tension (kV)
Porga - Tanguieta	2025	>2035	253mm²	52	161
Porto-Novo - SemeKpod63 (1)	2024	>2035	185mm²	16	63
Porto-Novo - SemeKpod63 (2)	2035	>2035	185mm²	16	63
Porto-Novo - Tanzoun63 (1)	2020	>2035	185mm²	3,2	63
Porto-Novo - Tanzoun63 (2)	2020	>2035	185mm²	3,2	63
Sakete161 - Tanzoun161 (1)	2020	>2035	253mm ²	28	161
Sakete161 - Tanzoun161 (2)	2020	>2035	253mm ²	28	161
Sakete161 - Vedocko161 (1)	Existant	>2035	253mm ²	75	161
Sakete161 - Vedocko161 (2)	Existant	2024	253mm ²	75	161
Sakete330 - SemeKpodji (1)	2030	>2035	430mm ²	40	330
Sakete330 - SemeKpodji (2)	2030	>2035	430mm ²	40	330
Sekandji - SemeKpod63 (1)	2030	>2035	185mm²	9,5	63
Sekandji - SemeKpod63 (2)	2030	>2035	185mm²	9,5	63
Toffo – Ze	2025	>2035	185mm²	17	63



Annexe 4 : Schémas unifilaires

7.1 Code couleur utilisé

Les unifilaires présentés dans la section suivante utilisent le code de couleur suivant :

Plan de tension	Ecoulement de charge	Ecoulement de charge					
15-20-33 kV Noir	Chute de tension	Charge					
63 kV bleu	<-5% : bleu	<50% : bleu					
161kV rouge	-5%-+5% : vert	50-80% : vert					
330kV vert	5-10% : orange	80-100% orange					
	>10% rouge	>100% rouge					

Les schéma unifilaires sont dans le document « Tome 3 – Annexes – Unifilaires – Final »

Plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

DAEM - MERPMEDER

Tome 4
Electrification Rurale

Rapport Final Aout 2015

RAPPORT Final

Plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

Tome 4:

ELECTRIFICATION RURALE

Références du contrat : DAEM : 206/MEF/MERPMEDER/DNCMP/SP

IED: 2014/007

Client IDA

Consultant IED Innovation Energie Developpement

2 chemin de la Chauderaie 69340 Francheville, France Tel: +33 (0)4 72 59 13 20 Fax: +33 (0)4 72 59 13 39

Site web: www.ied-sa.fr

Rédaction du document

	VERSION 1	VERSION 2	VERSION 3
Date	Avril 2015	Aout 2015	
Rédaction	CA	CA	
Relecture	CA/HP	CA/HP	
Validation	HP	HP	

Ce rapport a été rédigé par IED dans le cadre du contrat Elaboration du plan directeur de développement du sous-secteur de l'énergie électrique au Bénin à parti des informations collectées au cours des missions effectuées au Bénin et des échanges avec les personnes rencontrées. Il ne reflète pas nécessairement les opinions de la Banque Mondiale, du Ministère de l'Energie du Bénin, de la SBEE, de l'ABERME.

PLAN DIRECTEUR DE DEVELOPPEMENT DU SOUS-SECTEUR DE L'ENERGIE ELECTRIQUE AU BENIN

LISTE DES TOMES:

TOME 0 : RESUME EXECUTIF

TOME 1: SCENARIOS DE DEMANDE

TOME 2: PLAN D'EXPANSION DES MOYENS DE PRODUCTION

TOME 3: DEVELOPPEMENT DU RESEAU DE TRANSPORT

TOME 4: ELECTRIFICATION RURALE

TOME 5: ANALYSE FINANCIERE

TOME 6: PLAN D'ACTION

TOME 4 - TABLE DES MATIERES

1	CONSTITUTION D'UNE BASE DE DONNEE GEO-REFERENCEE	7
1.1	Localités	7
1.1.1	1 Mise à jour des données pour l'élaboration du plan directeur	8
1.1.1		
1.2	Réseau MT	9
2	SELECTION DES LOCALITES A ELECTRIFIER	9
2.1	Analyse de la situation 2015	9
2.2	Objectifs nationaux	13
2.3	Méthodologie GEOSIM	13
2.3.1	1 Logiques de modélisation	14
2.3.2	2 Hiérarchisation des localités	15
2.4	Choix et création d'un ordre de priorité des localités à électrifier	17
2.4.1	Scénario Haut	17
2.4.2	2 Scénario Moyen	18
2.4.3	Scénario Faible	18
3	EXTENSION DES RESEAUX MOYENNE TENSION	19
3.1	Algorithme utilisé et hypothèses de calcul	19
3.2	Hypothèses de calcul	20
3.3	Résultats	21
3.3.1	1 Scénario haut	21
3.3.2	2 Scénario moyen	25
3.3.3	Scénario faible	29
4	VALIDATION ELECTRIQUE DES EXTENSIONS DU RESEAU MOYENNE TENSION	35
4.1	Implantations de nouveaux postes sources	35

4.2	Evaluation de la faisabilité électrique des extensions de réseaux HTA	40
4.2.1	Objectifs et Méthodologie	40
4.2.1.1	Objectifs de l'étape d'évaluation de la faisabilité électrique	
4.2.1.2 4.2.1.3	Rappels théoriques Etapes de la vérification	
4.2.1.3 4.3	Estimation des chutes de tension et choix des conducteurs	
4.3.1.1	Qualité de service	
4.3.1.2	Caractéristiques des extensions de réseau	
4.3.1.3	Evaluation de la demande des localités déjà raccordées	
432	Résultats	43

TABLE DES ILLUSTRATIONS

LISTE DES CARTES	
Carte 1 : Réseaux exitant – Nord	11
Carte 2 : Réseaux existant - Sud	12
Carte 3 : Extensions des Réseaux de la SBEE - Nord - Scénario Haut	33
Carte 4 : Extension des réseaux de la SBEE - Sud - Scénario Haut	34
Carte 5: Zone d'influence des postes sources	37
Carte 6 : Chute de tension sur les zone d'influence des départs (2035)	39
Carte 7 : chute de tensions des extensions réseau	44
LISTE DES FIGURES	
Figure 1 : amélioration du géoréférencement des localités	8
Figure 2 : répartition de la population des villages non électrifiés	10
Figure 3 : Processus de planification de GEOSIM®	14
Figure 4 : Nombre de localité selon leur IPD	17
Figure 5: Distance max de transport pour une chute de tension de 7,5%	36
Figure 6: Chute de tension en fonction des conducteurs et de la puissance transitée Erreur!	Signe
non défini.	

LISTE DES TABLEAUX

Tableau 1 : Paramètres de calcul de l'indice de potentiel de développement	16
Tableau 2: Hypothèses économiques pour l'électrification rurale	20
Tableau 3 : Nombre de localités raccordé par an – Scénario Haut	21
Tableau 4 : Population des localités raccordées dans l'année de raccordement (milliers) –	
Haut	22
Tableau 5 : Population vivant dans les localités raccordées (valeurs cumulées ; milliers) –	Scénario
Haut	2 3
Tableau 6- Longueur des réseaux MT à construire (km)— Scénario Haut	24
Tableau 7 : Nombre de localités raccordées par an – Scénario Moyen	
Tableau 8 : Population des localités raccordées dans l'année de raccordement (milliers)-	Scénario
Moyen	26
Tableau 9 : Population vivant dans les localités raccordées (valeurs cumulées ; milliers) –	Scénario
Moyen	27
Tableau 10- Longueur des réseaux MT à construire (km)— Scénario Moyen	28
Tableau 11 : Nombre de localités raccordé par an – Scénario Faible	29
Tableau 12 : Population des localités raccordées dans l'année de raccordement (milliers) –	
Faible	30
Tableau 13 : Population vivant dans les localités raccordées (valeurs cumulées ; milliers) –	- Scénario
Faible	31
Tableau 14- Longueur des réseaux MT à construire (km)— Scénario Faible	32
Tableau 15: Moment électrique pour les différents types de ligne	35
Tableau 16 Charge des postes sources	
Tableau 17 caractéristiques des conducteurs utilisés	43

LISTE DES ACCRONYMES:

SIG

AEP	Adduction d'eau potable
AEV	Adduction d'eau villageoise
BT	Basse Tension
CEB	Communauté Electrique du Bénin
CEG	Collège d'enseignement Général
CSA	Centre de santé d'arrondissement
CSC	Centre de santé communal
DGE	Direction Générale de l'Energie
GCU	Grand Centre Urbain
HTB	Haute tension niveau B
INSAE	Institut National de la statistique et de analyse économique du Bénin.
IPD	Indice du Potentiel de Développement
MT	Moyenne Tension
MW	MégaWatt
SBEE	Société Béninoise d'Energie Electrique

Système d'Information Géographique

RESUME

En 2015, 1654 des 3817 localités du Bénin sont raccordées au réseau de la SBEE, soit 43%. La population vivant dans ces localités représente environ 60% de la population totale du Bénin. Hors des grandes zones urbaines seulement 43% de la population vit dans des localités électrifiées.

L'électrification par raccordement au réseau de la SBEE est la stratégie principale à suivre vu que le réseau de la SBEE couvre déjà relativement bien le pays : 82% des localités non électrifiées sont à moins de 1km du réseau MT existant, 12% sont entre 5 et 20 km et seulement 2% sont à plus de 20km. En accord avec la DGE, il a été fixé comme seuil que toutes les localités qui ont en 2035 plus de 1000 habitants devraient être raccordées au réseau dans le Scénario Haut. Les seuils correspondants dans le Scénario Moyen et Faible sont de 1500 et de 2000 respectivement. Concernant le rythme de l'électrification, les hypothèses de 100, 90 et 80 localités par an ont été retenues.

La priorité dans la sélection des localités a été donnée aux localités dont l'accès à l'électricité aura un bénéfice maximal sur les populations. Ainsi le consultant a hierarchisé les localités selon la présence d'infrastructures socio-économiques. Un autre critère, utilisé dans la sélection des localités à raccorder dans l'avenir proche, reflète la politique du Gouvernement d'électrifier tous chef lieux d'arrondissement. Les 127 chefs-lieux qui ne sont pas encore électrifiées sont raccordés au réseau dans le plan préparé entre 2016 et 2018. Le consultant a également veillé à respecter une certaine équité entre le sud et le nord du pays pour que les deux zones du pays bénéficient en même temps du programme d'électrification rurale.

Dans le programme d'électrification préparé pour le Plan Directeur, au total 1850 localités sont raccordées au réseau entre 2016 et 2035 dans le Scénario Haut. Le nombre correspondant est de 1641 dans le Scénario Moyen et de 1385 dans le Scénario Faible. Entre 79% (Scénario Faible) et 92% (Scénario Haut) des localités du Bénin seront donc raccordées au réseau en 2035, permettant à 90% - 94% de la population béninoise de vivre dans les localités électrifiées. A l'intérieur des localités qui sont électrifiées à partir de 2016, le taux d'électrification varie selon le scénario et la date d'électrification. Dans le Scénario Moyen, par exemple, il est d'environ 66% dans les localités raccordées en 2016 et d'environ 20% dans les localités raccordées en 2034.

Un tel programme d'électrification par raccordement au réseau nécessitera l'installation de 4400 à 5200 km de lignes MT supplémentaire (la SBEE exploite déjà un réseau d'environ 10 000km de long). L'augmentation de la taille du réseau devra être accompagnée de la multiplication des postes sources afin de permettre une exploitation dans des conditions de qualitées normées. Les extensions de réseau proposées ont été validées électriquement au regard de l'implantation de nouveaux postes. Les détails de chaque extension proposée devront cependant faire l'objet d'études spécifiques et détaillées.

Les listes de localités à électrifier et les tracés des réseaux sont présentés en annexe de ce rapport et transmises au format SIG aux acteurs clef du secteur : DGE, SBEE, ABERME avec la version finale.

1 Constitution d'une base de donnée géo-référencée

1.1 Localités

Le SIG initial dont disposait le consultant datait de 2009 et avait été compilé pour réaliser les études lié au « programme d'électrification rurale par raccordement au réseau SBEE » augmenté des mises à jour faite pour le projet « Restructuration et Extension des réseaux de la SBEE dans la commune d'ABOMEY-CALAVI et le département de l'ATLANTIQUE ». Il contient les éléments suivants :

- Administratif
 - Limite des départements
 - o Limite des communes
 - Couche des localités
 - Commune de rattachement
 - Arrondissement de rattachement
 - Nom de la localité
 - Numéro INSAE
 - Population INSAE 1992
 - Population INSAE 2002
 - Statut Electrification (+ source de financement si projet en cours)
 - Education
 - Collège 1^{er} cycle
 - Collège 1^{er}& 2nd cycle
 - Ecole Primaire
 - Santé
 - Centre de santé d'arrondissement
 - Centre de santé de commune
 - Centre de santé
 - Dispensaire
 - Maternité
 - o Parcs nationaux
 - o Parcellaire Cotonou & Abomey-Calavi
- Education
 - o CEG 1
 - o CEG 1&2
 - o Ecoles primaires
- Santé
 - o AEP
 - o CSA
 - o CSC
 - o Centres de Santé
 - o Dispensaires
 - Maternités

- Electricité
 - o CEB
 - Sous stations
 - Type
 - Nom
 - Lignes HTB
 - o SBEE
 - Postes de transformation (1474, incomplet, notamment hors de Cotonou)
 - Réseau Electrique MT (bien géoréférencé sur le département de l'Atlantique & Cotonou, pour le reste du pays suit seulement les routes)
 - o Potentiels hydro
 - Faibles potentiels: 7-4000 kW
 - Fort potentiels : 2 160 MW
- Données physiques
 - o Hydrologie
 - Etendues d'eau
 - Fleuves
 - Marais
 - Rivières
 - Zones inondables
- Infrastructure
 - o Economie
 - Banque
 - Usines
 - Coton
 - Autres
 - Transport
 - Aéroports
 - Chemin de fer
 - Routes et pistes

1.1.1 Mise à jour des données pour l'élaboration du plan directeur

La constitution d'une base de données géo-référencé à jour est un paramètre clef pour la réalisation du plan directeur. La mission de collecte de donnée et les recherches d'informations sur internet ont permis au consultant de mettre à jour sa base donnée notamment sur les points centraux suivants :

- Actualisation du statut électrifié des localités
- Actualisation de la liste de localité
- Amélioration de la précision géographique de la couche des localités
- Actualisation de la population des localités

1.1.1.1 Actualisation de la couche des localités

Le consultant a récupéré auprès de l'ABERME, de la DGE et de la SBEE des listes de localités avec leur statut électrifié ou non.

La liste de localité géo référencée transmise par la DGE s'est avérée plus précise géographiquement que la couche dont disposait le consultant. En effet pour un échantillon d'une centaine de localité répartie sur tout le pays, le consultant a constaté que la couche de la DGE était mieux localisée par rapport aux photos satellites disponibles sur internet :

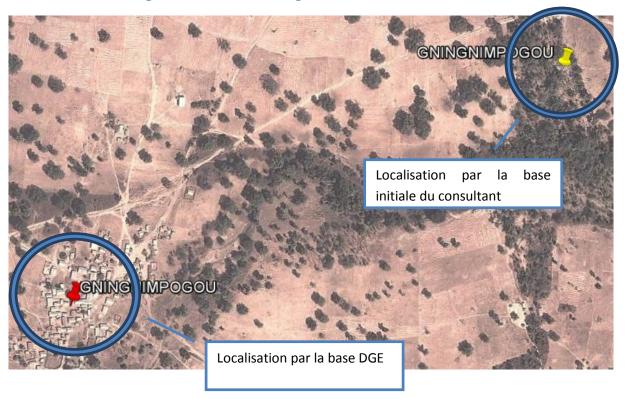


Figure 1 : amélioration du géoréférencement des localités

Le consultant se propose donc de rapatrier toutes les informations de sa base de données vers la couche de localité de la DGE. Ce rapprochement est possible de par la correspondance des noms de localités et de leur attachement administratif aux communes entre les deux bases.

Les listes de localités de l'ABERME et de la SBEE ne sont pas géo-référencées, les informations ont été rapatriées sur la base des noms et communes de rattachement. Toutes les localités de la liste SBEE ont pu être retrouvées. 35 Localités des listes ABERME n'ont pas été retrouvées.

Certaines incohérences ont été relevées entre les différentes sources de données mise à profit par le consultant. Toutes les incohérences ont été levées lors de l'atelier qui s'est tenu à Porto Novo en janvier 2015. Les règles suivantes ont été adoptées :

- Seules les localités ayant un code INSAE sont retenues, les autres localités relevées par les divers acteurs du secteur sont écartées. En effet seules les localités relevées par l'INSAE lors du recensement de 2002 ont une population de référence sur laquelle peut se baser l'étude d'extension du réseau MT.
- Le statut d'électrification est défini suivant les listes de la DGE et la mise à jour effectuée en décembre 2014 par la DGE.

1.2 Réseau MT

La couche des réseaux HTA est très précise pour le département de l'Atlantique et la ville de Cotonou : un géo-référencement exact a été réalisé par la SBEE tant des réseaux que des postes MT/BT et transmise au consultant. Pour le reste du pays les informations sont plus globales : seuls les réseaux reliant les principales localités électrifiées sont représentés, les réseaux ont été dessinés en suivant les routes. La localisation des postes MT/BT n'est connue que pour la DR Mono-Couffo. Pour les autres DR la localisation des postes n'est pas connue. Une mission dans chacune des directions régionales de la SBEE a été réalisée qui a permis de consolider et de compléter la base de donnée. Elle a notamment permis de préciser les tracés et les sections des conducteurs présents sur le réseau. A cette date le consultant dispose d'une base de donnée géo-référencée reprenant toutes les lignes, leur section et leur statut (existant, en construction, planifié).

Cependant les réseaux des zones urbaines autre que Cotonou, Abomey Calavi, Lokossa, Abomey-Bohicon ne sont pas connus précisément.

2 Sélection des localités à électrifier

2.1 Analyse de la situation 2015

En 2015 3817 localités sont recensées par l'INSAE, dont 3810 sont géo-référencées. Il y a 1450 localités électrifiées au Bénin en dehors des Grands Centres Urbains (GCU, Cotonou, Porto-Novo-Seme-Kpodji, Abomey-Calavi, Abomey, Bohicon, Parakou). Le réseau de la SBEE est déjà assez largement développé la plupart des localités du Bénin sont à moins de 20km du réseau existant ou planifié. 82% des localités non électrifiées sont à moins de 1km du réseau existant, seulement 2% des localités non électrifiées sont à plus de 20km du réseau MT existant, 12% des localités sont entre 5 et 20km du réseau existant. 78% de la population vivant dans des localités non électrifiées sont à moins de 1km du réseau, seulement 3% sont à plus de 20km du réseau, 16% sont entre 2 et 5km.

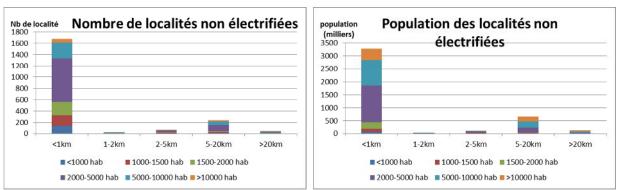
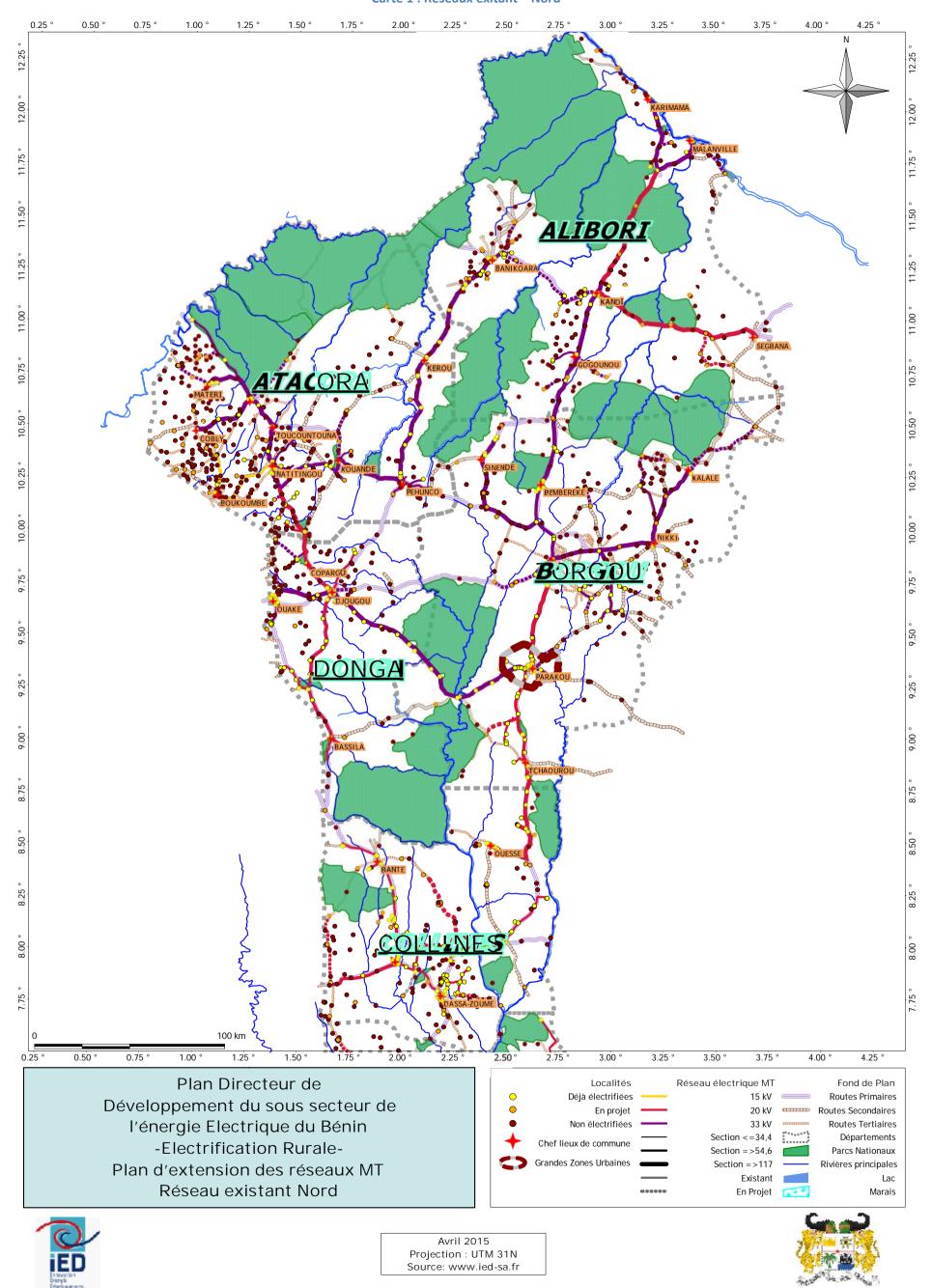
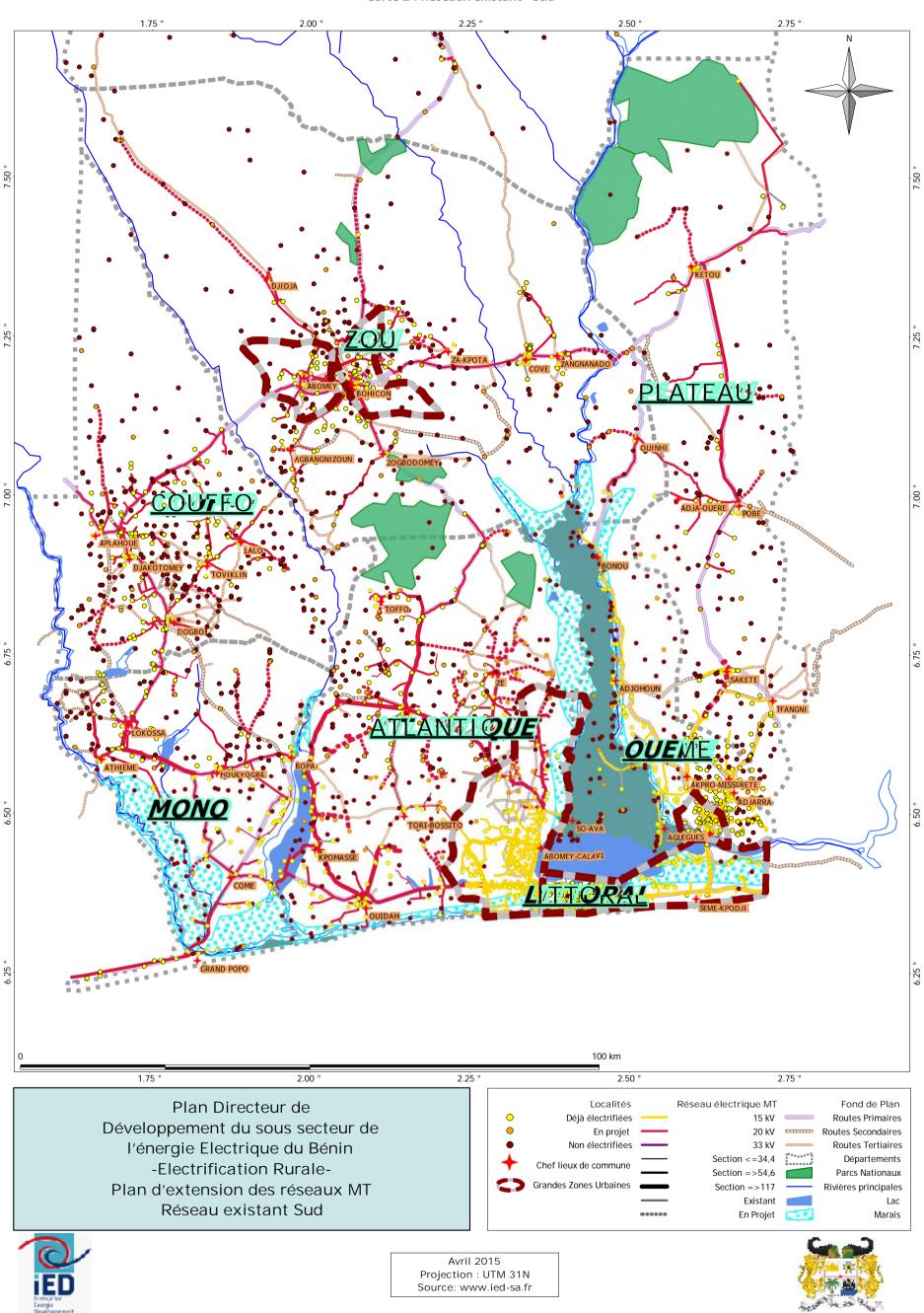



Figure 2 : répartition de la population des villages non électrifiés

Cette situation justifie pleinement une politique d'électrification basée sur un raccordement intégral des localités au réseau interconnecté



2.2 Objectifs nationaux

Le précédent document de référence pour l'extension du réseau de distribution (Programme d'actions pour l'électrification des localités rurales du Bénin-2005) mentionnait les objectifs suivants :

- Raccordement MT pour les localités de plus de 1000 habitant si elles sont situés à moins de 20km du réseau MT existant ou planifiés
- Solution décentralisées pour les « localités importantes » (plus de 1000 habitants, chefs lieu d'arrondissement)

Suite à l'atelier qui s'est tenu sur la prévision de la demande en février à Cotonou, la DGE a demandé à ce que le scénario haut prenne comme cible toutes les localités de plus de 1000 habitants au moment de l'électrification. Le consultant a donc proposé pour les scénarios moyen et bas les limites de 1500 et 2000 habitants. Afin de rester réaliste par rapport aux différents scénarios, le consultant a proposé à la DGE par un email du 03 mars de considérer un rythme en termes de nombre localité raccordé par an de respectivement 100, 90 et 80 localités pour atteindre l'objectif précédemment cité à un horizon de 20ans.

L'objectif d'électrification de tous les chefs-lieux d'arrondissement est maintenu

2.3 Méthodologie GEOSIM

Afin de sélectionner la liste des localités à électrifier et leur priorisation dans le cadre du Plan Directeur, le consultant a, conformément à sa proposition, fait le choix d'utiliser le logiciel GEOSIM©, outil d'aide à la décision en matière d'électrification rurale. Cette outil, éprouvé ces dernières années dans différents pays (Bénin, Burkina Faso, Cameroun, Ethiopie, Mali, Niger, Laos, Cambodge etc.), permet de couvrir l'ensemble des étapes de la planification de l'électrification rurale (dans sa définition première), depuis l'aménagement du territoire jusqu'à la définition des options d'approvisionnement.

Le logiciel exploite les fonctionnalités des Systèmes d'Information Géographique (SIG)¹, et est constitué de 4 modules interdépendants, permettant de couvrir l'ensemble des étapes de la planification.

- ➢ GEOSIM Spatial Analyst® Analyse spatiale et aménagement du territoire → Quelles localités cibler en priorité pour optimiser l'impact du programme d'électrification et toucher la population la plus large possible?
- ➤ GEOSIM Demand Analyst® Prévision de la demande → Quelle sera l'évolution de la demande dans les années à venir ?
- ➢ GEOSIM Network Options® Optimisation des options d'alimentation → Quelles options d'approvisionnement s'avèrent être les plus adaptées pour alimenter les localités identifiées (réseau MT, projets ENR, projets diesel) ?

_

¹GEOSIM© opère dans l'environnement Manifold®

➤ **GEOSIM Distributed Energy® -** Systèmes indépendants, énergie répartie → Quelles options proposer aux localités les plus isolées ne bénéficiant pas d'une option conventionnelle ?

GEOSIM Spatial Analyst® GEOSIM Demand Analyst® Analyse spatiale et aménagement du territoire Prévision de la demande (à l'horizon de la Identification et sélection des Pôles de développement planification) Analyse des zones d'influence et hiérarchisation des Pôles Estimation de la consommation d'énergie Identification des localités isolées Estimation de la puissance de pointe Estimation du nombre de clients MT et BT Plan d'électrification rurale du territoire considéré GEOSIM Supply Options® Comparaison des solutions d'approvisionnement Analyse des options d'approvisionnement des Pôles (réseau, diesel, hydro...) Sélection de l'option la plus adaptée (dimensionnement + chiffrage) GEOSIM Pre-Elec® Stratégies de pré-électrification (localités isolées) Dimensionnement des équipements (PV, Plateforme Multifonctionnelle) Chiffrage des investissements

Figure 3: Processus de planification de GEOSIM®

2.3.1 Logiques de modélisation

Le présent paragraphe présente les conditions dans lesquelles les fonctionnalités de GEOSIM® ont été utilisées pour établir le volet électrification rurale du plan directeur.

> GEOSIM Spatial Analyst® - Analyse spatiale et aménagement du territoire

En s'appuyant sur les concepts de Pôles de Développement et d'hinterlands (ou aires d'attraction), GEOSIM® Spatial Analyst® permet d'identifier et de hiérarchiser les localités à fort potentiel de développement économique et social qu'il conviendrait d'électrifier en priorité, dans le but de maximiser l'impact économique et social de l'électrification rurale.

➤ GEOSIM Demand Analyst® - Prévision de la demande

GEOSIM Demand Analyst® permet de modéliser et de prévoir la demande en électricité au niveau de chaque village, dans un contexte où la disponibilité et la qualité des données à grande échelle n'est pas toujours suffisante.

A partir de profils de consommation moyens des différents types d'utilisateurs finaux (classes de ménage pauvre, moyenne, riche, écoles, boutiques, autres activités productives etc.), le logiciel calcule les données suivantes pour chaque village de la zone d'étude et pour 3 scénarii d'alimentation (24h, 10h, 5h) : nombre de clients (basse et moyenne tension), demande de pointe

(kW), consommation annuelle, courbes de demande classées. Les résultats de la prévision de la demande ont été utilisés par le module GEOSIM Network Options® pour dimensionner les différentes options d'alimentation en électricité.

> GEOSIM Network Options® - Optimisation des options d'alimentation

Sur la base des résultats de la prévision de la demande, GEOSIM Network Options® détermine les projets de raccordement au réseau optimum pour les localités respectant les contraintes imposées (chute de tension, distance au réseau, limites d'investissement et d'énergie, nombre de localités à raccorder, présence d'obstacles géographiques)

> GEOSIM Distributed Energy® - Systèmes indépendants, énergie répartie

Les stratégies Energie Répartie consistent généralement à améliorer l'accès aux formes modernes d'énergie (électricité mais aussi force mécanique pour les usages productifs) dans les zones ou l'accessibilité, le manque de ressources financières et d'autres contraintes socio-économiques rendent l'électrification par extension de réseau ou mini-réseaux isolés impossibles à court terme. De tels systèmes indépendants peuvent consister en des équipements domestiques (par ex. des kits solaires individuels) ou des équipements communautaires (kits solaires pour écoles et hôpitaux, plateformes multifonctionnelles).

2.3.2 Hiérarchisation des localités

A partir des informations récoltées sur les caractéristiques socio-économiques de chaque localité il est possible de donner une note représentant le potentiel de développement d'une localité. Plus la localité bénéficie d'infrastructures d'éducation, de santé ou économique plus le bénéfice de l'électrification pour les populations sera important.

Chaque localité se voit attribuer un score entre 0 et 1 représentant son potentiel de développement. Plus ce score est proche de 1 plus la localité à un fort potentiel de développement.

L'IPD, à l'instar de l'IDH, prend en compte trois thèmes du développement :

- La santé
- L'éducation
- L'économie

Geosim attribue une note à chaque localité à partir de la formule suivante :

$$IPD = \frac{Note\ Sant\acute{e}}{3} + \frac{Note\ Education}{3} + \frac{Note\ Economie}{3}$$

Les notes pour les thèmes santé, l'éducation et l'économie sont calculées comme suit :

$$\textit{Note th\`eme} = \sum poids*Valeur\ indicateur$$

Les indicateurs sont définis par la grille suivante :

Tableau 1 : Paramètres de calcul de l'indice de potentiel de développement

Thème	Indicateur	Valeur					
Santé							
Accès à l'	eau potable (poids : 1/2)						
	AEV	1					
	Pompe manuelle	0.6					
	Puits protégé	0.4					
	Puits non protégé	0.2					
	Rien	0					
Infrastruc	ture de santé (poids : 1/2)						
	Centre de santé Communal	1					
	Centre de santé d'Arrondissement	0.6					
	Maternité/Dispensaire	0.3					
	Rien	0					
Education	1 (1/3)						
Etablisser	ment scolaire (poids : 1)						
	Collège 2 ^{ème} cycle	1					
	Collège 1 ^{er} cycle	0.6					
	Ecole primaire	0.3					
	Rien	0					
Economie	2						
Populatio	n (poids : 1)						
	10000	1					
	5000	0.7					
	2000	0.4					
	1000	0.2					
	0	0					

La valeur d'un indicateur est définie suivant la meilleure infrastructure présente dans un village donné comme dans l'exemple suivant:

• Economie

o 2000 habitants -> indicateur = 0.2

Note Economie = 0.2 * 1 = 0.2

• Education

- o 1 école primaire -> indicateur = 0.3
- o Un collège premier cycle -> indicateur = 0.6

Meilleur infrastructure = Collège 1^{er} cycle -> 0.6

Note Education = 0.6 * 1 = 0.6

Santé

o Un dispensaire -> indicateur = 0.3

Un puits protégé -> indicateur = 0.4

Note Santé = $0.3 * \frac{1}{2} + 0.4 * \frac{1}{2} = 0.35$

Note totale = 0.2/3 + 0.6/3 + 0.35/3 = 0.42

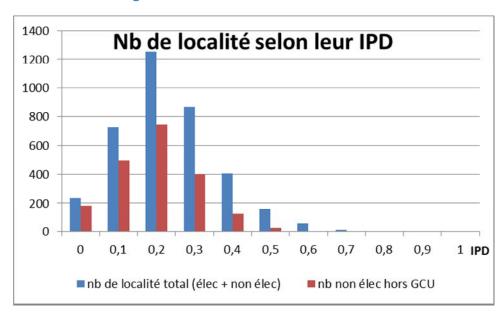


Figure 4 : Nombre de localité selon leur IPD

Environ 10% des localités ont un IPD supérieur à 0,4, ces localités sont celles qui ont le potentiel de développement le plus intéressant et doivent bénéficier prioritairement des politiques d'électrification.

2.4 Choix et création d'un ordre de priorité des localités à électrifier

Deux phases ont été définies afin de prendre en compte les deux approches présentées plus haut : phase 1 électrification prioritaire, phase 2 accès universel. La phase 1 verra l'électrification prioritaire des chefs-lieux d'arrondissement et des localités à fort potentiel de développement. La phase 2 prendra en compte le reste des localités identifié dans la cible de chaque scénario.

La population du Bénin n'est pas répartie de façon homogène, le sud est plus peuplé que le nord, il faut tenir compte de ce fait pour garder une équité dans l'accès à l'énergie moderne des populations rurales du Bénin.

Le rythme d'électrification est différent selon les scénarios considéré, 100 localité/an dans le scénario Haut, 90 et 80 dans les scénarios Moyen et Faible

2.4.1 Scénario Haut

1994 Localités identifiées à électrifier, dont 144 qui ont déjà été identifiées par d'autres projets et qui bénéficient d'un financement. Il reste donc : 1850 localités

- 706 dans le NORD (38%):
 - 131 dans la phase 1 (7%)
 - 575 dans la phase 2 (31%)

- 1144 dans le SUD (62%) :
 - o 176 dans la phase 1 (10%)
 - o 968 dans la phase 2 (52%)

2.4.2 Scénario Moyen

1641 Localités identifiées à électrifier :

- 634 dans le NORD (38.6%):
 - o 64 dans la phase 1
 - o 570 dans la phase 2
- 1007 dans le SUD (61.3%):
 - o 116 dans la phase 1
 - o 891 dans la phase 2

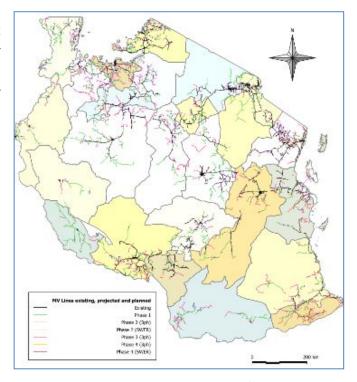
2.4.3 Scénario Faible

1385 Localités identifiées à électrifier :

- 559 dans le NORD (40.4%):
 - o 57 dans la phase 1
 - o 502 dans la phase 2
- 826 dans le SUD (59.6%):
 - o 103 dans la phase 1
 - o 723 dans la phase 2

3 Extension des réseaux moyenne tension

3.1 Algorithme utilisé et hypothèses de calcul


En ce qui concerne spécifiquement les extensions du réseau MT, GEOSIM Network Options® est basé sur des calculs itératifs d'optimisation technico-économique permettant de minimiser les longueurs de lignes nécessaires au raccordement de l'ensemble des localités visées, en optimisant leur tracé sur la base des contraintes de terrain et/ou en privilégiant le suivi des axes routiers.

Le schéma ci-contre illustre une extension de réseau national en Tanzanie opérée par GEOSIM Network Options®, au profit de localités identifiées par le module d'analyse spatiale, sur la base des résultats de la demande fournis par GEOSIM Demand Analyst® réalisé selon un phasage spécifique

d'extension afin de tenir compte des besoins en densification MT à proximité des réseaux existants, en structuration du réseau pour atteindre des centres de développement et en électrification à bas coût pour électrifier les zones isolée à faible demande énergétique :

De ces simulations, a découlé un programme d'investissement détaillé. De façon globale, la réalisation de cette tâche a conduit notamment :

- En une analyse des renforcements et les bouclages du réseau existant et le développement progressif de ce réseau en vue de l'électrification totale optimale du pays. Pour ce faire, et à l'issue des simulations d'extension du réseau, les restructurations nécessaires

seront identifiées, sous le prisme des résultats du Plan Directeur Production/Transport. Les restructurations/renforcements préconisées devront être validées par des études d'avant-projet sommaire (APS) rélisée en dehors du cadre de cette étude. L'impact du PDER (accroissement des charges, chute de tension et taux de charge des ouvrages) sur le réseau existant au niveau de la production et du transport d'énergie a étéainsi évalué, et le Consultant s'est assuré de sa cohérence avec les hypothèses et les résultats du Plan Directeur de Production Transport;

- En la matérialisation pour chacune des phases d'investissement, de l'évolution du réseau MT et de raccordements des localités, sur une carte du réseau électrique national qui a été intégrée au Système d'Information Géographique (SIG) ;
- En la présentation sur un tableau récapitulatif annuel indiquant les données techniques et financières des investissements du Plan Directeur par phase, par département et par localité sur toute la période d'étude (2015-2035). Pour chaque phase, ont été déterminés le nombre et le coût des équipements à mettre en œuvre (km MT, km BT, EP, transformateurs, etc.).

3.2 Hypothèses de calcul

IED est actuellement impliqué sur le projet d'extension des réseaux de la SBEE dans le département de l'Atlantique, dans le cadre de ce projet nous accompagnons la SBEE pour l'établissement des DAO pour l'électrification d'environ 80 localités. Du fait de ce projet et de notre implication sur le projet « 105 localité – Facilité Energie », nous avons une base de calcul assez large pour l'estimation des coûts d'extension de réseau et de raccordement. Les hypothèses que nous proposons pour le volet électrification rurale du plan directeur sont comme suit :

Tableau 2: Hypothèses économiques pour l'électrification rurale

Item	Valeur	Commentaire
Réseaux BT	11 000€/km	Moyenne des coûts de réseau BT aérien de type 70-50- 35-16mm² incluant l'EP; coûts hors transformateurs
Réseaux MT ²	14 000€/km	Moyenne des coûts de réseau MT aérien pour des sections de 75,5 ; 54,6 et 34,4 mm²
Branchement BT	234€	Ensemble complet de branchement incluant des compteurs pré-payés.
TFO H61 50 kVA	4000€	
TFO H61 100 kVA	4500€	
TFO H61 160 kVA	5300€	
Ratio ligne MT / Ligne BT	20%	Estimation de la longueur de ligne MT à l'intérieur d'une localité, ne s'applique que lorsque la demande de pointe dépasse les 40 kW à l'horizon de la planification. Aucun réseau MT n'est envisagé dans la localité si la demande de pointe ne dépasse pas 40 kW à l'horizon de la planification quelle que soit la durée de vie du TFO.
Nombre d'abonnés / km de ligne BT	25 bcht/km	Ratio constaté par les études du projet Calavi
Revenu moyen perçu par la compagnie d'électricité (kWh BT)	117 FCFA/kWh	Calcul sur la base du fichier Vente cumulées 2013 : Montant HT / nb de kWh BT 92 629 MFCFA / 793 GWh

Choix du mode de calcul: monnaie constante³

_

²A titre indicatif les récentes études d'IED prévoient les coûts suivant pour les réseaux BT et MT en zone rurale : Sénégal : MT 15 000 €/km ; BT 12 000€/km ; Cote Ivoire : MT 10 700 €/km ; BT 25 000€/km

En coûts constants, le renouvellement des équipements est inscrit dans l'échéancier de flux financier pour une valeur identique à la valeur d'acquisition initiale. A cette procédure correspond une hypothèse simplificatrice qui est souvent faite en pratique, selon laquelle les recettes et les coûts du projet subissent de façon identique les effets de l'inflation. Si cette hypothèse est juste, la valeur relative des coûts et bénéfices ne changera pas et il n'est pas nécessaire de majorer coûts et bénéfices simultanément. Le calcul est alors effectué en monnaie constante de l'année initiale tout en sachant que les flux financiers qui apparaîtront en année 10 ou 15 seront en fait nominalement plus importants. Le passage de l'analyse en monnaie constante à l'étude en prix courants est ensuite effectué lors de l'étude financière détaillée. Cette hypothèse simplificatrice ne se vérifie pas toujours, par exemple pour les projets produisant des biens (kWh) dont le prix est fixé autoritairement ou régulé alors que les équipements importés des pays industriels subissent une forte inflation. Dans une telle situation il faut tenir compte de l'évolution des prix relatifs des divers biens en retenant à ce niveau d'analyse non pas les prix courants (ce qui sera fait lors de l'étude financière détaillée) mais l'évolution différentielle des prix de certains biens par rapport à la hausse moyenne. Les 3 postes qu'il faut le plus souvent isoler sont l'énergie (carburants), les coûts salariaux et les recettes (prix du kWh).

3.3 Résultats

Le paragraphe suivant présente les résultats sous forme agrégé, les listes de localités à raccorder par année et les cartes figurant ces localités sont jointes en annexe.

Les résultats concernant les investissements sont détaillés dans le tome 5 – Analyses financières.

3.3.1 Scénario haut

Tableau 3 :Nombre de localités raccordé par an – Scénario Haut

	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	Total
Alibori	12	15	11	6	2	4	4	5	6	5	7	12	7	8	6	10	7	18	13	158
Atacora	12	10	10	19	20	13	19	19	24	21	21	11	16	16	14	11	13	7	4	280
Atlantique	5	3	9	17	13	13	16	10	9	10	9	10	7	9	10	7	8	6	6	177
Borgou	16	15	17	10	10	12	7	6	2	5	4	6	7	8	11	11	12	8	10	177
Collines	11	13	18	3	3	5	3	5	6	4	3	4	4	7	7	6	10	7	8	127
Couffo	19	15	6	14	15	11	11	17	21	11	14	12	10	9	8	14	10	12	5	234
Donga	4	4	5	1	4	7	6	6	4	5	4	7	6	4	5	4	4	3	8	91
Mono	3	5	1	5	5	7	7	10	10	10	11	14	14	13	9	8	5	5	4	146
Oueme	7	11	5	8	18	7	7	4	7	7	4	5	6	3	10	4	6	8	4	131
Plateau	6	2	10	7	4	10	7	8	4	7	6	4	5	6	7	7	9	9	10	128
Zou	8	10	9	7	3	8	10	7	4	12	14	12	15	14	10	15	13	14	16	201
Total	103	103	101	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	88	1 850

Ainsi à l'issu de ce scénario le taux de desserte national (nombre de localités connéctées/nombre total de localité) est de 91,7%

Tableau 4 : Population des localités raccordées dans l'année de raccordement (milliers) – Scénario Haut

année de																			
raccordement	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Alibori	47	97	78	6	3	7	8	15	18	19	19	45	29	31	33	56	45	148	129
Atacora	24	49	55	18	26	18	29	33	47	42	43	29	39	44	43	45	59	25	18
Atlantique	7	9	49	14	13	15	18	14	14	18	15	17	19	25	32	20	38	35	50
Borgou	44	66	134	9	16	24	12	12	5	12	14	13	22	36	41	39	64	44	99
Collines	19	41	72	3	4	8	6	8	9	9	5	9	9	22	19	16	37	33	48
Couffo	39	47	28	13	18	15	16	27	38	22	31	30	29	25	25	51	46	64	30
Donga	13	20	57	1	5	10	11	11	7	9	11	20	18	12	16	13	14	15	46
Mono	4	10	6	4	5	6	9	11	11	16	19	27	30	32	25	25	18	21	24
Oueme	13	38	22	8	19	8	11	7	11	10	10	13	16	9	33	17	29	44	32
Plateau	16	9	64	8	6	17	13	14	6	14	13	9	12	18	25	29	45	54	91
Zou	9	26	42	6	3	10	12	8	5	19	26	22	29	33	28	40	48	60	100
Total	235	412	607	91	117	138	144	160	172	189	206	235	253	287	319	352	444	544	668

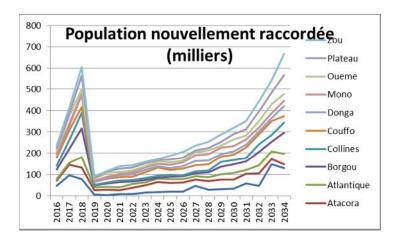
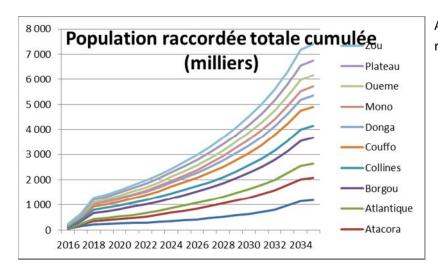
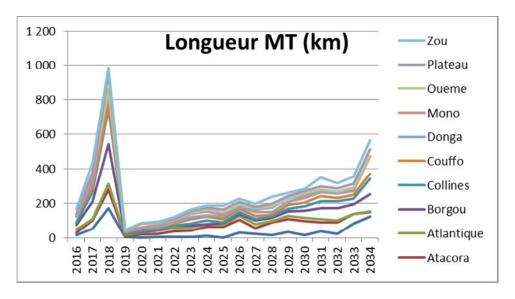



Tableau 5 : Population vivant dans les localités raccordées (valeurs cumulées ; milliers) – Scénario Haut

année de raccordement	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Alibori	47	146	230	245	258	275	295	321	352	385	420	482	530	583	638	720	794	973	1 141	1 185
Atacora	24	74	130	152	182	205	239	278	332	383	436	476	528	585	643	705	782	828	867	889
Atlantique	7	16	66	83	98	116	138	156	174	197	218	242	267	300	341	371	421	469	534	551
Borgou	44	111	249	268	294	329	353	378	397	424	453	484	524	580	642	705	795	869	1 000	1 038
Collines	19	60	134	140	147	158	167	178	191	204	214	228	242	270	295	319	363	404	460	471
Couffo	39	87	117	134	155	175	196	228	272	302	340	379	419	455	492	557	618	698	748	768
Donga	13	33	92	96	104	118	133	148	161	175	192	219	245	266	291	315	340	367	426	440
Mono	4	14	20	25	31	38	48	60	72	90	112	141	175	211	241	272	297	325	358	367
Oueme	13	51	74	84	106	117	131	141	156	171	186	204	225	241	281	306	343	397	440	452
Plateau	16	25	90	101	110	130	146	165	176	195	215	230	249	275	308	347	403	470	576	594
Zou	9	36	78	86	92	105	120	131	140	163	193	220	255	295	332	381	440	512	627	645
Total	235	654	1 281	1 414	1 576	1 764	1 964	2 185	2 425	2 689	2 978	3 305	3 661	4 061	4 506	4 997	5 595	6 312	7 176	7 400



Ainsi à l'issu de ce scénario le taux de couverture (population vivant dans des localités raccordé/population totale) est de : 93,4%

Tableau 6- Longueur des réseaux MT à construire (km) – Scénario Haut

	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	Total
Alibori	14	54	170	3	2	3	6	3	11	2	29	25	17	33	16	39	21	81	122	652
Atacora	17	48	111	7	17	20	32	40	52	62	77	30	72	76	80	51	70	56	26	944
Atlantique	16	8	32	8	12	17	19	16	14	10	20	25	8	18	20	19	10	2	3	277
Borgou	28	101	229	6	3	4	13	12	3	12	13	21	19	27	39	64	72	54	102	820
Collines	16	53	211	1	5	4	1	11	21	2	11	8	11	14	28	41	39	35	89	601
Couffo	32	24	22	8	14	12	12	27	23	18	19	18	7	20	21	29	19	24	31	382
Donga	4	32	64	0	3	5	6	9	8	17	12	22	13	19	27	21	26	23	98	407
Mono	4	28	0	2	4	11	7	18	20	8	12	16	27	18	10	12	7	10	2	217
Oueme	3	26	24	2	23	10	7	4	13	17	2	7	7	2	15	3	6	6	3	180
Plateau	5	3	90	3	3	7	5	13	11	17	15	8	15	12	14	17	19	23	35	314
Zou	23	55	34	5	1	3	12	10	9	22	17	20	42	19	13	54	31	40	52	462
Total	163	431	986	45	85	95	121	164	186	187	227	199	239	259	284	350	318	352	564	5 257

3.3.2 Scénario moyen

Tableau 7 : Nombre de localités raccordées par an – Scénario Moyen

	2046	2247	2242	2242		2024	2222			2225		222	2020			2024	2022	2222	2224	
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	Total
Alibori	10	12	9	3	7	4	7	8	6	11	4	8	9	8	10	14	12	14	1	157
Atacora	11	7	14	12	14	18	18	15	24	8	18	14	11	13	9	5	11	4	0	226
Atlantique	4	10	9	12	8	6	9	7	8	7	9	5	10	8	5	7	3	6	1	134
Borgou	11	8	11	12	8	7	7	4	3	8	11	7	12	9	12	14	8	10	8	170
Collines	11	13	3	5	6	6	3	3	4	4	3	6	6	5	11	6	6	13	2	116
Couffo	17	6	15	14	15	24	17	14	12	12	6	11	9	12	10	11	9	6	0	220
Donga	0	5	1	8	6	6	3	8	2	8	2	6	3	5	4	2	4	7	1	81
Mono	3	3	1	4	6	6	8	8	9	13	13	13	8	8	3	4	5	3	0	118
Oueme	9	7	11	5	5	5	2	4	7	5	5	7	7	7	4	6	9	6	0	111
Plateau	4	8	9	8	10	6	8	6	5	2	5	4	6	6	8	6	10	10	4	125
Zou	10	11	7	7	5	2	8	13	10	12	14	9	9	9	14	15	13	11	4	183
Total	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	21	1 641

Le taux de desserte est donc de : 86,3%

Tableau 8 :Population des localités raccordées dans l'année de raccordement (milliers) – Scénario Moyen

année de raccordement	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Alibori	48	88	10	4	15	12	20	28	21	40	14	32	43	45	55	114	82	171	6	2033
			_	-	_	32				_			36				58		_	
Atacora	33	34	17	18	25	32	42	29	56	18	53	38	36	55	37	17	58	35	0	
Atlantique	5	49	9	14	10	9	14	14	14	14	22	12	30	22	19	38	19	47	10	
Borgou	33	52	15	22	13	15	16	13	5	19	38	17	39	39	52	76	66	110	160	
Collines	26	58	4	7	10	10	6	7	9	9	8	19	17	13	35	26	26	63	14	
Couffo	40	22	17	19	23	38	29	28	26	32	17	31	28	41	44	56	50	38	0	
Donga	0	55	1	12	12	9	8	22	3	26	7	16	10	22	15	11	24	49	6	
Mono	4	11	1	5	7	7	13	13	17	23	27	30	20	23	10	14	22	19	0	
Oueme	20	31	12	6	7	8	3	7	15	10	13	18	20	23	16	28	47	45	0	
Plateau	10	53	11	12	16	10	13	11	11	5	12	11	18	20	35	30	57	78	42	
Zou	14	39	8	8	7	3	13	22	16	21	28	20	23	23	42	56	62	63	35	
Total	232	492	105	127	147	154	177	193	194	215	239	244	285	326	361	466	513	718	273	

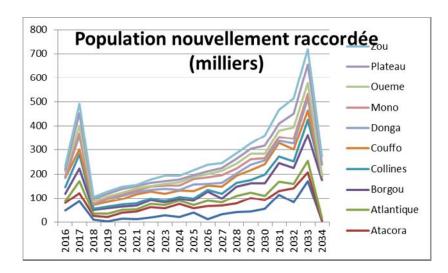
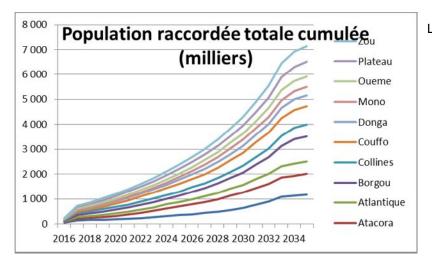
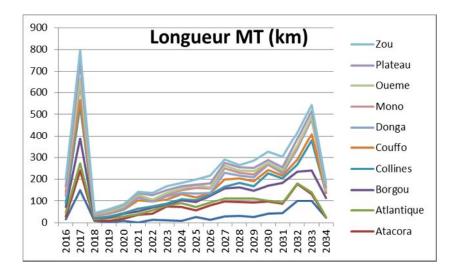



Tableau 9 : Population vivant dans les localités raccordées (valeurs cumulées ; milliers) – Scénario Moyen

année de																				
raccordement	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Alibori	48	138	153	164	186	205	233	271	303	356	384	432	492	556	634	772	885	1 090	1 139	1 184
Atacora	33	68	87	107	136	171	218	252	314	340	402	450	497	565	616	649	724	778	798	819
Atlantique	5	54	64	80	93	105	123	140	158	176	204	222	259	290	317	366	396	457	482	498
Borgou	33	86	104	130	148	168	189	209	221	248	294	321	371	423	490	583	669	802	991	1 028
Collines	26	84	91	100	113	125	134	144	156	169	181	204	226	244	285	317	351	422	446	457
Couffo	40	63	81	102	128	169	203	237	270	309	334	373	412	464	520	590	656	711	730	750
Donga	0	55	58	72	87	99	110	135	143	174	187	209	226	256	280	300	334	394	413	427
Mono	4	15	17	22	30	38	51	66	84	110	140	173	197	226	241	262	290	316	324	332
Oueme	20	51	65	73	82	93	98	108	126	139	157	180	205	234	257	292	348	403	415	427
Plateau	10	63	76	91	110	124	141	156	172	183	200	218	243	271	315	354	422	514	572	590
Zou	14	53	62	72	81	86	101	126	146	171	203	229	258	289	339	405	478	554	604	622
Total	232	732	859	1 013	1 192	1 383	1 602	1 844	2 094	2 373	2 685	3 011	3 387	3 817	4 294	4 891	5 553	6 442	6 915	7 133



Le taux de couverture en 2035 est donc de : 92,1%

Tableau 10- Longueur des réseaux MT à construire (km) – Scénario Moyen

	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	Total
Alibori	16	150	7	2	8	1	13	11	9	25	12	29	32	26	42	43	99	100	24	647
Atacora	13	90	5	7	12	35	29	65	61	31	66	68	62	67	54	43	80	34	0	821
Atlantique	17	35	5	10	8	2	15	5	19	15	15	15	17	21	7	5	1	6	0	219
Borgou	26	113	5	4	14	12	12	3	12	25	32	45	51	36	68	93	54	101	89	792
Collines	19	154	1	4	3	13	5	4	10	8	6	9	22	19	58	19	33	138	24	549
Couffo	36	25	9	13	14	40	22	20	22	14	7	31	21	24	14	14	23	30	0	378
Donga	0	73	0	4	4	12	2	16	6	19	1	33	12	19	26	9	49	72	11	368
Mono	18	11	1	3	7	10	7	7	11	25	19	18	12	12	4	10	8	1	0	184
Oueme	18	15	7	5	5	5	3	8	7	12	4	14	11	14	4	6	9	7	0	156
Plateau	7	79	4	6	8	7	20	12	12	1	20	12	15	15	13	13	29	26	15	315
Zou	34	53	2	5	2	7	10	16	14	24	34	17	11	36	38	48	31	29	20	431
Total	203	798	43	63	85	144	139	167	183	199	216	292	266	287	327	304	416	544	184	4 859

3.3.3 Scénario faible

Tableau 11 :Nombre de localités raccordées par an – Scénario Faible

	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	Total
Alibori	8	10	7	4	10	9	6	11	7	8	6	5	11	10	9	12	12	5	150
Atacora	11	7	12	12	10	14	11	12	13	16	13	14	8	5	7	10	4	0	179
Atlantique	5	9	3	8	7	5	4	4	5	9	3	8	9	8	2	2	5	0	96
Borgou	10	7	10	11	8	4	6	5	9	6	7	8	9	13	13	7	10	13	156
Collines	7	13	6	4	4	2	5	4	3	2	3	4	9	9	6	3	15	0	99
Couffo	16	5	14	17	15	14	16	9	9	13	11	10	7	7	9	6	3	0	181
Donga	0	4	3	5	4	5	9	4	3	2	6	5	4	4	3	3	6	4	74
Mono	4	2	2	1	6	6	6	12	11	11	11	7	2	3	4	3	1	0	92
Oueme	7	6	6	3	4	4	4	6	6	6	7	4	3	6	7	10	4	0	93
Plateau	4	5	13	12	4	6	4	4	5	1	6	6	8	4	9	11	11	1	114
Zou	9	11	4	3	8	11	9	9	9	6	7	9	10	11	11	13	9	2	151
Total	81	79	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	25	1 385

Le taux de desserte est donc de 79,6% en 2035

Tableau 12 : Population des localités raccordées dans l'année de raccordement (milliers) – Scénario Faible

année de																			
raccordement	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Alibori	39	67	9	9	26	26	22	41	26	32	29	19	60	71	64	88	134	70	0
Atacora	33	34	18	23	23	36	31	30	39	47	34	52	25	16	24	60	34	0	0
Atlantique	8	46	4	13	12	9	8	10	10	22	11	20	35	37	10	13	42	0	0
Borgou	30	49	16	22	19	9	16	18	31	17	21	27	31	49	69	37	98	203	0
Collines	15	58	10	7	8	5	12	11	10	7	9	11	27	36	23	11	75	0	0
Couffo	36	17	21	30	27	25	35	23	24	36	36	40	29	31	48	36	16	0	0
Donga	0	45	4	9	9	13	24	10	10	4	19	16	13	16	12	17	64	15	0
Mono	7	8	3	2	10	11	11	23	24	24	27	18	7	10	16	16	7	0	0
Oueme	16	24	8	5	6	8	8	13	15	16	22	17	10	20	31	56	31	0	0
Plateau	10	33	19	19	8	11	8	9	13	3	18	19	29	15	43	66	97	16	0
Zou	12	35	5	4	14	18	16	18	18	14	17	27	28	40	41	60	55	21	0
Total	207	417	117	142	162	170	192	205	220	221	242	267	293	342	381	459	652	325	0

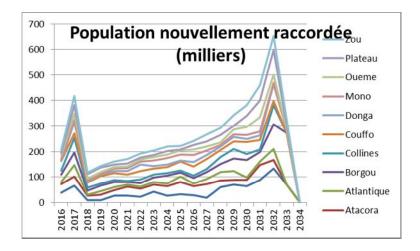
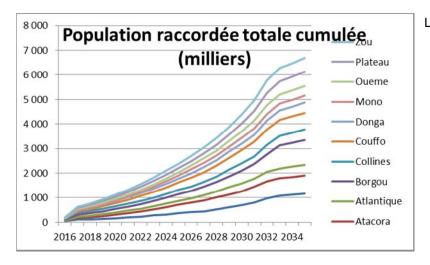
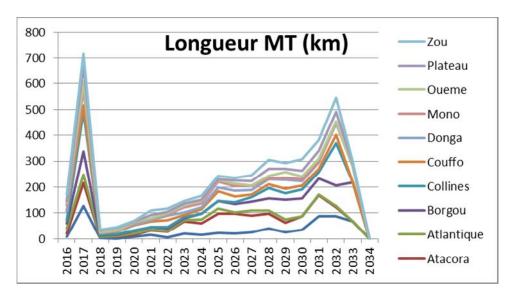
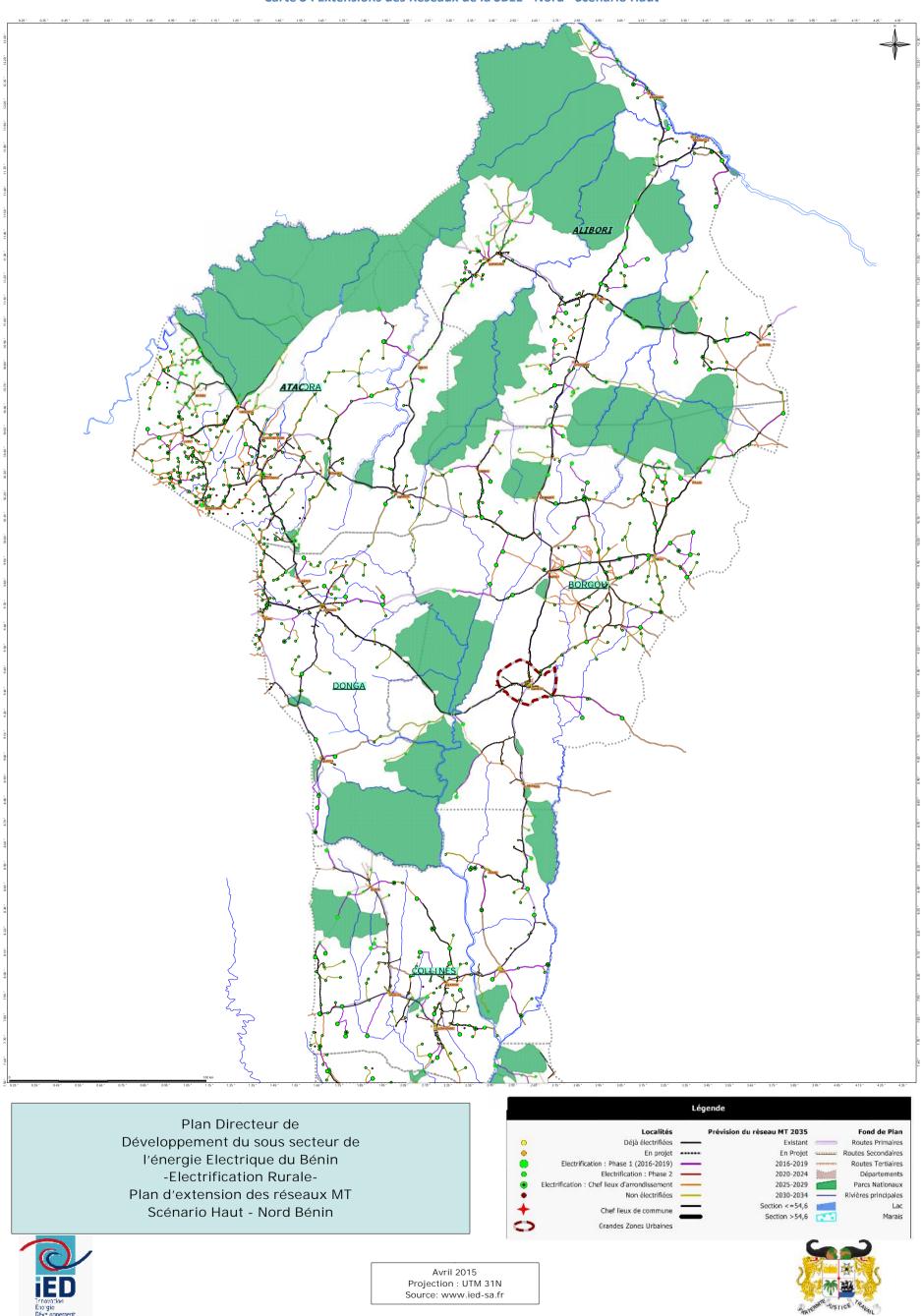



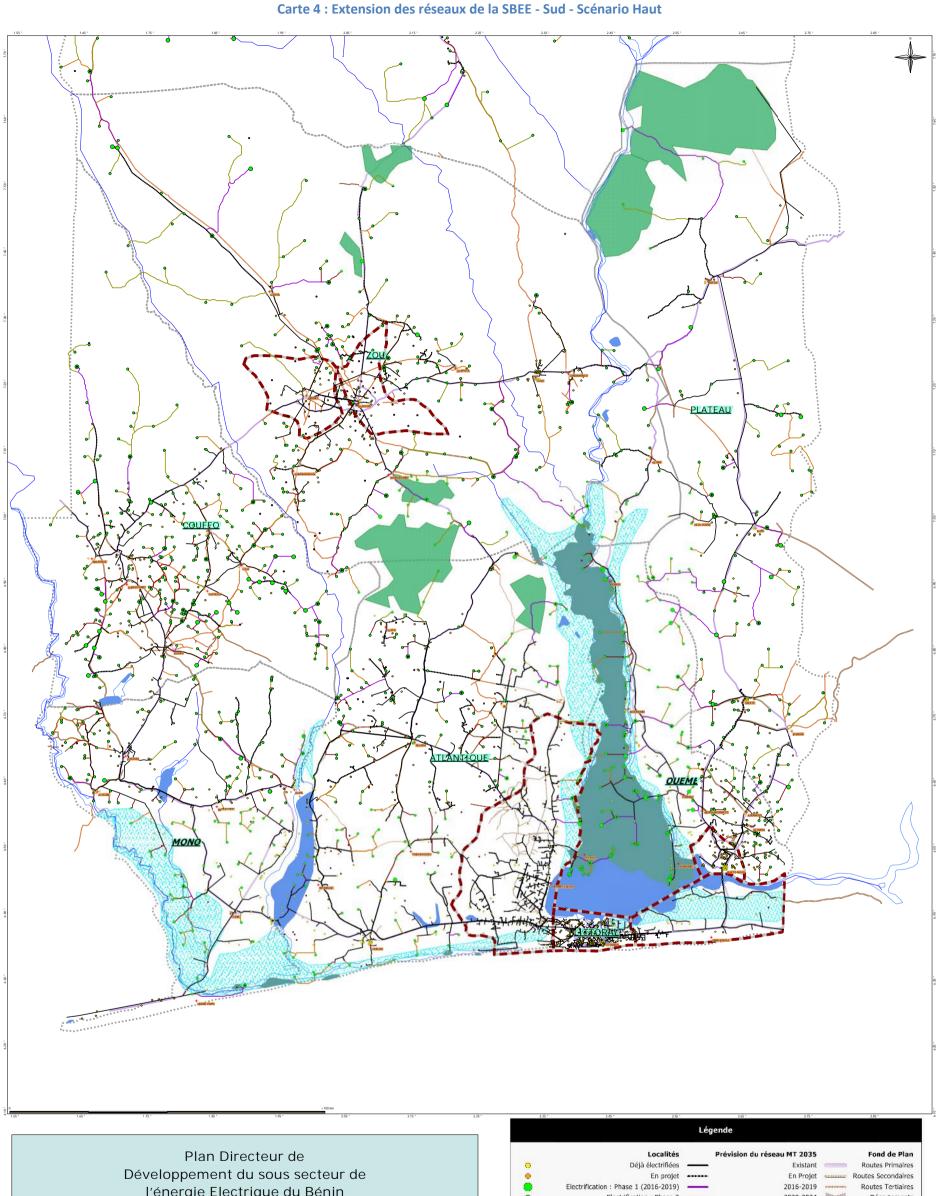
Tableau 13 : Population vivant dans les localités raccordées (valeurs cumulées ; milliers) — Scénario Faible

année de raccordement	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Alibori	39	108	122	135	167	199	229	280	317	362	405	441	518	609	697	813	978	1 086	1 128	1 172
Atacora	33	68	88	113	139	178	214	249	294	349	392	455	492	520	558	632	682	700	719	737
Atlantique	8	54	59	74	88	100	111	124	138	164	180	207	249	294	313	337	390	404	417	432
Borgou	30	80	99	125	148	163	184	208	246	271	302	340	383	446	529	585	703	931	966	1 003
Collines	15	74	86	95	106	113	128	142	156	167	180	196	227	268	298	316	398	408	417	427
Couffo	36	54	77	109	138	167	207	236	266	309	353	402	441	484	545	596	628	645	663	680
Donga	0	45	51	62	73	88	115	129	143	152	176	198	218	241	261	287	361	388	401	414
Mono	7	15	18	21	31	42	55	79	105	132	162	183	195	210	231	253	266	273	280	287
Oueme	16	40	49	56	64	73	83	99	116	136	161	182	197	223	261	324	365	375	386	397
Plateau	10	44	64	85	96	110	121	134	152	159	183	207	244	266	318	394	503	536	553	571
Zou	12	48	54	60	75	95	114	135	156	175	197	229	263	311	361	431	498	534	549	565
Total	207	630	767	933	1 124	1 329	1 562	1 815	2 090	2 375	2 690	3 040	3 426	3 873	4 374	4 968	5 774	6 279	6 479	6 686



Le taux de couverture est donc de 90,2% en 2035


Tableau 14- Longueur des réseaux MT à construire (km) – Scénario Faible


	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	Total
Alibori	8	127	3	1	8	15	5	19	16	23	21	25	39	26	34	86	88	67	0	612
Atacora	13	90	5	7	9	17	23	47	43	73	76	64	59	37	54	82	34	0	0	731
Atlantique	19	32	1	3	4	4	3	6	15	21	5	21	11	13	0	2	3	0	0	165
Borgou	18	89	3	3	9	8	10	7	22	28	33	35	48	75	69	63	79	151	0	752
Collines	13	154	2	2	4	1	6	4	1	2	7	17	40	26	35	23	165	0	0	502
Couffo	35	25	6	12	20	22	27	9	16	35	21	10	15	17	15	14	32	0	0	331
Donga	0	64	1	3	3	5	15	9	9	16	23	17	19	34	16	25	46	62	0	368
Mono	23	6	0	0	4	4	5	21	15	22	18	15	2	9	8	2	1	0	0	153
Oueme	10	21	3	2	5	3	5	7	8	8	9	2	11	22	9	13	6	0	0	142
Plateau	7	62	7	10	3	13	7	6	6	2	13	17	26	13	24	29	38	10	0	294
Zou	24	48	2	2	4	16	10	12	15	13	11	23	35	20	43	41	53	6	0	377
Total	171	717	34	45	71	109	116	148	167	244	237	245	304	291	307	381	544	297	0	4 428


iED

Carte 3 : Extensions des Réseaux de la SBEE - Nord - Scénario Haut

l'énergie Electrique du Bénin -Electrification Rurale-Plan d'extension des réseaux MT Scénario Haut - Sud Bénin

Avril 2015 Projection: UTM 31N Source: www.ied-sa.fr

4 Validation électrique des extensions du réseau moyenne tension

4.1 Implantations de nouveaux postes sources

La répartition actuelle des postes source au Bénin ne permettra pas d'alimenter avec une qualité de service admissible l'ensemble des localités qu'il est envisagé de connecter. La méthode utilisée pour faire une première estimation des chutes de tension et déterminer l'emplacement optimal des postes additionnels s'est basée sur la notion de moment électrique.

Le moment électrique d'une charge, exprimé en MW.km est égal à la charge à alimenter multiplié

par la distance à la source :

$$M = P * L$$

Avec M : Moment électrique [MW.km] P : Puissance de la charge [MW]

L : Distance à la source [km]

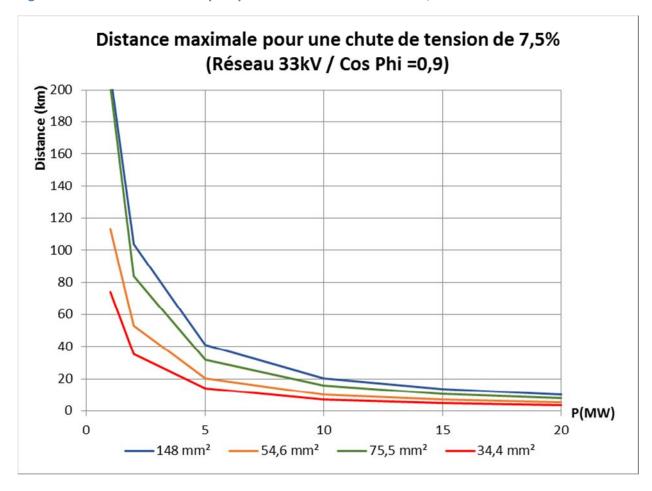
La chute de tension relative au bout d'une ligne peut être prise égale à :

$$(\frac{\Delta U}{U})^{\%} = P * L * \frac{R + X * tan\varphi}{U^2} * 100$$

On peut ainsi en déduire le Moment électrique maximal d'une ligne M_l déterminée permettant de garantir une chute de tension max de 7,5% : $M_l = \frac{7,5}{100} * \frac{U^2}{R + X * tan\varphi}$

Le moment électrique caractérise ainsi la puissance active maximum qui peut être transportée sur une longueur donnée dans des conditions de chute de tension et cos\(\phi\) données. Le tableau ci-après présente le moment électrique calculépour les différentes sections utilisées sur le réseau de distribution 30kV Béninois.

Tableau 15: Moment électrique pour les différents types de ligne


Caractéristiq	ues du Réseau
U [kV]	33
dUmax	7,5%
cos Phi	0,90
tan Phi	0,48

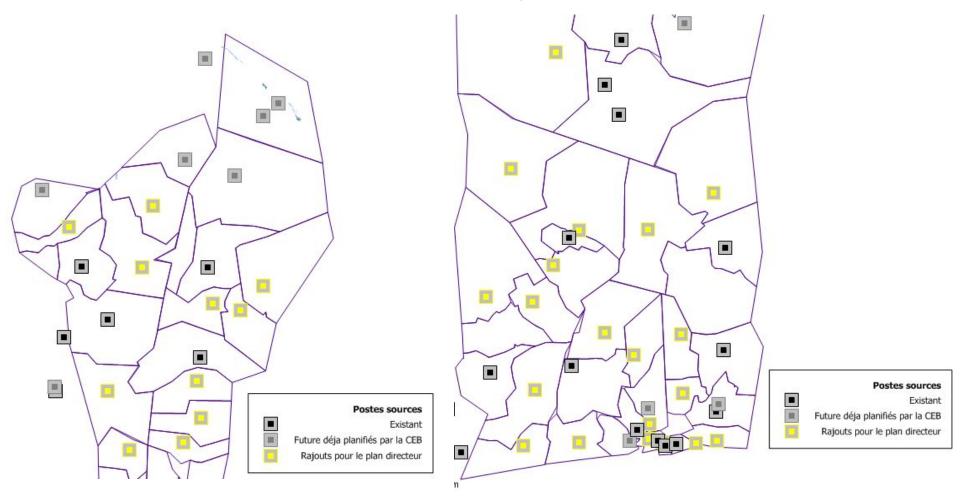
		ASTER	
Costion	R	Х	Moment
Section	[Ω/km]	[Ω/km]	[MW.km]
34,4	0,96	0,32	73,3
54,6	0,60	0,32	108,6
75,5	0,435	0,32	138,7
148	0,22	0,32	217,8

L'abaque suivant a été établi pour visualiser aisément la distance maximale d'une ligne en fonction de la puissance à transiter pour respecter une chute de tension maximale de 7,5%, en fonction de la section de conducteur.

Figure 5: Distance max de transport pour une chute de tension de 7,5%

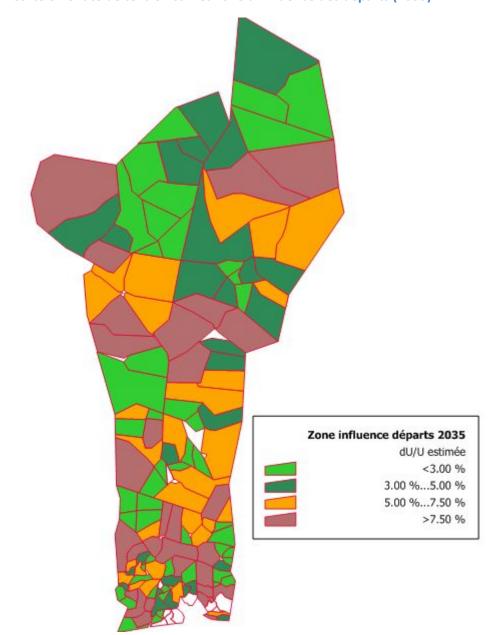
On voit ainsi que couvrir des distances de plus 60km est très difficile, quelque-soit le niveau de tension.

Le moment électrique de tous les départs existant principaux a été calculé pour estimer quels sont ceux qui pourront couvrir la demande d'ici à 2035 et quels sont ceux qui devront être restructurés. Les départs actuels varient de 20 à 220km, un tiers font moins de 40km de long, un tiers font plus de 60km de long.


La carte ci-contre a été établie avec des hypothèses très optimistes, on voit que sur tout le pays il est nécessaire de rajouter des postes sources pour faire face à la demande.

Les cartes ci-dessous présentent les postes sources à rajouter pour rapprocher suffisamment la charge de l'injection

Le tableau suivant présente la charge sur chaque sous-station projetée.


Tableau 16 Charge des postes sources

Charge (MW)	Scé	nario H	aut	Scér	nario Mo	yen	Scé	nario Fa	ible
Nom	2015	2025	2035	2015	2025	2035	2015	2025	2035
Adjohoun	0,9	3,9	11,2	0,9	3,0	8,0	0,9	2,2	5,0
Agbanzinzoun	0,7	3,3	9,7	0,7	2,6	6,9	0,7	1,9	4,3
Alafiarou	0,5	3,5	11,8	0,5	2,7	8,6	0,5	1,9	5,5
Amakpa	0,0	0,3	1,1	0,0	0,2	0,8	0,0	0,1	0,4
Aplahoue	1,5	5,7	16,0	1,5	4,5	11,7	1,4	3,3	7,4
Avakpa	1,8	6,4	16,0	1,7	5,0	11,2	1,7	3,7	7,2
Banikoara	0,5	3,9	13,4	0,5	3,0	9,8	0,5	2,2	6,4
Bante	0,3	2,1	6,5	0,3	1,6	4,8	0,2	1,2	3,1
Bassila	0,6	3,1	10,1	0,6	2,5	7,4	0,6	1,9	4,9
Bembéréké	0,3	1,8	5,6	0,3	1,4	4,0	0,3	1,0	2,7
Bohicon Rural	0,4	5,1	17,2	0,4	3,8	12,4	0,4	2,6	7,9
Cove	0,8	3,8	11,5	0,7	3,0	8,4	0,7	2,1	5,3
Dangbo	0,5	2,4	7,5	0,5	1,9	5,4	0,5	1,4	3,5
Dassa	3,0	6,2	12,5	3,0	5,1	9,1	2,9	4,2	6,4
Djougou	4,3	11,9	29,3	4,2	9,6	21,5	4,2	7,6	14,0
Dogbo	1,8	5,5	13,3	1,8	4,3	9,7	1,8	3,3	6,0
Glazoue	0,9	3,5	8,8	0,9	2,8	6,4	0,8	2,0	4,1
Grand Popo	1,6	4,1	9,2	1,6	3,3	6,7	1,6	2,6	4,4
Guéné	0,1	1,7	5,4	0,1	1,2	3,9	0,1	0,8	2,4
Houeyogbe	1,3	5,0	14,0	1,3	3,9	10,1	1,2	2,9	6,3
Kandi	2,1	8,1	22,7	2,0	6,5	16,6	2,0	4,9	10,8
Kerou	0,2	1,8	5,7	0,2	1,4	4,2	0,2	1,0	2,7
Ketou	1,2	5,7	17,2	1,1	4,5	12,6	1,1	3,5	8,6
Lalo	0,5	2,6	8,1	0,5	2,0	5,9	0,5	1,4	3,7
Lokossa	5,8	13,8	31,2	5,7	11,4	22,8	5,6	9,7	16,5
Natitingou	4,6	9,2	18,2	4,6	7,7	13,2	4,5	6,4	9,1
Ndali	0,3	2,0	6,9	0,3	1,6	5,1	0,2	1,1	3,4
Ogoutedo	0,1	1,9	7,8	0,1	1,5	5,7	0,1	1,1	3,8
Onigbolo	0,3	1,5	4,6	0,3	1,1	3,3	0,3	0,8	2,0
Ouesse	0,1	1,7	6,8	0,1	1,3	5,0	0,1	0,9	3,3
Ouidah	4,0	12,2	32,5	3,9	10,0	23,9	3,9	8,1	16,1
Parakou	10,3	25,7	58,2	10,1	20,6	41,4	10,0	18,1	32,6
Pehunco	0,2	1,2	3,6	0,2	0,9	2,6	0,2	0,7	1,7
Perere	0,4	3,4	13,4	0,4	2,7	9,9	0,4	2,0	6,5
Pobe	1,2	5,7	15,9	1,2	4,4	11,5	1,2	3,2	7,3
Porga	0,0	0,7	2,4	0,0	0,5	1,7	0,0	0,3	1,0
Sakete	1,1	4,9	16,9	1,1	3,9	12,4	1,0	2,9	7,9
Savalou	1,2	4,1	10,5	1,1	3,3	7,7	1,1	2,5	5,0
Save	0,4	1,4	3,9	0,4	1,1	2,9	0,4	0,9	1,9
Sinende	0,1	1,2	3,9	0,1	0,9	2,8	0,1	0,6	1,8
Tanguieta	0,5	1,5	4,0	0,4	1,2	2,9	0,4	0,9	1,8
Tchatchou	0,2	2,1	8,8	0,2	1,7	6,5	0,1	1,2	4,3
Toffo	1,2	5,1	13,9	1,2	4,0	9,9	1,2	2,9	6,4
ZE	0,3	2,2	6,2	0,3	1,7	4,3	0,3	1,2	2,8

Tous les postes proposés (à l'exception de celui d'Amakpa⁴) ont une charge de plus de 2,5MW laissant supposer une charge de transformateur 5MVA de plus de 50% qui justifiera la création des postes en question.

La restructuration des départs permet de refaire une estimation des chutes de tensions basée sur le moment électrique :

Carte 6 : Chute de tension sur les zone d'influence des départs (2035)

Certaines zones restent hors des limites admissibles, la validation électrique de Geosim permettra d'affiner les calculs.

⁴Le poste d'Amakpa est faiblement chargé mais permettra d'alimenter des charges à plus de 80km du poste source de Bohicon

4.2 Evaluation de la faisabilité électrique des extensions de réseaux HTA

4.2.1 Objectifs et Méthodologie

4.2.1.1 Objectifs de l'étape d'évaluation de la faisabilité électrique

Les tracés des extensions de réseau obtenu avec *Geosim Grid Extension* sont optimisés sur la base de critères géographiques : distance à la sous-station et aux réseaux existant, suivi du tracé des routes, interdiction de passage de ligne dans certaines zones (lacs, parcs naturels,...).

Le module complémentaire permet de compléter cette approche d'un point de vue électrique afin :

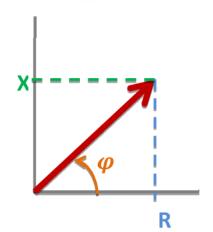
- D'évaluer les chutes de tensions aux points de piquage et en bout d'antenne ;
- De proposer les sections de conducteurs les plus adaptées pour les extensions ;
- D'identifier les limites du réseau projeté et les éventuels besoins en renforcements.

Il convient de préciser que Geosim est un outil d'aide à la planification, et ne vise pas à la réalisation de calculs électriques pour la réalisation d'études détaillées des ouvrages (Etudes APS/APD, Plan de protection,...).

Compte-tenu de l'échelle régionale ou nationale correspondant à un exercice de planification, la complexité des calculs doit être compatible avec un effort de collecte de données raisonnable, afin de pouvoir garantir la qualité des données alimentant le modèle et par conséquent la consistance des résultats obtenus.

4.2.1.2 Rappels théoriques

L'étape de vérification consiste à estimer des chutes de tension en bout de ligne et des charges des postes à l'horizon de planification, afin de pouvoir évaluer la faisabilité électrique des extensions de réseaux projetés. Cette estimation se base sur les caractéristiques des réseaux existants, l'évolution des charges des localités déjà raccordées et celle des localités nouvellement électrifiées.


L'impédance (Z) mesure l'opposition d'un circuit électrique au passage d'un courant alternatif. L'impédance d'un conducteur est faible, mais non nulle : lorsqu'il est traversé par un courant de service on observe une chute de tension entre l'origine et le bout d'une ligne.

La loi d'Ohm pour des courants sinusoïdaux permet d'évaluer cette chute de tension: $\bar{U}=\bar{Z}*\bar{I}$

Dans la méthode de calcul utilisée, l'impédance Z d'une ligne électrique est considérée comme l'association en série d'une résistance R et une réactance $X: Z = R * cos(\varphi) + X * sin(\varphi)$

Z est un nombre complexe :

- Partie réelle = Résistance R
 Propriété d'un matériau à ralentir le passage d'un courant électrique (Effet joule)
- o Partie imaginaire = Réactance X

Un courant variable est accompagné d'un champ magnétique variable, qui induit une force électromotrice qui s'oppose au changement de courant

Considérant que :
$$U = \sqrt{3} * Z * I = \sqrt{3}$$
 et $P = U * I * \sqrt{3} * \cos(\varphi)$

On en déduit la formule utilisée dans ce module de Geosim pour le calcul des chutes de tensions :

Avec:

- *U*: Chute de tension [V]
- U : Tension composée du réseau au point d'origine [V]
- P: Puissance active transitant dans le tronçon [W]
- L: Longueur du tronçon [km]
- R₀: Résistance linéique du conducteur [Ω/km]
- X₀: Réactance linéique du conducteur [Ω/km]
- φ : Déphasage tension/intensité

Pour estimer les chutes de tensions dans Geosim, les données suivantes sont donc nécessaires :

- Les caractéristiques des conducteurs (Résistance, réactance,...);
- Les caractéristiques des lignes (Niveau de tension, longueur, section) ;
- La charge (Puissance pointe appelée au niveau de chaque dipôle).

4.2.1.3 Etapes de la vérification

Les principales étapes de la vérification de la faisabilité électrique réalisée à partir des tracés de réseaux obtenus par Geosim Grid sont les suivantes :

- a. Regrouper les projets d'extension issus de Grid Extension (regroupés par année de réalisation) par entité géographique (antenne).
- b. Estimer le niveau des chutes de tension sur les antennes et déterminer les sections de conducteurs les plus adaptées pour les extensions.
- c. Estimer l'impact sur la charge des sous-stations.
- d. Modifier éventuellement la configuration du réseau (Renforcement de lignes, Equilibrage des départs, Renforcement / Ajout de sous-stations), et relancer les étapes a, b et c.

4.3 Estimation des chutes de tension et choix des conducteurs

L'estimation des chutes de tension consiste à :

 Pour l'ensemble des conducteurs de la bibliothèque, calculer des chutes de tension maximum admissible au point de piquage pour garantir le niveau de tension souhaité en bout d'antenne.

- Estimerles chutes de tension entre la sous-station et les points de piquage, en considérant la configuration du réseau (emplacement des postes, tracés et caractéristiques des lignes) et la demande totale (localités déjà raccordées et nouvelles extensions).
- Pour chaque projet d'extension, choisirla section de conducteur minimale permettant d'assurer la qualité de service visée en bout de ligne à l'horizon de planification.

Pour chaque nouvelle antenne, les calculs suivants sont réalisés :

- Estimation de la charge des localités raccordées à partir des nouvelles extensions à partir du module de prévision de la demande de GEOSIM;
- Calcul des chutes de tension pour l'ensemble des conducteurs autorisés dans la bibliothèque;
- Estimation de la chute maximale au point de piquage garantissant un niveau de tension souhaité en bout d'antenne, pour l'ensemble des conducteurs autorisés.

Les calculs suivants sont ensuite réalisés pour chaque poste source et son sous-système électrique associé :

Evaluation de la charge des localités actuellement raccordées:
 Charge localité

= Charge de la sous station Population de la localité
Population totale raccordée à la sous station

- Ajout au niveau de chaque dipôle de la charge supplémentaire liée aux nouvelles antennes.
- Calcul des chutes de tension au point de piquage, en considérant les sections des lignes du réseau existant et l'estimation de la charge globale (Localités actuellement raccordées + extensions).

La chute de tension estimée au point de piquage est comparée à la chute de tension maximale admissible au point de piquage pour les différents conducteurs retenus pour réaliser les extensions.

Sur cette base est sélectionnée la section de conducteur la plus adaptée pour chaque antenne (i.e. le conducteur le moins coûteux permettant de limiter les chutes de tension sous le seuil acceptable).

De même, il est procédé à l'identification des antennes pour lesquelles les chutes de tension sont trop importantes compte tenu des caractéristiques du réseau projeté.

4.3.1.1 Qualité de service

La chute de tension maximale admissible en bout d'antenne a été considéré égale à 5%, la chute de tension tolérable est de 7,5%.

Le facteur de puissance (Cosφ) a été considéré égal à 0,9.

4.3.1.2 Caractéristiques des extensions de réseau

Le Consultant a considéré les techniques de construction de lignes utilisées au Bénin, et notamment les sections de conducteurs courantes.

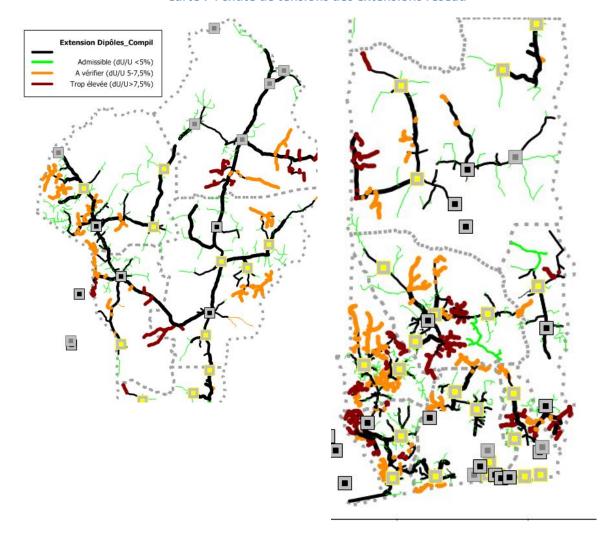
Tableau 17 caractéristiques des conducteurs utilisés

Conducteur	Section [mm²]	Résistance linéique [Ω/km]	Inductance linéique [Ω/km]
ALMELEC-34,4	34,4	0,959	0,32
ALMELEC-54,6	54,6	0,597	0,32
ALMELEC-75,5	75,5	0,435	0,32
ALMELEC-148	148	0,22	0,32

4.3.1.3 Evaluation de la demande des localités déjà raccordées

La demande de pointe des localités déjà raccordée au réseau existant est estimée comme suit :

Paramètre	Sources de donnés et hypothèses
1. Pointe initiale de	Pointe totale _{Année 0} = Pointe estimée au poste source
l'ensemble des	7111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
localités	Pointes reconstituées à partir de la répartition spatiale de la demande
raccordées au	calculée dans la prévision de la demande
réseau existant	
2. Pointe initiale	Pointe par localité _{Année 0}
rapportée à	= Pointe totale
chacune des	Population de la localité
localités	Population couverte par le poste source
raccordées au	
réseau existant	La puissance appelée par chaque localité raccordée est estimée sur la
	base du poids relatif de la population de la localité par rapport à la
	population totale couverte par le poste source étudié
3. Pointe de chacune	Pointe par localité _{Année X}
des localités	= Pointe par localité _{Année 0} $[(1 + C_{conso})]^X$
raccordées au	
réseau existant à	Avec:
l'horizon de	 C_{Conso} = Croissance annuelle de la consommation
planification	
	Le taux de croissance totale de la demande des populations initialement
	raccordées est issu de la prévision de la demande et dépends du scénario
	considéré.


4.3.2 Résultats

Les chutes de tensions ont été estimées sur l'ensemble des extensions programmées selon la prévision de la demande du scénario haut. Ce calcul permet donc de se placer dans le pire des cas, les scénarios Moyen et Faible auront de meilleurs résultats en terme de chute de tension puisque la charge est moindre dans ces scénarios. Les chutes de tensions sont calculées pour 2035.

chute de	nb
tension	d'extension
<5%	66%
5-7,5%	20%
7,5-10%	12%
>10%	3%

Les cartes ci-dessous illustrent les chutes de tensions calculées.

Carte 7 : chute de tensions des extensions réseau

Toutes les lignes en rouge sur cette cartes sont en réalité des lignes où la chute de tension en 2035 sera <10%, et donc où la qualité de service sera respectée.

Les tracés étudiés avec l'algorithme de calcul de chute de tension est le tracé représentant l'optimal économique déterminé par GEOSIM il n'est pas forcément conforme au tracé final qui sera retenu lors des études plus avancées qui seront nécessaire pour l'électrification effective des localités. Ces études de type études d'APS et d'APD dépassent le cadre de ce projet. L'ambition de ce paragraphe est uniquement d'indiquer que les extensions proposées sont réalistes.

Annexes

Annexe 1 : Liste de localités à électrifier

Annexe 2 : Cartographies

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
01-1-51-01	Alibori	Banikoara	0	Arbonga	2001	3438	5118	7131	2017	2031	2031
01-1-09-01	Alibori	Banikoara	0	Atabenou	3808	6781	10094	14065	2018	2017	2017
01-1-02-01	Alibori	Banikoara	0	Bouhanrou	4576	8139	12114	16879	2034	2033	2032
01-1-51-07	Alibori	Banikoara	0	Derou garou	2059	3671	5465	7615	2031	2028	2026
01-1-03-01	Alibori	Banikoara	0	Domboure bariba	3652	6341	9438	13150	2034	2032	2031
01-1-03-02	Alibori	Banikoara	0	Domboure peulh	858	1525	2270	3164	2021	2019	2018
01-1-01-03	Alibori	Banikoara	0	Founougo b	4905	8695	12943	18032	2017	2017	2017
01-1-01-04	Alibori	Banikoara	0	Founougo peulh	2027	3596	5353	7458	2033	2031	2032
01-1-08-01	Alibori	Banikoara	0	Gbeniki	797	1402	2087	2907	2027	2025	2024
01-1-01-05	Alibori	Banikoara	0	Gningnimpogou	1684	2995	4458	6211	2034	2032	2031
01-1-02-04	Alibori	Banikoara	0	Gomparou peulh	414	737	1096	1526	2019	2018	/
01-1-01-07	Alibori	Banikoara	0	Gougnirou peulh	1293	2287	3404	4743	2031	2030	2028
01-1-01-06	Alibori	Banikoara	0	Gougnirou-bariba	1377	2445	3638	5069	2032	2030	2029
01-1-03-07	Alibori	Banikoara	0	Goumori peulh	621	1107	1647	2296	2019	2018	2018
01-1-01-08	Alibori	Banikoara	0	Igriggou	6388	11357	16906	23556	2018	2017	2033
01-1-01-09	Alibori	Banikoara	0	Kanderou	2979	5293	7879	10977	2034	2033	2033
01-1-04-02	Alibori	Banikoara	0	Kokey b	1948	3472	5168	7201	2029	2025	2023
01-1-05-01	Alibori	Banikoara	1	Kokiborou a	981	1736	2584	3601	2016	2016	2016
01-1-05-02	Alibori	Banikoara	0	Kokiborou b	1368	2413	3592	5005	2024	2021	2020
01-1-05-03	Alibori	Banikoara	0	Kokiborou peulh	660	1178	1752	2441	2022	2020	2020
01-1-51-09	Alibori	Banikoara	0	Kori ginguiri	2674	4691	6983	9730	2033	2032	2031
01-1-01-10	Alibori	Banikoara	0	Kpako gbari	2124	3762	5600	7801	2034	2032	2031
01-1-02-05	Alibori	Banikoara	0	Kpessanrou	1802	3194	4754	6625	2027	2024	2022
01-1-03-08	Alibori	Banikoara	0	Mondoukoka	3850	6796	10116	14094	2034	2033	2032
01-1-02-06	Alibori	Banikoara	0	Niekoubanta	1797	3200	4763	6636	2028	2025	2023
01-1-04-03	Alibori	Banikoara	0	Nimbere peulh	1418	2500	3722	5185	2027	2025	2023
01-1-06-02	Alibori	Banikoara	0	Ounet b	2338	4135	6155	8576	2032	2030	2028
01-1-06-03	Alibori	Banikoara	0	Ounet peulh	1025	1814	2701	3764	2029	2027	2025
01-1-04-04	Alibori	Banikoara	0	Piguire peulh	485	848	1263	1760	2026	2024	/
01-1-01-11	Alibori	Banikoara	0	Sampeto	1535	2716	4044	5634	2034	2033	2032
01-1-06-05	Alibori	Banikoara	0	Sennou peulh	2979	5237	7795	10860	2033	2031	2030

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
01-1-07-03	Alibori	Banikoara	0	Simperou-peulh	921	1638	2438	3397	2024	2022	2022
01-1-05-04	Alibori	Banikoara	0	Sirikou	817	1436	2137	2977	2020	2018	2018
01-1-07-06	Alibori	Banikoara	0	Somperekou-peulh	2944	5194	7732	10773	2033	2031	2029
01-1-06-04	Alibori	Banikoara	0	Sonnou bariba	3807	6779	10090	14059	2017	2033	2032
01-1-08-02	Alibori	Banikoara	1	Soroko a	3472	6160	9170	12777	2017	2017	2017
01-1-08-03	Alibori	Banikoara	0	Soroko b	1274	2256	3358	4678	2017	2016	2020
01-1-08-04	Alibori	Banikoara	0	Soroko peulh	1325	2351	3500	4877	2027	2024	2023
01-1-09-02	Alibori	Banikoara	0	Tintinmou-bariba	2355	4177	6218	8664	2031	2029	2026
01-1-09-03	Alibori	Banikoara	0	Tintinmou-peulh	1249	2211	3291	4585	2026	2025	2023
01-1-09-06	Alibori	Banikoara	0	Toura-peulh	1707	3029	4508	6281	2027	2023	2022
01-1-51-10	Alibori	Banikoara	0	Wagou	1498	2672	3977	5541	2025	2023	2021
01-2-01-01	Alibori	Gogounou	0	Badou	2727	4278	5848	7589	2031	2028	2030
01-2-01-05	Alibori	Gogounou	0	Bagou peulh	1866	2942	4022	5219	2027	2024	2024
01-2-01-02	Alibori	Gogounou	0	Banigoure	1555	2448	3346	4342	2028	2026	2024
01-2-05-01	Alibori	Gogounou	0	Binga	1454	2293	3136	4069	2025	2022	2021
01-2-02-01	Alibori	Gogounou	0	Boro	1672	2616	3575	4639	2028	2028	2027
01-2-02-02	Alibori	Gogounou	0	Borodarou	1510	2378	3251	4218	2023	2021	2020
01-2-01-06	Alibori	Gogounou	0	Diadia	788	1243	1699	2204	2032	2030	2030
01-2-02-03	Alibori	Gogounou	0	Diguisson	455	718	981	1274	2026	/	/
01-2-05-02	Alibori	Gogounou	0	Dougoulaye	599	945	1292	1676	2034	2032	/
01-2-04-01	Alibori	Gogounou	0	Gamagou	1813	2776	3795	4923	2025	2023	2021
01-2-03-01	Alibori	Gogounou	0	Ilougou	1356	2128	2909	3774	2033	2032	2031
01-2-01-08	Alibori	Gogounou	0	Kali	2497	3898	5328	6913	2033	2031	2029
01-2-04-02	Alibori	Gogounou	0	Kantakpara	1844	2878	3935	5106	2016	2023	2021
01-2-01-09	Alibori	Gogounou	0	Kerou	3850	6064	8290	10758	2017	2032	2031
01-2-51-02	Alibori	Gogounou	0	Kossenin	765	1205	1648	2138	2027	2025	2024
01-2-01-10	Alibori	Gogounou	0	Nafarou	1378	2155	2946	3821	2028	2027	2025
01-2-03-04	Alibori	Gogounou	0	Ouara-peulh	1597	2496	3411	4426	2031	2029	2028
01-2-51-03	Alibori	Gogounou	0	Ouere	2150	3386	4629	6007	2030	2027	2024
01-2-51-04	Alibori	Gogounou	0	Ouere peulh	1277	2010	2748	3566	2022	2020	2020
01-2-04-03	Alibori	Gogounou	0	Ouessene bariba	1796	2826	3863	5012	2017	2030	2029

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
01-2-04-04	Alibori	Gogounou	0	Ouessene peulh	1235	1938	2649	3436	2026	2030	2030
01-2-04-05	Alibori	Gogounou	0	Pigourou	2473	3788	5178	6718	2032	2031	2030
01-2-03-02	Alibori	Gogounou	0	Soukarou	3233	5090	6958	9028	2033	2031	2028
01-2-04-08	Alibori	Gogounou	0	Tchoukounga	4511	7091	9693	12577	2034	2033	2032
01-2-05-03	Alibori	Gogounou	1	Zougou pantrossi	2062	3213	4393	5699	2016	2016	2016
01-2-05-04	Alibori	Gogounou	0	Zougou pantrossi peulh	2521	3948	5397	7002	2031	2028	2025
01-3-01-01	Alibori	Kandi	0	Alfakoara	3714	7698	12755	19441	2017	2016	2016
01-3-05-01	Alibori	Kandi	0	Banikane	818	1704	2824	4304	2029	2028	2027
01-3-02-01	Alibori	Kandi	1	Bensekou	2280	4752	7873	11999	2016	2016	2016
01-3-06-01	Alibori	Kandi	0	Boderou	1344	2802	4643	7075	2031	2029	2028
01-3-03-02	Alibori	Kandi	0	Donwari peulh	789	1639	2716	4140	2023	2020	2021
01-3-01-03	Alibori	Kandi	0	Fafa	581	1203	1994	3040	2016	2018	2018
01-3-01-04	Alibori	Kandi	0	Fouay	1812	3681	6098	9295	2018	2033	2032
01-3-05-02	Alibori	Kandi	0	Foure	1615	3329	5516	8408	2031	2029	2028
01-3-03-04	Alibori	Kandi	0	Gambane peulh	297	617	1021	1556	2019	2018	/
01-3-51-02	Alibori	Kandi	0	Gando kossikana	1284	2675	4431	6753	2026	2023	2022
01-3-06-02	Alibori	Kandi	0	Gbindarou	1053	2186	3622	5520	2030	2028	2027
01-3-02-02	Alibori	Kandi	0	Gogbede	559	1165	1931	2942	2019	2018	2018
01-3-02-03	Alibori	Kandi	0	Koutakroukou	1013	1948	3227	4918	2021	2020	2019
01-3-05-03	Alibori	Kandi	0	Lolo	1609	2973	4926	7507	2017	2030	2029
01-3-03-06	Alibori	Kandi	0	Mongo-peulh	306	636	1053	1604	2020	2018	/
01-3-04-02	Alibori	Kandi	0	Pade	2391	4805	7961	12133	2032	2030	2026
01-3-51-05	Alibori	Kandi	0	Pede	2220	4629	7670	11689	2016	2029	2025
01-3-07-01	Alibori	Kandi	0	Pedigui	1335	2768	4587	6991	2016	2016	2016
01-3-04-03	Alibori	Kandi	0	Pegon	2010	4049	6709	10224	2033	2031	2030
01-3-53-06	Alibori	Kandi	0	Podo	932	1943	3219	4905	2024	2022	2021
01-3-05-04	Alibori	Kandi	1	Sah	1530	3175	5261	8017	2017	2017	2017
01-3-06-03	Alibori	Kandi	0	Sakatoussa	1041	2157	3574	5447	2029	2029	2028
01-3-06-04	Alibori	Kandi	1	Sam	4987	10191	16887	25738	2018	2017	2017
01-3-07-03	Alibori	Kandi	0	Sinanwougourou peulh	1253	2598	4304	6558	2025	2022	2021
01-3-07-05	Alibori	Kandi	0	Sonsoro peulh	1107	2306	3821	5823	2023	2021	2020

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu d'arr.		INSAE 2002	2015	2025	2035	Scénario Haut	Scénario Moyen	Scénario Faible
01-3-06-05	Alibori	Kandi	0	Tankongou	3754	7701	12759	19446	2018	2017	2032
01-3-01-06	Alibori	Kandi	0	Taya	3072	6360	10538	16060	2017	2017	2032
01-3-01-00	Alibori	Kandi	0	Thuy	1999	4133	6848	10437	2030	2010	2024
01-4-02-01	Alibori	Karimama	0	Banikani	563	1040	1585	2253	2021	2019	2018
01-4-02-01	Alibori	Karimama	1	Bogo-bogo	2811	5183	7904	11237	2021	2013	2017
01-4-02-02	Alibori	Karimama	0	Garbeykoara	1328	2443	3726	5296	2018	2017	2020
01-4-03-02	Alibori	Karimama	0	Gorouberi	2215	4072	6208	8825	2023	2021	2025
01-4-31-01	Alibori	Karimama	0		3150	5781	8814	12530	2028	2023	2023
01-4-01-02				Karigui							
01-4-03-01	Alibori	Karimama	0	Kompa	4314 1541	7881	12017	17083 6145	2018	2017 2023	2017 2021
	Alibori	Karimama		Kompanti		2834	4322		2025		
01-4-04-01	Alibori	Karimama	0	Loumbou loumbou	1633	3016	4599	6537	2027	2025	2022
01-4-51-04	Alibori	Karimama	0	Mamassi peulh	1580	2892	4409	6268	2027	2025	2023
01-4-02-03	Alibori	Karimama	0	Mamassy-gourma	2649	4889	7455	10599	2033	2032	2031
01-4-04-02	Alibori	Karimama	1	Mossey	2220	4101	6253	8890	2018	2017	2017
01-4-04-03	Alibori	Karimama	0	Mossey haoussa	710	1312	2001	2844	2024	2022	2021
01-4-04-04	Alibori	Karimama	0	Petchinga	3054	5626	8579	12196	2034	2033	2033
01-4-02-04	Alibori	Karimama	0	Torio	1122	2074	3162	4495	2023	2020	2019
01-4-01-03	Alibori	Karimama	0	Toundi-koaria	1961	3617	5516	7842	2029	2026	2023
01-5-02-01	Alibori	Malanville	0	Banite i	1128	2003	3009	4224	2022	2020	2019
01-5-02-02	Alibori	Malanville	0	Banite ii	1472	2659	3994	5606	2024	2022	2020
01-5-02-03	Alibori	Malanville	0	Boiffo	1552	2806	4214	5915	2031	2028	2027
01-5-04-01	Alibori	Malanville	0	Degue-degue	2032	3648	5478	7689	2032	2030	2028
01-5-01-01	Alibori	Malanville	1	Garou i	3738	6668	10013	14053	2017	2016	2016
01-5-01-02	Alibori	Malanville	0	Garou ii	4452	8013	12033	16888	2034	2033	2032
01-5-01-03	Alibori	Malanville	0	Garou tedji	4194	7536	11317	15885	2017	2033	2031
01-5-02-04	Alibori	Malanville	0	Goun-goun	5797	10312	15486	21736	2017	2033	2033
01-5-02-07	Alibori	Malanville	0	Issene	2156	3892	5844	8202	2032	2029	2028
01-5-01-04	Alibori	Malanville	0	Kambowo tounga	1373	2455	3687	5174	2026	2023	2023
01-5-02-08	Alibori	Malanville	0	Kantro	2760	4984	7485	10506	2033	2031	2029
01-5-03-01	Alibori	Malanville	0	Kassa	3507	6340	9521	13365	2018	2017	2017
01-5-02-09	Alibori	Malanville	0	Koara-tedji	2940	5303	7964	11177	2033	2032	2030

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
01-5-51-03	Alibori	Malanville	0	Koki	2401	4320	6488	9106	2033	2031	2030
01-5-03-02	Alibori	Malanville	0	Kouara tedji	1685	3036	4559	6399	2028	2025	2023
01-5-04-02	Alibori	Malanville	0	Molla centre	2449	4422	6641	9322	2016	2031	2029
01-5-01-05	Alibori	Malanville	0	Momkassa	2623	4675	7020	9853	2033	2031	2029
01-5-04-03	Alibori	Malanville	0	Sakawan-tegui	1403	2518	3782	5309	2030	2027	2025
01-5-04-04	Alibori	Malanville	0	Sakawan-zenon	1459	2630	3949	5542	2024	2022	2020
01-5-03-04	Alibori	Malanville	0	Sende	2749	4912	7377	10355	2033	2030	2028
01-5-02-10	Alibori	Malanville	0	Torozougou	1668	3009	4518	6341	2030	2028	2026
01-6-01-01	Alibori	Segbana	0	Bobena	1638	3003	4605	6576	2027	2024	2023
01-6-03-01	Alibori	Segbana	0	Boumoussou	690	1221	1872	2672	2029	2027	2026
01-6-01-02	Alibori	Segbana	0	Diapeou	1226	2200	3373	4818	2029	2026	2025
01-6-03-02	Alibori	Segbana	0	Gando-dunkassa	965	1794	2750	3927	2031	2029	2028
01-6-04-01	Alibori	Segbana	0	Gbarana	1403	2608	3998	5708	2018	2033	2032
01-6-03-03	Alibori	Segbana	0	Gbasse	456	819	1256	1793	2019	2018	/
01-6-03-04	Alibori	Segbana	0	Gbenkakarou	399	741	1137	1624	2027	2025	/
01-6-02-01	Alibori	Segbana	0	Gbessaka	1623	3017	4626	6605	2027	2024	2022
01-6-51-01	Alibori	Segbana	0	Gbessare peulh	954	1777	2725	3892	2029	2027	2026
01-6-03-05	Alibori	Segbana	0	Guenelaga	1320	2460	3771	5386	2033	2032	2031
01-6-02-02	Alibori	Segbana	0	Kambara	2821	5075	7781	11113	2016	2031	2029
01-6-01-03	Alibori	Segbana	0	Koute	2252	4184	6415	9161	2034	2033	2032
01-6-02-03	Alibori	Segbana	0	Lete	1049	1943	2979	4255	2033	2032	2031
01-6-02-04	Alibori	Segbana	1	Liboussou	3117	5622	8619	12308	2016	2016	2016
01-6-03-06	Alibori	Segbana	1	Lougou	1837	3383	5187	7408	2018	2017	2017
01-6-03-07	Alibori	Segbana	0	Lougou niambara	672	1240	1901	2713	2021	2019	2019
01-6-04-02	Alibori	Segbana	0	Morou	1664	3038	4658	6652	2034	2034	2033
01-6-51-02	Alibori	Segbana	0	Piami	4702	8607	13195	18843	2017	2033	2032
01-6-04-03	Alibori	Segbana	0	Poela	652	1215	1863	2661	2022	2020	2020
01-6-01-05	Alibori	Segbana	0	Sahonzi	1740	3202	4909	7010	2033	2032	2031
01-6-51-03	Alibori	Segbana	0	Santimbara	522	972	1490	2127	2028	2026	2025
01-6-04-04	Alibori	Segbana	0	Serebani	1990	3683	5647	8065	2016	2027	2024
01-6-04-05	Alibori	Segbana	0	Serekibe	1015	1887	2893	4132	2026	2023	2023

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
01-6-03-09	Alibori	Segbana	0	Sinwan	1523	2803	4297	6136	2030	2028	2027
01-6-04-06	Alibori	Segbana	1	Sokotindji	2822	5253	8053	11499	2016	2016	2016
01-6-03-08	Alibori	Segbana	0	Zonzi	498	926	1420	2028	2019	2018	2018
02-1-02-01	Atacora	Boukoumbe	0	Agbonte	1141	1649	2153	2688	2025	2023	2023
02-1-04-01	Atacora	Boukoumbe	0	Dikon hein	1399	2044	2669	3333	2028	2026	2024
02-1-06-01	Atacora	Boukoumbe	0	Dikouani	547	803	1049	1310	2024	/	/
02-1-01-01	Atacora	Boukoumbe	0	Dikounmini	922	1356	1772	2213	2024	2022	2022
02-1-04-02	Atacora	Boukoumbe	0	Dikouteni	893	1291	1685	2104	2023	2020	2020
02-1-01-02	Atacora	Boukoumbe	0	Dimansouri	749	1105	1443	1802	2026	2023	/
02-1-04-03	Atacora	Boukoumbe	0	Dimatema	511	754	985	1230	2020	/	/
02-1-06-02	Atacora	Boukoumbe	0	Dipintakouani	1114	1603	2093	2614	2020	2019	2018
02-1-05-01	Atacora	Boukoumbe	0	Dipokor fontri	546	806	1053	1315	2019	/	/
02-1-04-04	Atacora	Boukoumbe	0	Dipokor i	1223	1805	2358	2945	2023	2021	2020
02-1-04-05	Atacora	Boukoumbe	0	Dipokor ii	672	988	1290	1611	2019	2018	/
02-1-01-03	Atacora	Boukoumbe	1	Dipoli	1493	2195	2866	3579	2018	2017	2017
02-1-01-04	Atacora	Boukoumbe	0	Dissapoli	1077	1580	2063	2577	2030	2028	2029
02-1-51-01	Atacora	Boukoumbe	0	Ditchindia	652	943	1231	1537	2020	2018	/
02-1-02-06	Atacora	Boukoumbe	1	Korontiere	1087	1579	2062	2576	2017	2017	2017
02-1-06-03	Atacora	Boukoumbe	0	Koubegou	603	883	1153	1440	2024	/	/
02-1-06-04	Atacora	Boukoumbe	0	Koubintiegou	1135	1640	2141	2675	2021	2019	2018
02-1-06-06	Atacora	Boukoumbe	0	Koudadagou	786	1151	1502	1876	2025	2023	/
02-1-05-03	Atacora	Boukoumbe	0	Koudogou	771	1136	1483	1851	2022	2020	/
02-1-04-06	Atacora	Boukoumbe	0	Kouhingou	597	874	1142	1426	2021	/	/
02-1-06-05	Atacora	Boukoumbe	0	Koukogou	713	1048	1368	1709	2023	2021	/
02-1-02-02	Atacora	Boukoumbe	0	Koukongou	1676	2466	3220	4022	2025	2023	2025
02-1-05-04	Atacora	Boukoumbe	0	Koukoua	1006	1448	1891	2361	2026	2024	2025
02-1-04-07	Atacora	Boukoumbe	0	Koukouangou	1602	2331	3044	3801	2026	2024	2026
02-1-51-03	Atacora	Boukoumbe	1	Koukouangou	1844	2693	3516	4391	2016	2016	2016
02-1-03-02	Atacora	Boukoumbe	0	Koukouankouangou	474	699	912	1138	2029	/	/
02-1-06-07	Atacora	Boukoumbe	0	Koukouatougou	979	1436	1875	2343	2024	2024	2024
02-1-51-04	Atacora	Boukoumbe	0	Koukouwantchiengou	851	1255	1639	2047	2020	2019	2018

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
02-1-04-08	Atacora	Boukoumbe	0	Koumadogou	566	814	1064	1328	2019	/	/
02-1-51-05	Atacora	Boukoumbe	0	Koumagou	609	897	1172	1463	2019	/	/
02-1-05-05	Atacora	Boukoumbe	0	Koumagou-b	610	886	1157	1445	2019	/	/
02-1-51-06	Atacora	Boukoumbe	0	Koumontchigou	536	789	1030	1286	2021	/	/
02-1-05-06	Atacora	Boukoumbe	0	Kounagnigou	548	808	1055	1317	2025	/	/
02-1-05-07	Atacora	Boukoumbe	1	Kounakogou	1109	1625	2122	2650	2016	2016	2016
02-1-51-08	Atacora	Boukoumbe	0	Kountchougou	1792	2614	3413	4262	2028	2026	2024
02-1-02-03	Atacora	Boukoumbe	0	Koupagou	611	890	1162	1451	2025	/	/
02-1-51-09	Atacora	Boukoumbe	0	Koupargou	2067	3039	3969	4957	2031	2028	2027
02-1-05-08	Atacora	Boukoumbe	0	Kouporgou	700	1025	1339	1673	2019	2018	/
02-1-51-10	Atacora	Boukoumbe	0	Koussetiegou	1890	780	1018	1272	2019	/	/
02-1-03-03	Atacora	Boukoumbe	1	Koussoucoingou	227	332	433	541	2016	2016	2016
02-1-51-11	Atacora	Boukoumbe	0	Koussoucoingou	1858	2741	3580	4471	2024	2024	2022
02-1-03-04	Atacora	Boukoumbe	0	Koussounougou	453	668	872	1089	2028	/	/
02-1-51-12	Atacora	Boukoumbe	0	Koutagou	452	660	861	1076	2020	/	/
02-1-05-09	Atacora	Boukoumbe	0	Koutangou	862	1271	1660	2073	2020	2019	2018
02-1-51-13	Atacora	Boukoumbe	0	Koutatiegou	487	717	936	1169	2019	/	/
02-1-51-14	Atacora	Boukoumbe	0	Koutchata	714	1010	1319	1648	2019	2018	/
02-1-51-15	Atacora	Boukoumbe	0	Koutchatahongou	1496	2191	2861	3573	2016	2024	2023
02-1-02-04	Atacora	Boukoumbe	0	Koutchatie	674	984	1285	1605	2022	2021	/
02-1-05-10	Atacora	Boukoumbe	0	Kouwonatougou	603	890	1162	1451	2022	/	/
02-1-02-05	Atacora	Boukoumbe	0	Kouya	1033	1493	1950	2435	2021	2020	2019
02-1-03-06	Atacora	Boukoumbe	0	Kouyangou	831	1211	1581	1974	2020	2018	/
02-1-01-05	Atacora	Boukoumbe	0	Mantchari	681	1004	1311	1637	2024	2022	/
02-1-01-06	Atacora	Boukoumbe	0	Otanongou	1054	1550	2024	2528	2025	2023	2024
02-1-06-08	Atacora	Boukoumbe	1	Tabota	958	1404	1833	2288	2016	2016	2016
02-1-04-10	Atacora	Boukoumbe	0	Takodieta	1057	1550	2024	2528	2023	2023	2022
02-1-06-09	Atacora	Boukoumbe	0	Takotchienta	704	1022	1335	1667	2024	2021	/
02-1-02-07	Atacora	Boukoumbe	0	Tassayota	705	1011	1320	1648	2023	2022	/
02-1-04-11	Atacora	Boukoumbe	0	Tatchadieta	1086	1598	2087	2607	2026	2024	2023
02-1-06-10	Atacora	Boukoumbe	0	Tatouta	780	1136	1483	1851	2024	2023	/

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
02-1-03-08	Atacora	Boukoumbe	0	Tchapetta	455	663	866	1082	2019	/	/
02-1-06-11	Atacora	Boukoumbe	0	Yatie	598	874	1142	1426	2022	/	/
02-2-51-01	Atacora	Cobly	0	Bagapodi	1533	2428	3329	4329	2030	2027	2026
02-2-01-02	Atacora	Cobly	0	Kadieni	1901	2999	4113	5352	2032	2030	2030
02-2-51-03	Atacora	Cobly	0	Koukontouga	954	1499	2055	2673	2029	2027	2025
02-2-02-01	Atacora	Cobly	1	Kountori	2239	3533	4845	6304	2018	2017	2017
02-2-51-04	Atacora	Cobly	0	Kpetienou	614	944	1295	1685	2024	2022	/
02-2-02-02	Atacora	Cobly	0	Kpetissohoun	1152	1817	2491	3241	2027	2027	2026
02-2-01-03	Atacora	Cobly	0	Namatienou	967	1506	2065	2685	2031	2029	2029
02-2-02-03	Atacora	Cobly	0	Namoutchaga	1669	2622	3596	4678	2029	2027	2025
02-2-51-05	Atacora	Cobly	0	Nanagade	4092	6379	8747	11379	2018	2032	2031
02-2-51-06	Atacora	Cobly	0	Nouangou	1284	2012	2759	3590	2027	2025	2023
02-2-02-04	Atacora	Cobly	0	Okpintouhoun	527	829	1136	1478	2025	/	/
02-2-02-05	Atacora	Cobly	0	Oroukouare	1743	2759	3783	4921	2028	2030	2028
02-2-02-06	Atacora	Cobly	0	Otanonhoun	421	654	896	1165	2024	/	/
02-2-51-07	Atacora	Cobly	0	Ouorou	1653	2602	3568	4642	2027	2024	2022
02-2-03-01	Atacora	Cobly	0	Pintinga	1999	3153	4323	5624	2033	2032	2031
02-2-03-02	Atacora	Cobly	0	Sienou	1231	1899	2605	3389	2032	2031	2030
02-2-02-07	Atacora	Cobly	0	Sinni	2182	3444	4723	6144	2028	2028	2027
02-2-03-03	Atacora	Cobly	1	Tapoga	3163	4904	6724	8747	2017	2017	2017
02-2-02-08	Atacora	Cobly	0	Tarpingou	2092	3285	4505	5861	2031	2029	2027
02-2-01-04	Atacora	Cobly	0	Tokibi	2409	3742	5132	6677	2018	2032	2031
02-2-51-08	Atacora	Cobly	0	Touga	1232	1933	2650	3448	2024	2021	2020
02-2-51-09	Atacora	Cobly	0	Yimpissiri i	1172	1857	2546	3312	2028	2026	2024
02-2-51-10	Atacora	Cobly	0	Yimpissiri ii	787	1200	1645	2141	2025	2024	2023
02-2-03-04	Atacora	Cobly	0	Zanniouri	993	1572	2156	2804	2024	2022	2021
02-3-51-01	Atacora	Kerou	0	Bakoussarou	1734	2904	4182	5668	2029	2027	2025
02-3-02-01	Atacora	Kerou	0	Batenin	756	1286	1852	2511	2030	2028	2028
02-3-01-01	Atacora	Kerou	0	Berekossou	1822	3096	4458	6041	2026	2024	2022
02-3-51-03	Atacora	Kerou	0	Boukou bourou	1941	3296	4746	6431	2027	2024	2022
02-3-02-02	Atacora	Kerou	0	Djolini	1529	2600	3744	5074	2024	2022	2020

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
02-3-51-04	Atacora	Kerou	0	Fetekou	4413	7460	10742	14557	2018	2033	2032
02-3-51-05	Atacora	Kerou	0	Gantodo	1630	2761	3976	5388	2025	2022	2021
02-3-02-03	Atacora	Kerou	0	Gori	1072	1816	2614	3542	2032	2030	2029
02-3-02-04	Atacora	Kerou	0	Gorobani	630	1072	1543	2091	2020	2019	2018
02-3-02-05	Atacora	Kerou	1	Kabongourou	4320	7313	10531	14272	2018	2017	2017
02-3-03-01	Atacora	Kerou	1	Kaobagou i	690	1172	1689	2289	2018	2017	2017
02-3-03-02	Atacora	Kerou	0	Kaobagou ii	600	1021	1470	1992	2019	2018	/
02-3-03-03	Atacora	Kerou	0	Koabagou iii	2017	3427	4935	6687	2027	2025	2023
02-3-01-04	Atacora	Kerou	0	Kongourou	1264	2116	3047	4130	2022	2020	2019
02-3-01-05	Atacora	Kerou	0	Kossou	2814	4779	6882	9326	2031	2029	2026
02-3-51-06	Atacora	Kerou	0	Pikire	6772	11413	16434	22270	2018	2017	2017
02-3-02-06	Atacora	Kerou	0	Sokongourou	2068	3483	5016	6798	2018	2026	2023
02-3-51-11	Atacora	Kerou	0	Toudakou	1221	2012	2897	3926	2022	2020	2019
02-3-01-07	Atacora	Kerou	0	Yakrigorou	2768	4704	6774	9180	2034	2033	2032
02-4-51-02	Atacora	Kouande	0	Beket-bourame	1932	2778	3636	4551	2016	2023	2021
02-4-51-03	Atacora	Kouande	0	Beket-peulh	590	866	1133	1417	2019	/	/
02-4-01-01	Atacora	Kouande	1	Birni maro	3539	5210	6821	8537	2017	2016	2016
02-4-51-04	Atacora	Kouande	0	Bore	746	1101	1441	1804	2019	2018	/
02-4-04-01	Atacora	Kouande	0	Boro	600	884	1157	1448	2029	/	/
02-4-04-02	Atacora	Kouande	0	Damouti	3611	5243	6864	8591	2032	2033	2032
02-4-03-01	Atacora	Kouande	0	Danri	1451	2141	2803	3508	2026	2024	2024
02-4-51-05	Atacora	Kouande	0	Darou-wirou	1700	2512	3288	4115	2025	2022	2021
02-4-05-02	Atacora	Kouande	0	Dekerou	1431	2114	2768	3464	2023	2021	2020
02-4-04-03	Atacora	Kouande	0	Fo-mama	938	1378	1804	2257	2032	2031	2030
02-4-02-02	Atacora	Kouande	0	Gantieco	812	1198	1568	1963	2020	2018	/
02-4-04-05	Atacora	Kouande	0	Garakousson	1864	2731	3576	4476	2025	2022	2021
02-4-04-04	Atacora	Kouande	0	Gora peulh	1148	1685	2206	2760	2021	2019	2018
02-4-01-03	Atacora	Kouande	0	Gorgoba	1518	2248	2944	3685	2031	2029	2027
02-4-01-05	Atacora	Kouande	0	Hongon	1888	2717	3558	4452	2030	2028	2026
02-4-03-03	Atacora	Kouande	0	Kabare	899	1309	1715	2146	2020	2018	2018
02-4-04-07	Atacora	Kouande	0	Kedekou	2037	2972	3891	4869	2018	2033	2032

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
02-4-01-04	Atacora	Kouande	0	Kouboro	842	1247	1632	2042	2023	2021	2021
02-4-04-08	Atacora	Kouande	0	Kpakou	1071	1586	2077	2600	2033	2032	2031
02-4-03-04	Atacora	Kouande	0	Maka	684	1013	1327	1661	2025	2023	/
02-4-04-09	Atacora	Kouande	0	Nassoukou	1270	1852	2425	3035	2031	2032	2031
02-4-05-04	Atacora	Kouande	0	Niarissinra	1411	2089	2735	3422	2029	2026	2025
02-4-05-05	Atacora	Kouande	0	Niaro-gninon	1333	1928	2524	3159	2033	2031	2030
02-4-05-06	Atacora	Kouande	0	Niarosson	2376	3514	4601	5758	2034	2032	2031
02-4-05-07	Atacora	Kouande	0	Niekene bansou	3181	4696	6149	7696	2031	2028	2025
02-4-04-10	Atacora	Kouande	0	Ouroufinan	669	991	1298	1625	2032	2032	/
02-4-02-03	Atacora	Kouande	0	Papatia	1334	1973	2583	3233	2024	2022	2021
02-4-05-09	Atacora	Kouande	0	Pelima	636	899	1176	1472	2022	/	/
02-4-05-10	Atacora	Kouande	0	Pessourou	911	1349	1765	2208	2020	2018	2018
02-4-02-05	Atacora	Kouande	0	Sakasson-dompargo	577	853	1117	1398	2022	/	/
02-4-51-09	Atacora	Kouande	0	Sekogourou	2597	3845	5034	6299	2029	2026	2024
02-4-51-10	Atacora	Kouande	0	Sekogourou peuhl	2209	3270	4282	5359	2030	2027	2025
02-4-04-11	Atacora	Kouande	0	Seri	439	650	852	1067	2033	/	/
02-4-01-06	Atacora	Kouande	0	Tamande	756	1119	1465	1834	2023	2021	/
02-4-03-02	Atacora	Kouande	1	Tanse	1905	2807	3675	4599	2016	2016	2016
02-4-01-07	Atacora	Kouande	0	Tassigourou	1216	1794	2348	2938	2022	2020	2019
02-4-03-05	Atacora	Kouande	0	Tikou	1631	2380	3116	3900	2033	2031	2030
02-5-02-01	Atacora	Materi	0	Bahoun	1354	1885	2368	2864	2022	2020	2019
02-5-04-02	Atacora	Materi	0	Bogodori	1039	1447	1817	2196	2028	2028	2026
02-5-03-01	Atacora	Materi	0	Borifieri	984	1372	1724	2084	2021	2019	2018
02-5-51-01	Atacora	Materi	0	Boutouhoun-pingou	972	1355	1703	2059	2028	2027	2027
02-5-04-03	Atacora	Materi	0	Dabogouhoun	1869	2605	3272	3956	2030	2027	2025
02-5-02-02	Atacora	Materi	0	Doga	1340	1866	2344	2833	2030	2029	2027
02-5-01-02	Atacora	Materi	0	Firihoun	2394	3319	4169	5040	2016	2026	2024
02-5-03-02	Atacora	Materi	0	Holli	892	1241	1558	1884	2020	2019	/
02-5-02-04	Atacora	Materi	0	Kandehoun	1152	1575	1978	2391	2029	2029	2028
02-5-04-04	Atacora	Materi	0	Kandjo	581	809	1015	1228	2026	/	/
02-5-04-05	Atacora	Materi	0	Konehandri	1127	1570	1972	2384	2030	2028	2026

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
02-5-03-03	Atacora	Materi	0	Kotari	959	1338	1680	2032	2025	2026	2025
02-5-03-04	Atacora	Materi	0	Kouarihoun	835	1160	1456	1761	2026	2025	/
02-5-02-05	Atacora	Materi	0	Kouforpissiga	2536	3531	4434	5360	2017	2030	2029
02-5-04-06	Atacora	Materi	0	Koussega	631	880	1106	1337	2022	/	/
02-5-05-03	Atacora	Materi	0	Koutoukouantiga	1047	1458	1832	2215	2028	2026	2025
02-5-04-07	Atacora	Materi	0	Madoga	1168	1604	2015	2436	2026	2023	2022
02-5-03-05	Atacora	Materi	0	Mahontiga	535	736	924	1117	2023	/	/
02-5-51-03	Atacora	Materi	1	Materi	4260	5932	7451	9008	2017	2016	2016
02-5-51-04	Atacora	Materi	0	Merihoun	638	890	1117	1351	2020	/	/
02-5-01-03	Atacora	Materi	0	Nagassega	1446	2007	2521	3047	2023	2021	2020
02-5-04-08	Atacora	Materi	0	Nambouli	3043	4234	5318	6430	2032	2029	2027
02-5-01-04	Atacora	Materi	0	Ouriyori	872	1215	1526	1845	2024	2021	/
02-5-04-09	Atacora	Materi	0	Pouniari	2166	3015	3787	4578	2029	2029	2027
02-5-01-06	Atacora	Materi	0	Pouri	2009	2797	3513	4247	2016	2024	2022
02-5-05-04	Atacora	Materi	0	Sakonou	1581	2186	2745	3319	2016	2026	2025
02-5-01-07	Atacora	Materi	0	Satchndiga	1704	2373	2981	3604	2030	2028	2027
02-5-02-06	Atacora	Materi	0	Sindori-toni	1545	2148	2698	3261	2024	2021	2020
02-5-51-07	Atacora	Materi	0	Somou	1841	2566	3223	3896	2025	2022	2021
02-5-04-10	Atacora	Materi	0	Tambogou-koundri	690	954	1198	1448	2023	/	/
02-5-03-07	Atacora	Materi	0	Tampori-pogue	683	950	1193	1443	2025	/	/
02-5-04-11	Atacora	Materi	0	Tanhoun	875	1220	1532	1852	2020	2018	/
02-5-01-08	Atacora	Materi	0	Tankouari	744	1036	1301	1572	2026	2024	/
02-5-51-08	Atacora	Materi	0	Tankpinti-yerou	1220	1579	1983	2397	2027	2026	2026
02-5-05-05	Atacora	Materi	1	Tchanhoun-cossi	3627	5030	6318	7638	2017	2016	2016
02-5-02-07	Atacora	Materi	0	Tcharikonga	480	667	838	1013	2029	/	/
02-5-01-09	Atacora	Materi	0	Tetonga	1793	2493	3131	3786	2025	2022	2021
02-5-02-08	Atacora	Materi	0	Tiari	1603	2210	2776	3357	2026	2024	2022
02-5-01-10	Atacora	Materi	0	Tigniga	782	1090	1370	1656	2028	2026	/
02-5-01-11	Atacora	Materi	0	Tihoun	1145	1596	2004	2423	2028	2026	2025
02-5-51-09	Atacora	Materi	0	Titonsi	818	1134	1425	1722	2020	2019	/
02-5-02-09	Atacora	Materi	0	Toubougnini	1037	1436	1804	2182	2025	2022	2021

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
02-5-05-06	Atacora	Materi	0	Yanbiarga	832	1152	1447	1748	2024	2025	/
02-5-03-08	Atacora	Materi	0	Yedekanhoun	2214	3074	3862	4669	2031	2029	2028
02-6-01-01	Atacora	Natitingou	0	Bagre-tamou	1018	1482	1917	2375	2025	2023	2023
02-6-53-01	Atacora	Natitingou	0	Berecingou	1439	2044	2644	3276	2023	2021	2020
02-6-52-02	Atacora	Natitingou	1	Boriyoure	4208	6065	7847	9724	2017	2016	2016
02-6-02-01	Atacora	Natitingou	0	Dikouan	671	970	1255	1555	2020	2018	/
02-6-54-01	Atacora	Natitingou	0	Ditahouan	734	955	1235	1530	2022	2021	/
02-6-01-02	Atacora	Natitingou	0	Dokonde	2733	3958	5121	6347	2030	2026	2024
02-6-54-02	Atacora	Natitingou	0	Doyakou	597	792	1024	1269	2023	/	/
02-6-01-03	Atacora	Natitingou	0	Kota-monongou	898	1300	1681	2083	2020	2018	2018
02-6-02-03	Atacora	Natitingou	1	Kouaba	805	1069	1384	1715	2016	2016	2016
02-6-03-02	Atacora	Natitingou	0	Kouatidabirgou	737	954	1234	1529	2023	2021	/
02-6-54-03	Atacora	Natitingou	0	Koudengou	1036	1450	1876	2325	2021	2019	2019
02-6-02-04	Atacora	Natitingou	0	Koukouabirgou	1104	1578	2042	2530	2026	2024	2023
02-6-03-03	Atacora	Natitingou	0	Kounadorgou	894	1284	1661	2058	2029	2027	2026
02-6-53-03	Atacora	Natitingou	0	Koussantigou	627	787	1019	1262	2028	/	/
02-6-02-06	Atacora	Natitingou	0	Koutannongou	515	737	953	1181	2021	/	/
02-6-05-01	Atacora	Natitingou	0	Koutie chatido	574	810	1048	1299	2030	/	/
02-6-02-07	Atacora	Natitingou	0	Kouwanwangou	563	815	1054	1306	2022	/	/
02-6-05-02	Atacora	Natitingou	0	Moupemou	1110	1431	1851	2294	2028	2026	2025
02-6-01-05	Atacora	Natitingou	0	Onsikoto	598	861	1114	1381	2019	/	/
02-6-52-05	Atacora	Natitingou	0	Ourkpargou	873	1192	1541	1909	2025	2023	/
02-6-04-07	Atacora	Natitingou	0	Pam-pam	933	1306	1690	2095	2020	2018	2018
02-6-04-08	Atacora	Natitingou	0	Sinaicire	1404	2004	2593	3214	2024	2022	2021
02-6-05-03	Atacora	Natitingou	0	Takonta	1050	1482	1917	2375	2028	2026	2026
02-6-02-10	Atacora	Natitingou	0	Tedonte	778	1073	1389	1721	2026	2024	/
02-6-54-05	Atacora	Natitingou	0	Tetante	434	632	818	1013	2021	/	/
02-6-04-09	Atacora	Natitingou	0	Tignapeti	793	1066	1379	1709	2021	2019	/
02-6-54-06	Atacora	Natitingou	0	Tikouati	526	752	973	1206	2020	/	/
02-6-03-05	Atacora	Natitingou	0	Tiyinti	668	933	1208	1498	2019	/	/
02-6-54-07	Atacora	Natitingou	0	Toroubou	603	877	1135	1406	2025	/	/

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
02-6-01-07	Atacora	Natitingou	0	Wettipounga	1013	1458	1887	2338	2021	2024	2024
02-6-05-05	Atacora	Natitingou	0	Wimmou	800	1104	1429	1771	2027	2025	/
02-6-01-08	Atacora	Natitingou	0	Yakpangou-tinsou	1296	1807	2337	2897	2030	2028	2027
02-6-01-09	Atacora	Natitingou	0	Yarikou	1357	1962	2538	3146	2017	2024	2024
02-6-53-06	Atacora	Natitingou	0	Yetapo	640	901	1165	1443	2022	/	/
02-7-02-01	Atacora	Pehunco	0	Bana	939	1405	1864	2360	2029	2027	2026
02-7-51-03	Atacora	Pehunco	0	Bouerou	5344	7977	10586	13399	2017	2032	2031
02-7-01-02	Atacora	Pehunco	0	Doh	2332	3510	4657	5895	2032	2030	2030
02-7-02-02	Atacora	Pehunco	0	Gonri	764	1145	1520	1924	2023	2021	/
02-7-02-03	Atacora	Pehunco	0	Guimbererou	2013	2979	3953	5005	2031	2029	2028
02-7-02-06	Atacora	Pehunco	0	Nimgoussourou	496	749	994	1259	2031	/	/
02-7-02-04	Atacora	Pehunco	0	Ouassa kika	1846	2750	3649	4618	2032	2030	2028
02-7-51-06	Atacora	Pehunco	0	Pehunco-gah	2614	3915	5196	6578	2033	2031	2031
02-7-01-04	Atacora	Pehunco	0	Sayakrou	1650	2468	3275	4146	2024	2022	2022
02-7-01-05	Atacora	Pehunco	0	Sayakrou gah	718	1073	1424	1803	2023	2020	/
02-7-02-07	Atacora	Pehunco	0	Sinaou	840	1264	1678	2124	2031	2029	2028
02-7-51-08	Atacora	Pehunco	0	Sinaourarou-gah	910	1354	1797	2275	2022	2020	2019
02-7-51-10	Atacora	Pehunco	0	Soassararou	991	1444	1917	2427	2021	2020	2019
02-7-51-11	Atacora	Pehunco	0	Somparerou-gah	966	1456	1932	2445	2020	2019	2018
02-7-02-09	Atacora	Pehunco	0	Tonri	3337	4942	6559	8303	2032	2029	2027
02-8-04-01	Atacora	Tanguieta	0	Batia	1460	2056	2617	3198	2032	2030	2030
02-8-03-01	Atacora	Tanguieta	0	Bougou	1639	2196	2795	3415	2029	2028	2027
02-8-51-01	Atacora	Tanguieta	0	Bouniessou	1323	1877	2388	2919	2026	2024	2023
02-8-01-01	Atacora	Tanguieta	0	Bounta	575	815	1037	1266	2025	/	/
02-8-01-03	Atacora	Tanguieta	0	Coroncore	2232	3035	3861	4719	2028	2026	2024
02-8-02-01	Atacora	Tanguieta	0	Dondongou	1629	2225	2831	3460	2029	2027	2025
02-8-03-02	Atacora	Tanguieta	0	Finta	1006	1415	1801	2201	2022	2020	2019
02-8-03-03	Atacora	Tanguieta	0	Kotchekongou	1143	1574	2003	2448	2029	2027	2026
02-8-03-04	Atacora	Tanguieta	0	Kouayoti	595	839	1068	1304	2019	/	/
02-8-51-04	Atacora	Tanguieta	0	Mamoussa	1836	2511	3195	3905	2024	2022	2021
02-8-01-04	Atacora	Tanguieta	0	Manoungou	696	978	1245	1521	2024	2022	/

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu d'arr.		INSAE 2002	2015	2025	2035	Scénario Haut	Scénario Moyen	Scénario Faible
02-8-03-06	Atacora	Tanguieta	0	Nafayoti	609	857	1091	1335	2019	/	/
02-8-51-05	Atacora	Tanguieta	0	Nanebou	1144	1625	2067	2526	2022	2020	2019
02-8-02-02	Atacora	Tanguieta	0	Nantagata	1005	1428	1816	2220	2026	2027	2026
02-8-02-04	Atacora	Tanguieta	0	Nigneri	512	720	916	1120	2026	/	/
02-8-01-05	Atacora	Tanguieta	0	Nowerere	1837	2598	3305	4039	2030	2030	2028
02-8-03-08	Atacora	Tanguieta	0	Ouankou	991	1387	1764	2156	2026	2023	2023
02-8-02-05	Atacora	Tanguieta	0	Sammouangou	1864	2594	3300	4033	2024	2022	2021
02-8-03-09	Atacora	Tanguieta	0	Tahongou	846	1201	1529	1869	2027	2025	/
02-8-03-10	Atacora	Tanguieta	1	Taiacou	117	163	208	254	2016	2016	2016
02-8-04-03	Atacora	Tanguieta	0	Tchafarga	821	1166	1484	1813	2026	2024	/
02-8-04-04	Atacora	Tanguieta	0	Tchanwassaga	1601	2091	2660	3251	2023	2020	2019
02-8-04-05	Atacora	Tanguieta	0	Tchatingou	1328	1878	2389	2920	2027	2025	2024
02-8-02-07	Atacora	Tanguieta	0	Tiaeta	1368	1909	2429	2969	2026	2024	2023
02-8-51-08	Atacora	Tanguieta	0	Tiele	1581	2204	2804	3428	2023	2021	2020
02-8-01-06	Atacora	Tanguieta	0	Tora	2708	3828	4871	5953	2032	2029	2027
02-8-03-11	Atacora	Tanguieta	0	Yehongou	1443	2025	2576	3148	2023	2021	2020
02-9-51-01	Atacora	Toucountouna	0	Boribansifa	2202	3024	3798	4592	2032	2030	2029
02-9-01-01	Atacora	Toucountouna	0	Bouyagnindi	820	1117	1402	1695	2034	2032	/
02-9-02-01	Atacora	Toucountouna	0	Dikokore	631	880	1106	1337	2019	/	/
02-9-51-02	Atacora	Toucountouna	0	Kokokou	721	993	1247	1507	2026	2024	/
02-9-02-02	Atacora	Toucountouna	0	Kokota	529	738	928	1122	2019	/	/
02-9-01-03	Atacora	Toucountouna	0	Kouba	1895	2626	3299	3988	2029	2026	2025
02-9-51-03	Atacora	Toucountouna	0	Moussitingou	879	1226	1540	1863	2030	2027	/
02-9-02-03	Atacora	Toucountouna	0	Nabaga	680	948	1192	1441	2022	/	/
02-9-01-04	Atacora	Toucountouna	0	Peperkou	605	804	1010	1221	2021	/	/
02-9-01-05	Atacora	Toucountouna	0	Takissari	1164	1624	2040	2467	2024	2021	2021
02-9-51-04	Atacora	Toucountouna	0	Tampatou	1817	2523	3170	3832	2026	2023	2022
02-9-01-06	Atacora	Toucountouna	0	Tampobre	1861	2561	3217	3890	2033	2032	2031
02-9-01-07	Atacora	Toucountouna	0	Tandafa	670	932	1170	1415	2034	/	/
02-9-02-05	Atacora	Toucountouna	0	Tantougou	860	1198	1504	1819	2024	2023	/
02-9-51-05	Atacora	Toucountouna	0	Tchakalakou	1210	1672	2100	2539	2022	2020	2019

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu d'arr.		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
									Haut	Moyen	Faible
02-9-51-06	Atacora	Toucountouna	0	Tectibayaou	833	1145	1439	1740	2027	2024	/
02-9-01-08	Atacora	Toucountouna	0	Wabou	1200	1663	2089	2526	2028	2025	2027
02-9-02-06	Atacora	Toucountouna	0	Wansokou	3544	4908	6166	7455	2017	2032	2031
03-2-07-01	Atlantique	Allada	0	Adjadji bata	1457	2137	2788	3479	2030	2028	2028
03-2-07-03	Atlantique	Allada	0	Adjadji zoungbome	681	1002	1307	1631	2024	2022	/
03-2-04-01	Atlantique	Allada	0	Adjohoun	1116	1642	2142	2672	2029	2023	2025
03-2-01-03	Atlantique	Allada	0	Agondokpoe	685	991	1293	1613	2020	2019	/
03-2-51-01	Atlantique	Allada	0	Ahito	1148	1691	2206	2752	2027	2024	2021
03-2-07-05	Atlantique	Allada	0	Atouhonou	645	942	1229	1533	2021	2019	/
03-2-08-02	Atlantique	Allada	0	Ayame	459	666	869	1084	2020	/	/
03-2-10-01	Atlantique	Allada	0	Bolli	588	856	1116	1392	2023	/	/
03-2-02-03	Atlantique	Allada	0	Dahslamey	946	1388	1811	2259	2025	2022	2020
03-2-01-06	Atlantique	Allada	0	Gbeta	476	671	875	1091	2019	/	/
03-2-07-07	Atlantique	Allada	0	Gbeto	736	1082	1412	1761	2025	2022	/
03-2-04-03	Atlantique	Allada	0	Glotomey	678	999	1303	1626	2020	2018	/
03-2-52-01	Atlantique	Allada	0	Govie	1324	1886	2459	3068	2030	2029	2027
03-2-02-04	Atlantique	Allada	0	Hessa	2216	3155	4116	5135	2033	2032	2030
03-2-02-05	Atlantique	Allada	0	Hetin	1269	1858	2424	3024	2029	2027	2025
03-2-10-03	Atlantique	Allada	1	Houngbado	791	1113	1452	1811	2016	2016	2016
03-2-05-05	Atlantique	Allada	0	Hounkpa	655	953	1243	1552	2020	2018	/
03-2-10-04	Atlantique	Allada	0	Kotovi	1437	2103	2744	3423	2031	2029	2027
03-2-08-03	Atlantique	Allada	0	Kpodji	568	817	1066	1330	2020	/	/
03-2-02-06	Atlantique	Allada	0	Loto denou	1020	1416	1847	2304	2029	2027	2025
03-2-09-07	Atlantique	Allada	0	Migbehoue	540	788	1027	1281	2019	/	/
03-2-05-07	Atlantique	Allada	0	Sebo	575	825	1076	1342	2019	/	/
03-2-09-08	Atlantique	Allada	0	Sehe	554	811	1057	1319	2022	/	/
03-2-08-04	Atlantique	Allada	1	Sehounsa	546	787	1026	1281	2016	2016	2016
03-2-06-03	Atlantique	Allada	0	Tanga	1334	1954	2548	3178	2028	2026	2022
03-2-01-08	Atlantique	Allada	0	Tegbo	873	1286	1678	2093	2022	2019	2018
03-2-01-09	Atlantique	Allada	0	Tokpa avagougo	659	969	1264	1577	2022	2020	/
03-2-09-11	Atlantique	Allada	0	Vehoui	432	636	829	1035	2020	/	/

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu d'arr.		INSAE 2002	2015	2025	2035	Scénario Haut	Scénario Moyen	Scénario Faible
03-2-08-07	Atlantique	Allada	0	Wingnikpa	740	1089	1421	1773	2021	2019	/
03-2-52-03	Atlantique	Allada	0	Zebou	1176	1679	2191	2734	2026	2023	2020
03-2-05-11	Atlantique	Allada	0	Zoungoudo	505	715	932	1163	2019	/	/
03-3-04-01	Atlantique	Kpomasse	0	Ahouya teloko i	1287	1555	1783	1998	2030	2028	/
03-3-06-01	Atlantique	Kpomasse	0	Atchakanme	830	983	1126	1261	2024	/	/
03-3-04-02	Atlantique	Kpomasse	0	Couffonou	948	1155	1324	1482	2021	/	/
03-3-06-02	Atlantique	Kpomasse	0	Danzounme	805	959	1100	1233	2022	/	/
03-3-51-04	Atlantique	Kpomasse	0	Doga	1218	1484	1701	1906	2026	2026	/
03-3-08-03	Atlantique	Kpomasse	0	Gbetozo	1308	1589	1822	2041	2029	2026	2024
03-3-04-05	Atlantique	Kpomasse	0	Hinmadou	970	1180	1352	1515	2025	2026	/
03-3-51-08	Atlantique	Kpomasse	0	Houegan ii	670	793	909	1019	2020	/	/
03-3-08-06	Atlantique	Kpomasse	0	Houngbogba	754	904	1035	1159	2019	/	/
03-3-08-07	Atlantique	Kpomasse	0	Hounton	1147	1399	1604	1796	2026	2024	/
03-3-08-08	Atlantique	Kpomasse	0	Lokogbo i	771	937	1073	1202	2023	/	/
03-3-08-09	Atlantique	Kpomasse	0	Lokogbo ii	706	860	986	1104	2021	/	/
03-3-51-09	Atlantique	Kpomasse	0	Missebo	984	1174	1345	1507	2021	2020	/
03-3-01-06	Atlantique	Kpomasse	0	Nougboyifi	873	1054	1208	1353	2027	/	/
03-3-06-06	Atlantique	Kpomasse	0	Segbeya iii	717	868	995	1114	2025	/	/
03-3-07-05	Atlantique	Kpomasse	0	Vovio	841	1025	1176	1317	2022	/	/
03-4-06-01	Atlantique	Ouidah	0	Adjohoundja monso	653	1569	2853	4654	2024	2022	2019
03-4-01-03	Atlantique	Ouidah	0	Agouin	699	1680	3054	4983	2025	2023	2020
03-4-01-04	Atlantique	Ouidah	0	Ahouandji	567	1363	2479	4045	2029	2027	2025
03-4-05-04	Atlantique	Ouidah	0	Ahouicodji	1013	2346	4267	6961	2030	2028	2026
03-4-02-01	Atlantique	Ouidah	0	Aido	520	1101	2002	3265	2026	2024	2025
03-4-06-03	Atlantique	Ouidah	0	Bossouvi	706	1643	2988	4874	2029	2027	2025
03-4-02-02	Atlantique	Ouidah	0	Degoue	864	1814	3299	5383	2028	2026	2023
03-4-06-04	Atlantique	Ouidah	0	Dekouenou	1127	2676	4867	7940	2032	2031	2029
03-4-04-02	Atlantique	Ouidah	0	Djegbame	350	844	1534	2503	2027	2025	2024
03-4-02-04	Atlantique	Ouidah	0	Djondji	529	1233	2243	3658	2028	2026	2025
03-4-03-02	Atlantique	Ouidah	0	Fonkounme	1313	3099	5635	9193	2017	2031	2028
03-4-04-03	Atlantique	Ouidah	0	Gbehonou	682	1624	2953	4817	2028	2025	2024

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
03-4-04-04	Atlantique	Ouidah	0	Gbezoume	380	911	1657	2703	2028	2026	2025
03-4-04-06	Atlantique	Ouidah	0	Houakpe kpevi	278	653	1188	1938	2019	2018	/
03-4-05-07	Atlantique	Ouidah	0	Hounkanmede	250	603	1096	1789	2019	2018	/
03-4-02-05	Atlantique	Ouidah	0	Kouvenanfide	653	1487	2704	4410	2030	2028	2026
03-4-02-06	Atlantique	Ouidah	0	Meko	877	2070	3765	6141	2029	2026	2026
03-4-03-04	Atlantique	Ouidah	0	Tchakpecodji	1371	3281	5968	9735	2033	2032	2029
03-5-04-01	Atlantique	So-ava	0	Agbingamey	961	1609	2297	3091	2025	2022	2020
03-5-03-01	Atlantique	So-ava	0	Agonmekomey	666	1118	1596	2146	2020	2018	2018
03-5-03-02	Atlantique	So-ava	0	Agoundankomey	1215	2038	2909	3914	2028	2026	2023
03-5-01-01	Atlantique	So-ava	1	Ahome lokpo centre	2301	5097	7275	9787	2018	2017	2017
03-5-01-02	Atlantique	So-ava	0	Ahome-hounme	3106	3776	5390	7250	2034	2033	2031
03-5-51-01	Atlantique	So-ava	0	Ahomey gbekpa	3125	5228	7462	10038	2034	2034	2032
03-5-51-02	Atlantique	So-ava	0	Ahomey glon	2687	4507	6434	8655	2018	2033	2032
03-5-04-02	Atlantique	So-ava	0	Ahouanlmongaho	904	1518	2168	2916	2023	2021	2019
03-5-02-01	Atlantique	So-ava	0	Akpafe	609	1011	1444	1942	2021	2019	/
03-5-02-02	Atlantique	So-ava	0	Assakomey	1820	3035	4332	5827	2032	2031	2028
03-5-02-03	Atlantique	So-ava	1	Djekpe	1867	3074	4388	5903	2018	2017	2017
03-5-04-03	Atlantique	So-ava	1	Dokomey	5537	9247	13198	17754	2018	2017	2017
03-5-05-01	Atlantique	So-ava	1	Domeguedji	2364	3952	5641	7588	2018	2017	2017
03-5-04-04	Atlantique	So-ava	0	Dossou gao	680	1142	1630	2193	2021	2018	2018
03-5-05-02	Atlantique	So-ava	0	Ganviecomey	1705	2861	4084	5494	2032	2030	2028
03-5-05-03	Atlantique	So-ava	0	Gbegbome houekekome	1322	2183	3117	4193	2030	2028	2026
03-5-05-04	Atlantique	So-ava	0	Gbegodo	2341	3898	5563	7483	2034	2033	2031
03-5-05-05	Atlantique	So-ava	0	Gbessou	1628	2704	3860	5191	2018	2017	2017
03-5-06-01	Atlantique	So-ava	0	Gbetigao	2903	4836	6903	9285	2034	2033	2032
03-5-04-05	Atlantique	So-ava	0	Gounsoegbamey	883	1470	2098	2823	2023	2020	2019
03-5-04-06	Atlantique	So-ava	0	Guedevie	1374	2290	3269	4398	2030	2028	2025
03-5-06-02	Atlantique	So-ava	0	Hlouazoumey	1858	3114	4445	5978	2033	2031	2029
03-5-06-03	Atlantique	So-ava	0	Hounhoue	1754	2935	4189	5634	2033	2031	2029
03-5-01-03	Atlantique	So-ava	0	Kinto ague	586	991	1414	1901	2025	2025	/
03-5-01-04	Atlantique	So-ava	0	Kinto dokpakpa	1264	2094	2988	4019	2030	2028	2029

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
03-5-01-05	Atlantique	So-ava	0	Kinto oudjra	1054	1756	2506	3371	2026	2026	2028
03-5-06-04	Atlantique	So-ava	0	Kpacomey	1966	3298	4708	6334	2033	2032	2030
03-5-03-03	Atlantique	So-ava	0	Kpassikomey	1694	2831	4041	5436	2032	2030	2028
03-5-06-05	Atlantique	So-ava	0	Lokpodji	933	1558	2224	2992	2028	2026	2024
03-5-06-06	Atlantique	So-ava	0	Nonhoueto	1332	2236	3192	4293	2030	2028	2025
03-5-03-04	Atlantique	So-ava	1	Sokomey	6253	10429	14885	20023	2018	2017	2017
03-5-05-06	Atlantique	So-ava	0	Sokomey	1330	2215	3161	4252	2031	2029	2027
03-5-06-07	Atlantique	So-ava	0	Somai	2703	4536	6474	8708	2034	2033	2032
03-5-06-08	Atlantique	So-ava	0	Tchinancomey	1454	2423	3460	4654	2032	2029	2028
03-5-06-09	Atlantique	So-ava	0	Todo	2870	4806	6859	9227	2034	2033	2032
03-5-03-05	Atlantique	So-ava	0	Tohokomey	503	845	1205	1621	2019	2018	/
03-5-06-10	Atlantique	So-ava	1	Vekky daho	1637	2716	3877	5214	2017	2017	2016
03-5-06-11	Atlantique	So-ava	0	Vekky dogbodji	1160	1941	2771	3727	2029	2028	2025
03-5-01-06	Atlantique	So-ava	0	Zoungomey	609	996	1422	1913	2026	2024	/
03-5-06-12	Atlantique	So-ava	0	Zounhomey	1694	2832	4042	5436	2032	2031	2029
03-6-03-02	Atlantique	Toffo	0	Adjaho	1599	2267	2890	3538	2031	2029	2027
03-6-08-01	Atlantique	Toffo	0	Agahounkpokon	484	682	869	1065	2019	/	/
03-6-03-04	Atlantique	Toffo	0	Agbaga	863	1194	1523	1864	2031	2029	/
03-6-02-01	Atlantique	Toffo	1	Agbame	2585	3678	4689	5740	2018	2017	2017
03-6-06-01	Atlantique	Toffo	0	Akpe	1096	1533	1954	2391	2030	2028	2027
03-6-04-04	Atlantique	Toffo	0	Dolvi	2155	3020	3850	4712	2033	2031	2029
03-6-07-03	Atlantique	Toffo	0	Dome	1368	1937	2470	3024	2016	2026	2023
03-6-03-07	Atlantique	Toffo	0	Dowa	507	859	1094	1339	2022	/	/
03-6-03-08	Atlantique	Toffo	0	Honly	1197	716	913	1117	2020	/	/
03-6-01-02	Atlantique	Toffo	0	Houegle	1135	1575	2009	2459	2031	2029	2027
03-6-05-03	Atlantique	Toffo	0	Houngo-gove	952	1352	1724	2111	2024	2021	2019
03-6-01-03	Atlantique	Toffo	0	Kinzoun	708	1007	1285	1573	2022	2020	/
03-6-05-04	Atlantique	Toffo	0	Kpokpa	649	909	1160	1420	2026	/	/
03-6-08-06	Atlantique	Toffo	0	Lanwonnou	736	1045	1332	1631	2022	2020	/
03-6-01-04	Atlantique	Toffo	0	Nianri	904	1287	1641	2010	2024	2023	2021
03-6-09-06	Atlantique	Toffo	0	Some	1979	2806	3578	4381	2032	2030	2028

N° INSAE	Départ-	Commune	Chef-	Nom Population		Population	Population	Population	Année d'électrification		
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
03-6-01-06	Atlantique	Toffo	0	Takon	539	768	979	1199	2022	/	/
03-6-03-10	Atlantique	Toffo	0	Za	2069	1303	1662	2035	2023	2020	2019
03-6-05-07	Atlantique	Toffo	0	Zoundji	717	1008	1285	1573	2021	2019	/
03-7-05-01	Atlantique	Tori-bossito	0	Agazoun	539	718	881	1046	2022	/	/
03-7-51-01	Atlantique	Tori-bossito	0	Ayidohoue	1661	2229	2737	3247	2031	2030	2028
03-7-05-04	Atlantique	Tori-bossito	0	Ayikinko	721	962	1181	1401	2023	/	/
03-7-03-03	Atlantique	Tori-bossito	0	Azongo	1039	1361	1671	1983	2027	2024	/
03-7-04-02	Atlantique	Tori-bossito	0	Dohinonko	1028	1386	1702	2018	2023	2021	2019
03-7-05-06	Atlantique	Tori-bossito	0	Gbegoudo	902	1209	1484	1760	2025	2022	/
03-7-04-06	Atlantique	Tori-bossito	0	Gbohoue	1202	1610	1976	2344	2027	2024	2022
03-7-51-02	Atlantique	Tori-bossito	0	Gbovie	1302	1727	2120	2515	2028	2025	2022
03-7-51-04	Atlantique	Tori-bossito	0	Hekandji ii	677	898	1101	1306	2026	/	/
03-7-51-03	Atlantique	Tori-bossito	0	Hekindji i	732	970	1191	1413	2022	/	/
03-7-01-03	Atlantique	Tori-bossito	0	Hla	671	892	1095	1299	2022	/	/
03-7-51-05	Atlantique	Tori-bossito	0	Honvie	1411	1815	2228	2643	2027	2025	2021
03-7-51-06	Atlantique	Tori-bossito	0	Houngbagba	806	1082	1328	1576	2021	2019	/
03-7-03-04	Atlantique	Tori-bossito	0	Ketessa agladji	753	1012	1242	1474	2027	/	/
03-7-04-08	Atlantique	Tori-bossito	0	Lokossa	689	924	1134	1345	2023	/	/
03-7-03-05	Atlantique	Tori-bossito	0	Satre	1286	1703	2091	2480	2030	2028	2028
03-7-04-09	Atlantique	Tori-bossito	0	Sogbe	1464	1951	2395	2841	2031	2029	2027
03-7-51-08	Atlantique	Tori-bossito	0	Tocoli	938	1260	1546	1834	2022	2021	/
03-7-51-09	Atlantique	Tori-bossito	0	Togoudo	615	826	1014	1203	2021	/	/
03-7-51-12	Atlantique	Tori-bossito	0	Wanho	575	775	951	1128	2019	/	/
03-8-10-01	Atlantique	Ze	0	Adjrako	497	768	1039	1336	2019	/	/
03-8-04-02	Atlantique	Ze	0	Adohounsa	587	912	1233	1586	2019	2018	/
03-8-08-01	Atlantique	Ze	0	Aglangbin	593	921	1247	1604	2028	2025	/
03-8-07-01	Atlantique	Ze	0	Agodenou	470	730	987	1270	2019	/	/
03-8-03-01	Atlantique	Ze	0	Agoundji	908	1404	1900	2444	2027	2025	2023
03-8-07-02	Atlantique	Ze	0	Aguiakpa	697	1083	1465	1884	2022	2019	/
03-8-02-01	Atlantique	Ze	0	Ahouali	418	644	872	1121	2020	/	/
03-8-08-02	Atlantique	Ze	0	Ahozonnnoude	709	1101	1489	1914	2024	2024	/

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu d'arr.		INSAE 2002	2015	2025	2035	Scénario Haut	Scénario Moyen	Scénario Faible
03-8-08-03	Atlantique	Ze	0	Akpomey	425	658	890	1145	2025	/	/
03-1-05-01	Atlantique	Ze	0	Anagbo	790	1226	1659	2134	2024	2023	2021
03-8-01-02	Atlantique	Ze	0	Anagbo	811	1260	1705	2194	2025	2022	2020
03-8-09-03	Atlantique	Ze	0	Anavie	537	834	1127	1449	2019	/	/
03-8-05-02	Atlantique	Ze	0	Awokpa	959	1488	2012	2588	2025	2023	2020
03-8-10-02	Atlantique	Ze	0	Awonsedja	611	935	1265	1628	2021	2018	/
03-8-08-04	Atlantique	Ze	0	Ayahounta fifaddji	937	1453	1966	2528	2026	2025	2024
03-8-02-03	Atlantique	Ze	1	Dawe centre	1326	2059	2786	3583	2016	2016	2016
03-8-03-02	Atlantique	Ze	1	Djigbe ague	1368	2124	2873	3696	2018	2017	2017
03-8-03-03	Atlantique	Ze	0	Djigbe-gbodje	495	767	1038	1335	2023	/	/
03-8-04-06	Atlantique	Ze	0	Gonfandji	1046	1598	2161	2779	2026	2023	2021
03-8-51-04	Atlantique	Ze	0	Goulo sodji	448	696	941	1210	2019	/	/
03-8-05-04	Atlantique	Ze	0	Hekanme houehounta	1049	1623	2197	2826	2029	2027	2027
03-8-06-02	Atlantique	Ze	0	Houegnonkpa	708	1097	1484	1908	2023	2021	/
03-8-06-03	Atlantique	Ze	0	Houehounta-tozounkpa	575	891	1205	1550	2024	2022	/
03-8-01-04	Atlantique	Ze	0	Houeta	739	1148	1553	1997	2020	2019	/
03-8-10-03	Atlantique	Ze	0	Hounlinko	753	1166	1577	2028	2022	2020	2019
03-8-10-04	Atlantique	Ze	0	Hounsagoudo	624	962	1302	1675	2021	2019	/
03-8-04-07	Atlantique	Ze	0	Hountakon	923	1432	1937	2492	2025	2022	2020
03-8-08-05	Atlantique	Ze	0	Missebo	493	765	1034	1330	2019	/	/
03-8-08-06	Atlantique	Ze	1	Sedje houegoudo centre	1674	2597	3513	4519	2017	2017	2017
03-8-03-04	Atlantique	Ze	0	Sessevali	486	753	1019	1312	2019	/	/
03-8-09-08	Atlantique	Ze	0	Tangbo do	951	1477	1998	2570	2024	2021	2019
03-8-06-06	Atlantique	Ze	0	Togbonou	1009	1545	2091	2689	2027	2024	2022
03-8-05-06	Atlantique	Ze	0	Togoudo	626	973	1316	1693	2021	2019	/
03-8-06-07	Atlantique	Ze	0	Wedjame	644	998	1350	1735	2022	2020	/
03-8-03-05	Atlantique	Ze	0	Wo-togoudo	421	654	885	1139	2020	/	/
03-8-09-09	Atlantique	Ze	0	Yevi	684	1056	1428	1837	2020	2019	/
03-8-10-06	Atlantique	Ze	1	Yokpo centre	571	887	1200	1544	2016	2016	2016
04-1-03-03	Borgou	Bembereke	0	Bereke	1762	2448	3076	3719	2032	2030	2029
04-1-01-01	Borgou	Bembereke	0	Beroubouay est	1971	2725	3424	4141	2016	2016	2016

N° INSAE Départ-	Départ-	Départ- Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
04-1-01-03	Borgou	Bembereke	0	Beroubouay peulh	2412	3365	4228	5114	2033	2030	2029
04-1-02-03	Borgou	Bembereke	0	Bouanri iii	1566	2178	2737	3310	2016	2021	2021
04-1-02-01	Borgou	Bembereke	0	Bounari i	909	1242	1561	1888	2020	2019	/
04-1-02-02	Borgou	Bembereke	1	Bourari ii	1609	2201	2765	3343	2016	2016	2016
04-1-03-02	Borgou	Bembereke	0	Bouri	858	1182	1486	1797	2027	2025	/
04-1-02-04	Borgou	Bembereke	0	Gando-borou	2237	3083	3874	4686	2030	2027	2024
04-1-03-06	Borgou	Bembereke	0	Ganro	3171	4400	5528	6685	2018	2032	2032
04-1-02-06	Borgou	Bembereke	0	Gberou daba	1495	2081	2614	3162	2031	2028	2027
04-1-02-05	Borgou	Bembereke	0	Gberran kali	6192	8508	10690	12929	2018	2034	2033
04-1-04-02	Borgou	Bembereke	0	Goua	1308	1821	2288	2766	2032	2030	2030
04-1-04-04	Borgou	Bembereke	0	Guessou sud peulh	1470	2038	2560	3096	2026	2024	2022
04-1-04-08	Borgou	Bembereke	0	Ina peulh	1231	1717	2158	2609	2031	2029	2029
04-1-01-04	Borgou	Bembereke	0	Kabanou	2211	3077	3865	4674	2032	2030	2030
04-1-02-07	Borgou	Bembereke	0	Kassarou	1384	1925	2420	2927	2022	2022	2021
04-1-51-06	Borgou	Bembereke	0	Kokabo	1562	2140	2689	3252	2017	2030	2029
04-1-04-09	Borgou	Bembereke	0	Konou	637	888	1116	1349	2019	/	/
04-1-03-08	Borgou	Bembereke	0	Kpebera	2246	3083	3874	4686	2031	2029	2027
04-1-03-09	Borgou	Bembereke	0	Mani boke	1617	2238	2812	3401	2017	2029	2029
04-1-51-08	Borgou	Bembereke	0	Pedarou	1625	2267	2849	3446	2016	2022	2020
04-1-51-09	Borgou	Bembereke	0	Saore	1612	2233	2807	3394	2031	2028	2028
04-1-02-08	Borgou	Bembereke	0	Sissigourou	2550	3393	4263	5155	2030	2030	2028
04-1-01-05	Borgou	Bembereke	0	Sombouan	1574	2190	2752	3329	2034	2031	2031
04-1-02-09	Borgou	Bembereke	0	Teme	1646	2285	2871	3472	2027	2025	2023
04-1-03-10	Borgou	Bembereke	0	Tinhoule	658	913	1147	1388	2032	/	/
04-1-51-10	Borgou	Bembereke	0	Wanrarou	2058	2850	3580	4330	2016	2023	2022
04-2-04-01	Borgou	Kalale	0	Alafiarou	483	893	1362	1937	2019	2018	/
04-2-03-01	Borgou	Kalale	0	Alafiarou ii	768	1418	2161	3072	2020	2018	2018
04-2-05-01	Borgou	Kalale	0	Angaradebou	784	1445	2203	3131	2021	2024	2023
04-2-05-02	Borgou	Kalale	0	Bagaria	846	1563	2384	3388	2027	2025	2024
04-2-51-01	Borgou	Kalale	0	Bessassi	2427	4471	6817	9692	2016	2016	2016
04-2-51-02	Borgou	Kalale	0	Bessassi gando	750	1387	2116	3008	2020	2018	2018

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
04-2-05-03	Borgou	Kalale	0	Воа	5106	9437	14391	20461	2018	2033	2033
04-2-05-04	Borgou	Kalale	0	Boa gando centre	573	1056	1610	2288	2022	2020	2020
04-2-02-02	Borgou	Kalale	0	Bouka-gando	6029	11043	16841	23943	2018	2034	2033
04-2-51-03	Borgou	Kalale	0	Danganzi	2048	3782	5767	8199	2030	2031	2030
04-2-04-03	Borgou	Kalale	0	Dangorou	2496	4608	7027	9990	2032	2031	2030
04-2-04-04	Borgou	Kalale	0	Djega i	3536	6498	9908	14087	2017	2017	2017
04-2-51-04	Borgou	Kalale	0	Djega ii	1100	2033	3100	4407	2016	2016	2016
04-2-04-06	Borgou	Kalale	0	Dunkassa-peulh	315	559	853	1211	2019	/	/
04-2-05-05	Borgou	Kalale	0	Gando baka	1522	2812	4289	6099	2017	2026	2024
04-2-01-02	Borgou	Kalale	0	Gawezi	1238	2289	3491	4963	2024	2022	2020
04-2-02-04	Borgou	Kalale	0	Gbassi	908	1627	2482	3529	2029	2027	2025
04-2-02-05	Borgou	Kalale	0	Gberougbassi	1593	2904	4429	6297	2026	2023	2022
04-2-04-02	Borgou	Kalale	0	Gbessakperou	1779	3270	4985	7087	2034	2033	2033
04-2-02-06	Borgou	Kalale	0	Gbessassi-bouka	1985	3606	5500	7819	2029	2026	2023
04-2-02-07	Borgou	Kalale	0	Gnelboukatou	2949	5445	8303	11804	2034	2033	2032
04-2-01-03	Borgou	Kalale	0	Gorogaou	831	1536	2342	3330	2021	2019	2019
04-2-03-03	Borgou	Kalale	0	Guiri gando	863	1595	2433	3459	2023	2021	2022
04-2-03-04	Borgou	Kalale	0	Guiri peulh	387	702	1070	1522	2022	2020	/
04-2-03-05	Borgou	Kalale	0	Kakatenin	2230	4120	6282	8931	2030	2028	2024
04-2-51-07	Borgou	Kalale	0	Kidaroukperou	1671	3059	4664	6631	2029	2026	2024
04-2-04-07	Borgou	Kalale	0	Kirikoube	895	1655	2523	3588	2021	2019	2019
04-2-02-08	Borgou	Kalale	0	Kourel	4788	8812	13437	19103	2017	2033	2032
04-2-51-08	Borgou	Kalale	0	Lou	1837	3383	5158	7333	2017	2031	2029
04-2-03-06	Borgou	Kalale	0	Mareguita	3412	6281	9579	13619	2017	2032	2030
04-2-03-07	Borgou	Kalale	0	Matchore	1880	3368	5137	7304	2032	2030	2028
04-2-51-09	Borgou	Kalale	0	Nassikonzi	1612	2975	4537	6449	2029	2026	2024
04-2-01-04	Borgou	Kalale	0	Neganzi	3707	6746	10287	14626	2018	2017	2017
04-2-04-08	Borgou	Kalale	0	Ouenagourou	2572	4732	7216	10259	2032	2030	2027
04-2-05-06	Borgou	Kalale	1	Peonga	3047	5579	8509	12097	2016	2016	2016
04-2-02-09	Borgou	Kalale	0	Seregourou	2479	4576	6978	9920	2034	2032	2032
04-2-51-10	Borgou	Kalale	0	Zambara	939	1723	2626	3734	2017	2016	2016

N° INSAE Départ-		Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
04-3-02-01	Borgou	N'dali	0	Alafiarou	886	1650	2537	3631	2021	2019	2019
04-3-51-01	Borgou	N'dali	0	Banhoun	401	750	1152	1648	2019	2018	/
04-3-02-02	Borgou	N'dali	0	Binassi	1311	2450	3766	5390	2031	2028	2027
04-3-03-01	Borgou	N'dali	0	Bouyerou	1223	2248	3455	4945	2016	2016	2016
04-3-02-03	Borgou	N'dali	0	Darnon	784	1464	2250	3220	2020	2019	2018
04-3-02-04	Borgou	N'dali	0	Douroube	830	1551	2385	3414	2021	2019	2019
04-3-01-03	Borgou	N'dali	0	Kori	2801	5059	7778	11133	2018	2033	2032
04-3-01-02	Borgou	N'dali	0	Maregourou	3644	6726	10339	14799	2017	2017	2017
04-3-51-02	Borgou	N'dali	1	N'dali peulh	285	442	680	974	2016	2016	2016
04-3-51-03	Borgou	N'dali	0	Sakarou	932	1736	2668	3818	2016	2019	2019
04-3-01-04	Borgou	N'dali	0	Sonnoumon	4723	8770	13482	19298	2018	2034	2033
04-3-01-05	Borgou	N'dali	0	Teme	3446	6368	9790	14013	2018	2033	2033
04-3-51-05	Borgou	N'dali	0	Wari	1059	1943	2987	4276	2030	2028	2027
04-3-03-05	Borgou	N'dali	0	Wereke	740	1320	2029	2903	2020	2018	2018
04-4-51-01	Borgou	Nikki	0	Bouassi	1649	2682	3755	4970	2028	2026	2024
04-4-51-02	Borgou	Nikki	0	Boukanere	3467	5571	7799	10322	2017	2031	2029
04-4-06-01	Borgou	Nikki	0	Chein	1036	1670	2338	3095	2031	2027	2028
04-4-05-01	Borgou	Nikki	0	Chindaroukpara	1121	1211	1696	2245	2027	2025	2024
04-4-05-02	Borgou	Nikki	0	Daroukpara	2195	2335	3269	4326	2028	2026	2025
04-4-06-02	Borgou	Nikki	0	Dema	1272	2062	2887	3822	2030	2028	2026
04-4-03-01	Borgou	Nikki	0	Fombaoui	1438	2300	3220	4261	2018	2030	2029
04-4-05-03	Borgou	Nikki	0	Ganchon	1004	1627	2277	3013	2028	2026	2025
04-4-04-01	Borgou	Nikki	0	Ganrou bariba	787	1265	1771	2345	2033	2031	2030
04-4-04-02	Borgou	Nikki	0	Ganrou peulh	3177	5122	7170	9490	2034	2032	2031
04-4-06-03	Borgou	Nikki	0	Gbabire	1062	1733	2426	3212	2021	2020	2020
04-4-02-01	Borgou	Nikki	0	Gbari	2085	3353	4694	6213	2033	2031	2030
04-4-01-02	Borgou	Nikki	0	Gnanhoun	1646	2629	3681	4871	2025	2022	2020
04-4-06-04	Borgou	Nikki	0	Gore	2069	3357	4699	6219	2032	2029	2030
04-4-51-06	Borgou	Nikki	0	Gori	1201	1961	2745	3634	2016	2020	2019
04-4-03-02	Borgou	Nikki	0	Gothe centre	654	1066	1492	1975	2023	2022	/
04-4-02-05	Borgou	Nikki	0	Guema	757	1223	1713	2268	2030	2028	2027

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
04-4-02-03	Borgou	Nikki	0	Guinrou	745	1189	1665	2204	2029	2027	2026
04-4-02-04	Borgou	Nikki	0	Guinrou peulh	1103	1766	2472	3271	2030	2028	2026
04-4-51-08	Borgou	Nikki	0	Kali	891	1455	2037	2696	2020	2018	2018
04-4-04-03	Borgou	Nikki	0	Kassakpere	2353	3776	5287	6998	2031	2028	2025
04-4-06-05	Borgou	Nikki	0	Kpebourabou	1228	1990	2786	3687	2028	2021	2020
04-4-03-04	Borgou	Nikki	0	Lafiarou	1627	2653	3715	4918	2032	2031	2030
04-4-51-11	Borgou	Nikki	0	Monnon	718	1136	1590	2104	2030	2026	2029
04-4-51-12	Borgou	Nikki	1	Nikki gando	2994	4822	6750	8933	2018	2017	2017
04-4-03-05	Borgou	Nikki	0	Oroumon	630	1013	1418	1876	2019	2022	/
04-4-03-06	Borgou	Nikki	0	Oroumonsi peulh	422	649	908	1202	2019	/	/
04-4-03-03	Borgou	Nikki	0	Ouenou nikki	1629	2657	3719	4923	2033	2030	2029
04-4-04-04	Borgou	Nikki	0	Ouenra peulh	626	999	1399	1852	2023	2021	/
04-4-01-03	Borgou	Nikki	0	Ourarou	1025	1620	2268	3001	2020	2019	2018
04-4-51-13	Borgou	Nikki	0	Sakabansi	9685	15362	21506	28464	2018	2017	2017
04-4-03-08	Borgou	Nikki	0	Sansi	2176	3530	4942	6541	2033	2031	2030
04-4-04-05	Borgou	Nikki	1	Serekale centre	3281	5284	7396	9789	2016	2016	2016
04-4-04-06	Borgou	Nikki	0	Serewondirou	745	1212	1697	2245	2034	2033	2033
04-4-01-04	Borgou	Nikki	0	Sonsonre	810	1287	1802	2385	2020	2018	2018
04-4-02-06	Borgou	Nikki	0	Soubo	1561	2498	3498	4630	2017	2030	2028
04-4-05-04	Borgou	Nikki	0	Soumarou	525	855	1196	1583	2022	2020	/
04-4-05-05	Borgou	Nikki	1	Suya	1699	2708	3791	5018	2017	2017	2017
04-4-51-14	Borgou	Nikki	0	Takou	974	1570	2197	2908	2031	2025	2030
04-4-06-06	Borgou	Nikki	0	Tanakpe	833	1348	1887	2497	2027	2025	2024
04-4-06-07	Borgou	Nikki	1	Tasso	1804	2913	4078	5398	2018	2017	2017
04-4-03-07	Borgou	Nikki	0	Tchicandou	1678	2727	3818	5053	2018	2017	2031
04-4-01-05	Borgou	Nikki	0	Tebo	1423	2287	3202	4238	2032	2030	2029
04-4-51-15	Borgou	Nikki	0	Tontarou	2737	4439	6213	8224	2033	2031	2031
04-4-51-16	Borgou	Nikki	0	Tontarou peulh	815	1301	1821	2409	2031	2026	2029
04-4-02-07	Borgou	Nikki	0	Woroumagassarou	684	1114	1559	2064	2019	2027	2026
04-6-05-01	Borgou	Perere	0	Alafiarou	996	2052	3372	5104	2023	2021	2020
04-6-05-03	Borgou	Perere	0	Bonrou	321	639	1051	1591	2026	2024	/

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
04-6-05-04	Borgou	Perere	0	Bonrou gando	720	1473	2421	3665	2027	2025	2025
04-6-01-01	Borgou	Perere	0	Boro	2413	4964	8159	12350	2034	2033	2032
04-6-02-02	Borgou	Perere	0	Bougnakou	1470	3015	4955	7500	2033	2031	2031
04-6-01-02	Borgou	Perere	0	Diguidirou	2001	4072	6693	10131	2017	2032	2032
04-6-01-03	Borgou	Perere	0	Diguidirou peulh	951	1914	3145	4759	2028	2031	2031
04-6-01-05	Borgou	Perere	0	Gninsy-gando	355	729	1199	1814	2022	2020	/
04-6-01-06	Borgou	Perere	0	Gninsy-peulh	1022	2077	3412	5165	2023	2021	2020
04-6-02-03	Borgou	Perere	0	Gommey	1022	2100	3452	5226	2022	2020	2019
04-6-02-04	Borgou	Perere	0	Gounkpade	1822	3691	6065	9181	2034	2032	2032
04-6-02-07	Borgou	Perere	0	Guinagourou-peulh	266	548	899	1360	2025	/	/
04-6-04-01	Borgou	Perere	0	Guinro	570	1167	1918	2903	2023	2021	2021
04-6-51-05	Borgou	Perere	0	Perere peulh	279	574	943	1427	2019	/	/
04-6-01-07	Borgou	Perere	0	Sandilo	2086	4262	7004	10603	2034	2032	2032
04-6-02-05	Borgou	Perere	0	Sonon	1353	2772	4555	6895	2017	2016	2030
04-6-03-03	Borgou	Perere	0	Taberou	582	1145	1882	2848	2025	2018	2018
04-6-04-04	Borgou	Perere	0	Won	865	1772	2913	4409	2021	2019	2018
04-6-02-09	Borgou	Perere	0	Wondou	439	866	1422	2153	2028	2026	2025
04-6-51-07	Borgou	Perere	0	Worokpo	791	1629	2677	4052	2021	2019	2019
04-7-51-01	Borgou	Sinende	0	Diadia	2201	3176	4156	5198	2028	2025	2023
04-7-51-02	Borgou	Sinende	0	Didi	1689	2483	3248	4063	2031	2032	2031
04-7-01-01	Borgou	Sinende	0	Fo bouko i	1020	1504	1968	2461	2030	2028	2027
04-7-01-02	Borgou	Sinende	0	Fo bouko ii	908	1343	1757	2197	2029	2027	2026
04-7-01-03	Borgou	Sinende	0	Fo boure	1792	2605	3408	4264	2016	2016	2016
04-7-03-01	Borgou	Sinende	0	Goro bani	799	1180	1544	1932	2032	2031	/
04-7-51-07	Borgou	Sinende	0	Guessou bani	4038	5829	7627	9542	2018	2033	2032
04-7-51-08	Borgou	Sinende	0	Kossia	1334	1973	2581	3229	2016	2027	2026
04-7-02-01	Borgou	Sinende	0	Kparo	1136	1660	2173	2718	2030	2028	2027
04-7-01-05	Borgou	Sinende	0	Sakarou	1233	1771	2316	2897	2025	2023	2022
04-7-01-06	Borgou	Sinende	0	Serou	1447	2141	2801	3504	2022	2020	2019
04-7-03-04	Borgou	Sinende	0	Sikki gando	2385	3514	4597	5750	2029	2026	2023
04-7-03-05	Borgou	Sinende	0	Sikki i peulh	1060	1568	2051	2566	2024	2022	2022

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu d'arr.		INSAE 2002	2015	2025	2035	Scénario Haut	Scénario Moyen	Scénario Faible
04-7-03-03	Borgou	Sinende	0	Sikki ii	664	982	1285	1608	2019	2018	/
04-7-03-06	Borgou	Sinende	0	Sikki peulh ii	1127	1668	2182	2730	2021	2019	2019
04-7-01-07	Borgou	Sinende	0	Sokka	1794	2601	3404	4258	2025	2023	2021
04-7-01-08	Borgou	Sinende	0	Toume	619	893	1168	1461	2019	/	/
04-7-03-07	Borgou	Sinende	0	Wari	925	1336	1747	2185	2020	2018	2018
04-7-03-08	Borgou	Sinende	0	Wari gando	1073	1587	2076	2596	2021	2019	2019
04-7-03-09	Borgou	Sinende	0	Wari peulh	819	1212	1585	1982	2020	2018	/
04-7-02-05	Borgou	Sinende	0	Yarra bariba	942	1357	1776	2221	2021	2028	2028
04-7-02-06	Borgou	Sinende	0	Yarra gando	1033	1529	2001	2503	2021	2029	2028
04-7-02-07	Borgou	Sinende	0	Yarra kouri	2004	2901	3796	4749	2017	2029	2029
04-8-01-01	Borgou	Tchaourou	0	Agbassa	2175	5057	9112	14899	2018	2034	2033
04-8-02-01	Borgou	Tchaourou	0	Banigri	933	2193	3953	6464	2016	2029	2028
04-8-04-01	Borgou	Tchaourou	0	Kabo	4498	10556	19021	31102	2018	2034	2033
04-8-01-03	Borgou	Tchaourou	0	Koda	1325	3116	5615	9183	2026	2034	2033
04-8-01-04	Borgou	Tchaourou	0	Koko	779	1832	3302	5399	2031	2029	2028
04-8-04-04	Borgou	Tchaourou	0	Kpari	4054	9226	16624	27181	2034	2034	2033
04-8-04-06	Borgou	Tchaourou	0	Kpassa	2006	4632	8346	13645	2032	2029	2026
04-8-04-05	Borgou	Tchaourou	0	Monrawonkourou	1634	3735	6731	11005	2029	2033	2033
04-8-04-07	Borgou	Tchaourou	0	Tandou	4270	9880	17803	29110	2018	2034	2033
04-8-02-05	Borgou	Tchaourou	0	Wari-maro	3034	2293	4131	6754	2033	2031	2030
05-1-06-01	Collines	Bante	0	Akpaka	578	787	974	1163	2019	/	/
05-1-03-02	Collines	Bante	0	Aloba	1872	2498	3091	3692	2017	2016	2016
05-1-04-01	Collines	Bante	0	Assaba	1537	2076	2570	3070	2032	2030	2029
05-1-02-01	Collines	Bante	0	Banon	1955	2555	3163	3778	2032	2031	2030
05-1-04-02	Collines	Bante	1	Bobe	1121	1489	1844	2202	2018	2017	2017
05-1-04-03	Collines	Bante	0	Djagbalo	1784	2430	3008	3592	2032	2030	2029
05-1-05-01	Collines	Bante	0	Galata	2094	2842	3518	4201	2032	2030	2028
05-1-05-02	Collines	Bante	0	Gbedje	2008	2727	3376	4032	2017	2030	2028
05-1-07-02	Collines	Bante	0	Gocha	1724	2345	2903	3466	2018	2033	2032
05-1-01-01	Collines	Bante	0	Kloubou	972	1314	1627	1943	2021	2019	/
05-1-07-01	Collines	Bante	0	Lougba agongni	1564	2122	2627	3138	2026	2024	2021

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
05-1-07-03	Collines	Bante	1	Lougba kotakpa	2748	3728	4614	5510	2018	2017	2017
05-1-03-04	Collines	Bante	0	Malomi	2003	2605	3224	3851	2031	2030	2028
05-1-08-03	Collines	Bante	0	Okouta-osse	1889	2507	3103	3706	2018	2033	2032
05-2-07-01	Collines	Dassa-zoume	0	Agao	4154	5055	5830	6564	2018	2033	2032
05-2-06-01	Collines	Dassa-zoume	0	Agbogbome	4897	5962	6876	7741	2018	2017	2017
05-2-07-02	Collines	Dassa-zoume	0	Akoba	1127	1328	1531	1724	2029	2027	/
05-2-01-02	Collines	Dassa-zoume	1	Akofodjoule	1128	1371	1581	1780	2016	2016	2016
05-2-06-03	Collines	Dassa-zoume	0	Assiyo	1570	1908	2200	2477	2033	2032	2031
05-2-01-03	Collines	Dassa-zoume	0	Atinkpaye	885	1089	1256	1414	2027	/	/
05-2-01-04	Collines	Dassa-zoume	0	Banigbe	1091	1343	1549	1744	2020	2018	/
05-2-01-05	Collines	Dassa-zoume	0	Betekoukou	1114	1336	1542	1736	2016	2016	/
05-2-07-03	Collines	Dassa-zoume	0	Djigbe	1572	1910	2203	2481	2024	2021	2019
05-2-03-01	Collines	Dassa-zoume	0	Erokowari	1045	1262	1455	1639	2021	2019	/
05-2-04-02	Collines	Dassa-zoume	0	Fita	2575	3140	3622	4079	2034	2033	2032
05-2-08-02	Collines	Dassa-zoume	0	Gankpetin	1015	1250	1441	1623	2023	2021	/
05-2-06-05	Collines	Dassa-zoume	0	Gbedavo	938	1154	1331	1498	2017	/	/
05-2-06-06	Collines	Dassa-zoume	0	Gbowele	3027	3689	4255	4791	2018	2033	2032
05-2-06-07	Collines	Dassa-zoume	0	Gounsoe	3039	3712	4280	4819	2034	2033	2032
05-2-06-08	Collines	Dassa-zoume	0	Hounkpogon	3352	4069	4692	5283	2033	2033	2032
05-2-52-04	Collines	Dassa-zoume	0	Idaho	799	935	1079	1215	2024	/	/
05-2-03-02	Collines	Dassa-zoume	0	Igoho	1334	1625	1874	2111	2017	2029	2028
05-2-03-03	Collines	Dassa-zoume	0	Itagui	1047	1212	1398	1574	2016	2016	/
05-2-08-06	Collines	Dassa-zoume	0	Laguema-tre	944	1083	1250	1407	2024	/	/
05-2-06-10	Collines	Dassa-zoume	0	Lissa	1688	2044	2358	2655	2032	2030	2029
05-2-52-07	Collines	Dassa-zoume	0	Mahou	1182	1384	1596	1797	2025	2024	/
05-2-03-06	Collines	Dassa-zoume	0	Okemere	1628	1946	2244	2526	2027	2024	2022
05-2-06-11	Collines	Dassa-zoume	0	Oueme	1135	1390	1603	1805	2021	2019	/
05-2-06-13	Collines	Dassa-zoume	0	Zouto atcherigbe	907	1108	1278	1439	2032	/	/
05-3-09-01	Collines	Glazoue	0	Adourekoman	1440	2078	2672	3295	2030	2029	2027
05-3-01-01	Collines	Glazoue	0	Affizoungo i	1433	2066	2657	3277	2025	2022	2020
05-3-01-02	Collines	Glazoue	0	Affizoungo ii	2065	2888	3714	4579	2030	2028	2024

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
05-3-08-03	Collines	Glazoue	0	Akomya	992	1417	1823	2248	2030	2029	2028
05-3-01-03	Collines	Glazoue	1	Allawenoussa i	3167	4529	5826	7184	2017	2017	2017
05-3-01-04	Collines	Glazoue	0	Allawenoussa ii	2672	3779	4860	5994	2032	2031	2029
05-3-08-05	Collines	Glazoue	0	Bethel	806	1156	1488	1835	2019	2018	/
05-3-02-02	Collines	Glazoue	0	Gbanlin hansoe	4181	5962	7669	9458	2034	2034	2032
05-3-06-01	Collines	Glazoue	0	Goto	2618	3696	4754	5863	2017	2016	2028
05-3-03-02	Collines	Glazoue	0	Haya	1063	1529	1967	2425	2029	2028	2028
05-3-08-06	Collines	Glazoue	0	Hoko	1549	2167	2787	3438	2016	2023	2021
05-3-02-03	Collines	Glazoue	0	Houin	1642	2357	3032	3739	2016	2025	2022
05-3-09-04	Collines	Glazoue	0	Kpakpa zoume	1017	1462	1880	2318	2022	2020	2019
05-3-06-02	Collines	Glazoue	0	Kpota	2219	3167	4073	5023	2031	2029	2026
05-3-01-05	Collines	Glazoue	0	Lagbo	2387	3393	4364	5381	2032	2030	2027
05-3-09-05	Collines	Glazoue	0	Mendengbe	2145	3080	3962	4886	2017	2032	2030
05-3-05-05	Collines	Glazoue	0	Oguirin	1063	1524	1960	2418	2024	2021	2020
05-3-51-04	Collines	Glazoue	0	Orokoto	1156	1646	2117	2611	2022	2019	2018
05-3-06-03	Collines	Glazoue	1	Ouedeme	1724	2452	3154	3890	2016	2016	2016
05-3-08-08	Collines	Glazoue	0	Riffo	1125	1607	2067	2549	2030	2028	2027
05-3-04-02	Collines	Glazoue	0	Sowe i	2941	4221	5430	6696	2033	2032	2030
05-3-01-06	Collines	Glazoue	0	Sowignandji	5446	7728	9940	12258	2018	2017	2017
05-3-06-04	Collines	Glazoue	0	Yagbo	2677	3818	4911	6056	2018	2017	2017
05-3-04-04	Collines	Glazoue	0	Yawa	739	1042	1341	1653	2024	2021	/
05-4-02-01	Collines	Ouesse	1	Adjaha	2522	3939	5359	6926	2018	2017	2017
05-4-01-04	Collines	Ouesse	0	Agboro idouya	1594	2470	3360	4343	2028	2026	2022
05-4-01-06	Collines	Ouesse	0	Agboro kombon	1058	1645	2238	2893	2025	2022	2020
05-4-01-01	Collines	Ouesse	0	Botti houegbo	683	1065	1448	1871	2028	2026	/
05-4-03-01	Collines	Ouesse	1	Gbanlin	4816	7525	10239	13234	2018	2017	2017
05-4-01-03	Collines	Ouesse	0	Gbede	1014	1581	2151	2780	2031	2030	2030
05-4-03-02	Collines	Ouesse	0	Idadjo	1956	3004	4086	5281	2034	2034	2032
05-4-05-02	Collines	Ouesse	0	Kilibo gare	945	1462	1989	2572	2016	2016	2016
05-4-01-05	Collines	Ouesse	0	Kokoro	2095	3246	4416	5708	2017	2016	2016
05-4-02-02	Collines	Ouesse	0	Lokossa	1176	1837	2500	3231	2023	2021	2019

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
05-4-03-03	Collines	Ouesse	0	Tosso	912	1429	1944	2513	2021	2018	2018
05-4-08-03	Collines	Ouesse	0	Toui-gare	3826	5945	8089	10455	2034	2033	2032
05-4-08-04	Collines	Ouesse	0	Toui-vap	2005	3090	4205	5435	2033	2032	2031
05-4-03-04	Collines	Ouesse	0	Vossa	4443	6908	9399	12148	2018	2017	2017
05-4-02-03	Collines	Ouesse	0	Wla	1769	2767	3765	4865	2029	2027	2024
05-4-05-04	Collines	Ouesse	0	Yaoui	2542	3948	5372	6944	2017	2016	2029
05-4-07-05	Collines	Ouesse	0	Zogba trekou	1599	2504	3406	4402	2029	2027	2025
05-5-02-01	Collines	Savalou	0	Abala	1260	1842	2393	2976	2027	2025	2026
05-5-11-01	Collines	Savalou	0	Adjoya	704	1031	1339	1664	2023	2021	/
05-5-02-03	Collines	Savalou	0	Afe-zoungo	2599	3790	4924	6124	2032	2031	2029
05-5-09-01	Collines	Savalou	0	Agbamidjodji	1351	1976	2567	3192	2032	2031	2029
05-5-09-02	Collines	Savalou	0	Akete	1052	1488	1934	2406	2031	2030	2028
05-5-10-01	Collines	Savalou	0	Akpaki	1123	1634	2124	2641	2016	2020	2018
05-5-02-02	Collines	Savalou	0	Amou	1419	2045	2657	3304	2034	2033	2032
05-5-01-01	Collines	Savalou	0	Attakplakanme	1537	2229	2895	3600	2017	2030	2028
05-5-53-01	Collines	Savalou	0	Azokangoudo	982	1412	1835	2282	2030	2029	2027
05-5-05-03	Collines	Savalou	0	Dame	966	1410	1831	2277	2021	2020	2018
05-5-01-02	Collines	Savalou	1	Djaloukou	1838	2680	3482	4330	2018	2017	2017
05-5-01-03	Collines	Savalou	0	Djalouma	1566	2271	2950	3669	2018	2028	2026
05-5-02-05	Collines	Savalou	0	Felma	765	1079	1402	1744	2024	2022	/
05-5-03-02	Collines	Savalou	0	Govi	622	892	1159	1441	2020	/	/
05-5-10-02	Collines	Savalou	0	Igberi	2846	4123	5357	6662	2033	2031	2029
05-5-02-06	Collines	Savalou	0	Iroukou	1869	2719	3532	4392	2033	2033	2031
05-5-02-07	Collines	Savalou	0	Kanaoun	1572	2292	2979	3705	2027	2024	2022
05-5-06-01	Collines	Savalou	0	Kitikpli	3016	4367	5675	7057	2034	2033	2032
05-5-02-08	Collines	Savalou	0	Koffe agbala	882	1256	1632	2029	2026	2023	2022
05-5-11-02	Collines	Savalou	0	Koffodoua	2064	3016	3919	4874	2030	2028	2025
05-5-01-04	Collines	Savalou	0	Konkondji	1613	2324	3019	3755	2018	2033	2032
05-5-51-03	Collines	Savalou	0	Kpakpassa	1432	2060	2676	3328	2025	2023	2020
05-5-05-04	Collines	Savalou	0	Kpakpavissa	1098	1607	2088	2597	2028	2020	2018
05-5-05-02	Collines	Savalou	0	Lahotan	1820	2620	3403	4231	2029	2026	2023

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
05-5-03-03	Collines	Savalou	0	Lama	837	1225	1591	1979	2030	2028	/
05-5-02-09	Collines	Savalou	0	Lekpa	1457	2124	2760	3432	2017	2030	2029
05-5-06-02	Collines	Savalou	1	Lema	1048	1500	1949	2424	2016	2016	2016
05-5-07-04	Collines	Savalou	0	Loukintowin	793	1161	1508	1875	2020	2019	/
05-5-11-03	Collines	Savalou	0	Obi koro	1122	1640	2130	2648	2022	2020	2018
05-5-11-04	Collines	Savalou	0	Odo agbon	1531	2210	2870	3569	2016	2016	2016
05-5-05-05	Collines	Savalou	0	Segbeya	528	773	1005	1249	2023	/	/
05-5-05-06	Collines	Savalou	0	Zomakidji	1052	1540	2000	2487	2023	2020	2019
05-5-06-03	Collines	Savalou	0	Zongo	3132	4354	5656	7033	2017	2017	2017
05-6-04-01	Collines	Save	0	Akon gbere	1988	2673	3283	3896	2029	2027	2023
05-6-03-03	Collines	Save	0	Ayedjoko	2166	2906	3569	4235	2034	2033	2032
05-6-03-04	Collines	Save	0	Dani	2703	3628	4456	5288	2017	2032	2030
05-6-01-01	Collines	Save	0	Djabata	694	933	1146	1359	2031	/	/
05-6-02-04	Collines	Save	0	Gogoro	963	1264	1552	1841	2016	2025	/
05-6-01-02	Collines	Save	1	Igbodja	3184	4203	5161	6124	2018	2017	2017
05-6-04-02	Collines	Save	0	Monka	1128	1522	1870	2219	2028	2025	2023
05-6-02-06	Collines	Save	0	Montewo	1930	2580	3169	3760	2029	2027	2024
05-6-04-03	Collines	Save	1	Oke owo i	1965	2651	3256	3863	2018	2017	2017
05-6-04-04	Collines	Save	0	Oke owo ii	1980	2661	3267	3877	2018	2027	2023
05-6-01-03	Collines	Save	0	Okpa	1597	2128	2614	3102	2033	2032	2032
06-1-06-01	Couffo	Aplahoue	0	Aboloumey	2277	3387	4450	5585	2033	2031	2030
06-1-03-01	Couffo	Aplahoue	0	Adame	1157	1646	2162	2713	2025	2023	2020
06-1-03-02	Couffo	Aplahoue	0	Adandehoue	1027	1519	1995	2505	2022	2020	2018
06-1-06-02	Couffo	Aplahoue	0	Agbanate	2093	3116	4093	5138	2032	2030	2028
06-1-01-01	Couffo	Aplahoue	0	Agname	1743	2590	3403	4271	2032	2030	2028
06-1-01-02	Couffo	Aplahoue	0	Agondogoui	1522	2267	2979	3739	2034	2033	2032
06-1-03-03	Couffo	Aplahoue	0	Attohoue	985	1449	1904	2390	2023	2021	2019
06-1-01-03	Couffo	Aplahoue	1	Avegame	2183	3247	4265	5353	2018	2017	2017
06-1-06-03	Couffo	Aplahoue	0	Badjame	1595	2350	3087	3874	2031	2029	2026
06-1-03-04	Couffo	Aplahoue	0	Bozinkpe	1298	1916	2517	3159	2027	2024	2023
06-1-03-05	Couffo	Aplahoue	0	Dekandji	1454	2164	2843	3569	2028	2025	2023

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu d'arr.		INSAE 2002	2015	2025	2035	Scénario Haut	Scénario Moyen	Scénario Faible
06-1-51-07	Couffo	Aplahoue	0	Djikpame	2546	3782	4970	6238	2033	2031	2029
06-1-05-01	Couffo	Aplahoue	0	Dogohoue	1146	1709	2244	2817	2024	2021	2019
06-1-51-08	Couffo	Aplahoue	0	Dossouhoue	1081	1609	2113	2652	2024	2022	2020
06-1-05-02	Couffo	Aplahoue	0	Edehoue	1379	2043	2683	3368	2027	2024	2022
06-1-06-04	Couffo	Aplahoue	0	Eglime	2113	3157	4148	5206	2032	2030	2027
06-1-05-03	Couffo	Aplahoue	0	Gbakonou	2326	3424	4499	5646	2033	2032	2030
06-1-51-09	Couffo	Aplahoue	0	Gbeze	974	1467	1928	2420	2025	2023	2021
06-1-03-07	Couffo	Aplahoue	0	Gnonfihoue	636	946	1242	1559	2019	2018	/
06-1-01-04	Couffo	Aplahoue	0	Gougouta	1239	1834	2409	3024	2033	2032	2031
06-1-05-04	Couffo	Aplahoue	0	Havou	766	1123	1476	1852	2021	2020	/
06-1-05-05	Couffo	Aplahoue	0	Hedjanawa	2092	3093	4064	5102	2032	2030	2027
06-1-01-05	Couffo	Aplahoue	0	Hevi	2750	4091	5375	6746	2018	2032	2030
06-1-06-05	Couffo	Aplahoue	0	Hoky	1344	1972	2590	3251	2026	2023	2020
06-1-03-08	Couffo	Aplahoue	0	Hontome	982	1460	1918	2408	2026	2024	2023
06-1-01-06	Couffo	Aplahoue	0	Hontonou	1699	2528	3321	4168	2032	2031	2029
06-1-04-02	Couffo	Aplahoue	0	Hontoui	910	1355	1781	2236	2031	2029	2029
06-1-05-06	Couffo	Aplahoue	0	Houetan	1909	2838	3729	4681	2031	2029	2026
06-1-05-07	Couffo	Aplahoue	0	Houngbame	2214	3294	4328	5432	2032	2031	2028
06-1-05-08	Couffo	Aplahoue	0	Keletome	2535	3755	4932	6190	2033	2031	2029
06-1-05-09	Couffo	Aplahoue	0	Koumako houe	1268	1923	2526	3171	2028	2025	2022
06-1-03-09	Couffo	Aplahoue	0	Koyohoue	1169	1749	2298	2884	2024	2021	2019
06-1-04-01	Couffo	Aplahoue	1	Kpodji	3026	4507	5920	7431	2018	2017	2017
06-1-51-11	Couffo	Aplahoue	0	Kpodji	1454	2164	2843	3569	2030	2028	2026
06-1-03-10	Couffo	Aplahoue	0	Lagbave	3094	4723	6206	7790	2018	2017	2031
06-1-03-11	Couffo	Aplahoue	0	Sehonouhoue	1360	2005	2634	3306	2026	2027	2025
06-1-04-03	Couffo	Aplahoue	0	Sinlita	2088	3064	4025	5053	2032	2031	2030
06-1-04-04	Couffo	Aplahoue	0	Takpatchiome	678	1001	1315	1650	2030	2028	/
06-1-05-11	Couffo	Aplahoue	0	Tannou	1436	2141	2813	3531	2028	2025	2022
06-1-03-12	Couffo	Aplahoue	0	Tchatehoue	790	1178	1547	1943	2022	2019	/
06-1-51-13	Couffo	Aplahoue	0	Tchiglihoue	1310	1200	1577	1979	2026	2023	/
06-1-01-07	Couffo	Aplahoue	0	Volly-latadji	2457	3657	4805	6031	2034	2033	2032

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
06-1-04-05	Couffo	Aplahoue	0	Wakpe	3098	4599	6042	7583	2034	2033	2032
06-1-04-06	Couffo	Aplahoue	0	Zame	2462	3721	4888	6135	2033	2032	2030
06-1-51-04	Couffo	Aplahoue	0	Zondogahoue	1863	2884	3788	4755	2033	2032	2030
06-2-01-02	Couffo	Djakotome	0	Agohoue-ballimey	2121	3331	4514	5813	2017	2030	2027
06-2-08-01	Couffo	Djakotome	0	Akodebakou	1200	1854	2511	3234	2026	2023	2020
06-2-51-03	Couffo	Djakotome	0	Amegnanhoue	728	1109	1502	1935	2021	2020	/
06-2-08-07	Couffo	Djakotome	0	Assogbahoue	731	1136	1540	1983	2020	2018	/
06-2-51-04	Couffo	Djakotome	0	Atchouhoue	1037	1612	2184	2812	2025	2023	2024
06-2-05-01	Couffo	Djakotome	0	Dassou houe	746	1151	1559	2008	2019	2018	2018
06-2-03-01	Couffo	Djakotome	0	Demahouhoue	853	1321	1790	2305	2022	2020	2018
06-2-04-02	Couffo	Djakotome	0	Djonouhoue	1289	1969	2668	3437	2029	2026	2023
06-2-01-03	Couffo	Djakotome	0	Doumahou	2943	4522	6127	7892	2017	2033	2031
06-2-04-03	Couffo	Djakotome	0	Edjihoue	1070	1689	2289	2948	2023	2021	2019
06-2-07-01	Couffo	Djakotome	0	Fantchoutchehoue	691	1074	1456	1876	2023	2021	/
06-2-06-01	Couffo	Djakotome	0	Fogbadja	1715	2669	3617	4658	2031	2029	2027
06-2-04-04	Couffo	Djakotome	0	Game fode	746	1160	1572	2025	2020	2018	2018
06-2-04-05	Couffo	Djakotome	0	Game houegbo	1057	1646	2230	2871	2026	2023	2021
06-2-08-04	Couffo	Djakotome	0	Gbekehoue	995	1547	2095	2698	2024	2021	2020
06-2-01-04	Couffo	Djakotome	0	Gbotohoue	1337	2072	2807	3615	2028	2025	2022
06-2-01-05	Couffo	Djakotome	0	Hekpe	2355	3656	4953	6379	2033	2032	2030
06-2-51-06	Couffo	Djakotome	0	Hounhomey	1447	2274	3080	3967	2030	2028	2025
06-2-08-05	Couffo	Djakotome	0	Hounkemey	1378	2137	2895	3729	2016	2026	2025
06-2-06-03	Couffo	Djakotome	0	Kansouhoue	1585	2287	3098	3991	2028	2025	2022
06-2-04-07	Couffo	Djakotome	0	Kanvihoue	737	1147	1554	2001	2023	2021	2020
06-2-06-04	Couffo	Djakotome	1	Kokohoue	2599	3970	5378	6927	2017	2016	2016
06-2-04-10	Couffo	Djakotome	0	Kpeladjamey	999	1397	1892	2437	2024	2022	2021
06-2-07-03	Couffo	Djakotome	0	Mekpohoue	1365	2133	2890	3722	2028	2024	2026
06-2-06-05	Couffo	Djakotome	0	Migbohomey	1061	1669	2261	2912	2025	2023	2021
06-2-07-04	Couffo	Djakotome	0	Nakidahohoue	712	1134	1536	1978	2024	2021	/
06-2-01-01	Couffo	Djakotome	0	Sebiohoue	1974	3060	4145	5337	2016	2016	2026
06-2-51-07	Couffo	Djakotome	0	Sogbavihoue	660	1003	1359	1751	2022	2021	/

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
06-2-08-06	Couffo	Djakotome	1	Sokouhoue	1641	2554	3460	4456	2017	2016	2016
06-2-08-08	Couffo	Djakotome	1	Sokouhoue	1664	2590	3510	4521	2017	2016	2016
06-2-08-10	Couffo	Djakotome	0	Sokouhoue	1539	2396	3246	4181	2016	2028	2024
06-2-04-11	Couffo	Djakotome	0	Tedehoue	909	1421	1924	2478	2024	2022	2020
06-2-08-09	Couffo	Djakotome	0	Tokpohoue	958	1491	2021	2603	2023	2020	2019
06-2-04-08	Couffo	Djakotome	0	Wanou	773	1203	1629	2097	2020	2018	2018
06-2-07-05	Couffo	Djakotome	0	Zohoudji	1243	1902	2576	3318	2025	2022	2025
06-3-05-01	Couffo	Dogbo	0	Adandro-akode	777	1082	1357	1640	2022	2021	/
06-3-02-01	Couffo	Dogbo	0	Adidevo	829	1118	1402	1693	2021	2019	/
06-3-01-01	Couffo	Dogbo	0	Agbedrinfo	1028	1425	1788	2160	2026	2024	2022
06-3-02-02	Couffo	Dogbo	0	Agnavo	1419	1972	2474	2988	2030	2028	2025
06-3-06-01	Couffo	Dogbo	0	Allada	693	964	1209	1459	2020	/	/
06-3-01-03	Couffo	Dogbo	1	Avedjin	971	1340	1681	2031	2016	2016	2016
06-3-05-02	Couffo	Dogbo	0	Ayesso	793	1061	1331	1607	2020	2018	/
06-3-05-03	Couffo	Dogbo	0	Botagbe	1394	1885	2365	2857	2028	2025	2022
06-3-02-03	Couffo	Dogbo	1	Deve home	1371	1896	2378	2872	2016	2016	2016
06-3-05-04	Couffo	Dogbo	0	Fafadji	808	1125	1411	1705	2019	2018	/
06-3-02-04	Couffo	Dogbo	0	Gbakehoue	3488	4701	5897	7121	2018	2017	2017
06-3-06-02	Couffo	Dogbo	0	Gnigbe	752	1047	1314	1587	2021	2019	/
06-3-05-05	Couffo	Dogbo	0	Godohou	1055	1410	1768	2135	2024	2021	2019
06-3-51-06	Couffo	Dogbo	0	Gouhoun	953	1285	1611	1946	2026	2024	/
06-3-51-08	Couffo	Dogbo	0	Hongloui	826	1148	1440	1738	2023	2021	/
06-3-04-01	Couffo	Dogbo	0	Houndrome	904	1207	1514	1829	2020	2018	/
06-3-04-02	Couffo	Dogbo	0	Hounsa	1845	2598	3260	3937	2016	2029	2026
06-3-51-09	Couffo	Dogbo	0	Kenouhoue	631	873	1095	1322	2019	/	/
06-3-51-11	Couffo	Dogbo	0	Kpogodou	818	1130	1417	1712	2022	2019	/
06-3-51-13	Couffo	Dogbo	0	Madankanme	553	743	932	1126	2016	/	/
06-3-04-04	Couffo	Dogbo	0	Midangbe	502	663	831	1004	2019	/	/
06-3-04-05	Couffo	Dogbo	0	Segba	814	1144	1434	1732	2020	2019	/
06-3-06-03	Couffo	Dogbo	1	Totchangni	859	1195	1499	1810	2016	2016	2016
06-3-04-06	Couffo	Dogbo	0	Toulehoudji	628	890	1116	1348	2020	/	/

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu d'arr.		INSAE 2002	2015	2025	2035	Scénario Haut	Scénario Moyen	Scénario Faible
06-3-04-07	Couffo	Dogbo	0	Vehedji	1461	2063	2588	3125	2031	2029	2026
06-3-02-05	Couffo	Dogbo	0	Zohodji	985	1314	1649	1991	2021	2019	/
06-3-01-09	Couffo	Dogbo	0	Zokpedji	773	1082	1357	1640	2020	2018	/
06-4-04-01	Couffo	Klouekame	0	Ablome-davihoue	2551	3642	4691	5791	2033	2031	2028
06-4-07-01	Couffo	Klouekame	0	Agbago	1575	2240	2884	3560	2031	2029	2027
06-4-51-02	Couffo	Klouekame	0	Agbodohouin	1711	2476	3188	3935	2031	2029	2026
06-4-02-01	Couffo	Klouekame	0	Aglali	1366	1968	2534	3128	2029	2027	2025
06-4-02-02	Couffo	Klouekame	1	Ahogbeya	747	1085	1397	1725	2016	2016	2016
06-4-03-01	Couffo	Klouekame	0	Ahoudji	855	1260	1622	2002	2023	2021	2019
06-4-04-02	Couffo	Klouekame	0	Ahouegangbe-edahoue	986	1437	1850	2283	2021	2019	2018
06-4-04-03	Couffo	Klouekame	0	Akime	2847	4116	5300	6542	2034	2033	2031
06-4-07-02	Couffo	Klouekame	0	Akouegbadja	1829	2707	3486	4303	2032	2030	2028
06-4-03-02	Couffo	Klouekame	0	Avegandji	1683	2421	3117	3847	2029	2026	2023
06-4-04-04	Couffo	Klouekame	0	Aveganme	3421	4921	6338	7823	2018	2033	2031
06-2-08-03	Couffo	Klouekame	0	Avonnouhoue	676	977	1257	1552	2021	2019	/
06-4-02-03	Couffo	Klouekame	0	Dadji	656	952	1226	1513	2022	2020	/
06-4-01-02	Couffo	Klouekame	0	Dayehoue	1065	1539	1982	2446	2023	2020	2018
06-4-06-03	Couffo	Klouekame	0	Dekandji	1693	2447	3152	3890	2029	2026	2023
06-4-02-04	Couffo	Klouekame	0	Djihami	2393	3447	4438	5479	2033	2031	2029
06-4-01-03	Couffo	Klouekame	0	Edahoue	1849	2659	3424	4227	2031	2029	2027
06-4-04-07	Couffo	Klouekame	0	Fidegnonhoue	1243	1795	2311	2853	2025	2022	2019
06-4-02-05	Couffo	Klouekame	0	Ganhayadji	2814	4087	5264	6498	2033	2032	2030
06-4-01-04	Couffo	Klouekame	0	Godohou	1437	2070	2665	3290	2027	2024	2020
06-4-01-08	Couffo	Klouekame	0	Hossouhoue	1120	1617	2082	2570	2031	2029	2028
06-4-05-03	Couffo	Klouekame	0	Kogbetohoue	1325	1913	2463	3040	2027	2024	2021
06-4-05-04	Couffo	Klouekame	0	Kome	597	863	1110	1370	2020	/	/
06-4-07-04	Couffo	Klouekame	0	Kpakpassa	622	910	1172	1446	2019	/	/
06-4-01-07	Couffo	Klouekame	0	Kpevidji	1711	2474	3186	3933	2031	2030	2027
06-4-02-07	Couffo	Klouekame	0	Kplakatagon	935	1352	1742	2151	2027	2024	2022
06-4-02-08	Couffo	Klouekame	0	Mademe	1007	1451	1868	2307	2027	2024	2022
06-4-04-09	Couffo	Klouekame	0	Nigbo	1018	2913	3750	4629	2032	2030	2027

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
06-4-04-10	Couffo	Klouekame	0	Nigbogan	1327	1468	1891	2333	2026	2023	2021
06-4-06-04	Couffo	Klouekame	0	Sawame-houeyiho	1271	1846	2377	2934	2029	2027	2025
06-4-05-05	Couffo	Klouekame	0	Soglonouhoue	1786	2537	3268	4034	2031	2029	2025
06-4-01-09	Couffo	Klouekame	0	Tchokpohoue	792	1153	1485	1833	2020	2018	/
06-4-01-10	Couffo	Klouekame	0	Toime mitohoue	1252	1858	2393	2953	2026	2023	2020
06-4-04-11	Couffo	Klouekame	0	Yenawa	1246	1917	2468	3046	2029	2026	2023
06-4-07-06	Couffo	Klouekame	0	Zounzonkanme	1640	2309	2974	3671	2030	2028	2025
06-5-06-01	Couffo	Lalo	0	Adjaglimey	2480	4093	5801	7757	2017	2032	2030
06-5-03-01	Couffo	Lalo	0	Adjaigbonou	624	1039	1472	1968	2016	2020	/
06-5-10-01	Couffo	Lalo	0	Adjassagon	1008	1662	2355	3148	2029	2027	2024
06-5-02-01	Couffo	Lalo	0	Adonou	1107	1827	2590	3464	2028	2025	2022
06-5-04-01	Couffo	Lalo	0	Afomayi	1314	2160	3062	4095	2028	2025	2023
06-5-02-02	Couffo	Lalo	1	Ahodjinnako	831	1363	1931	2582	2017	2017	2017
06-5-03-02	Couffo	Lalo	1	Ahomadegbe	1065	1760	2494	3335	2017	2016	2016
06-5-01-02	Couffo	Lalo	0	Ahouada	1519	2542	3603	4819	2016	2027	2024
06-5-03-03	Couffo	Lalo	0	Aloya	1010	1677	2376	3178	2027	2025	2024
06-5-05-01	Couffo	Lalo	0	Assogbahoue	1735	2878	4080	5456	2031	2029	2026
06-5-04-02	Couffo	Lalo	1	Banigbe	1904	3166	4486	5999	2016	2016	2016
06-5-09-01	Couffo	Lalo	0	Bayekpa	1575	2685	3805	5088	2030	2028	2024
06-5-05-02	Couffo	Lalo	0	Djibahoun	974	1617	2293	3066	2026	2023	2022
06-5-02-03	Couffo	Lalo	0	Dogoedeta	1591	2613	3704	4953	2031	2028	2025
06-5-04-03	Couffo	Lalo	0	Dolohoue	873	1451	2057	2751	2025	2022	2021
06-5-06-02	Couffo	Lalo	0	Edagbawlahoue	1190	1969	2791	3732	2027	2024	2021
06-5-51-02	Couffo	Lalo	0	Gbefandji	427	650	921	1232	2019	/	/
06-5-04-04	Couffo	Lalo	0	Gbezounme	958	1577	2236	2991	2027	2023	2022
06-5-07-05	Couffo	Lalo	0	Gnamame	1439	2348	3328	4451	2016	2025	2022
06-5-06-03	Couffo	Lalo	0	Gnigbandjimey	525	872	1236	1653	2020	2018	/
06-5-05-03	Couffo	Lalo	1	Gnizounme	1727	2829	4009	5362	2017	2016	2016
06-5-09-02	Couffo	Lalo	0	Goveta	777	1295	1835	2453	2024	2021	2020
06-5-03-04	Couffo	Lalo	0	Hagnonhoue	863	1434	2032	2716	2022	2020	2018
06-5-05-04	Couffo	Lalo	0	Hangbannou	1997	3337	4730	6326	2032	2030	2027

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
06-5-09-03	Couffo	Lalo	0	Hehokpa	482	796	1127	1507	2020	2018	/
06-5-02-04	Couffo	Lalo	0	Helli	910	1517	2149	2874	2023	2020	2018
06-5-10-03	Couffo	Lalo	0	Kadebou	881	1463	2074	2774	2026	2022	2024
06-5-07-01	Couffo	Lalo	0	Kaïhoue	1472	2419	3428	4585	2031	2029	2026
06-5-10-04	Couffo	Lalo	0	Kindji	650	1081	1532	2050	2023	2021	2020
06-5-01-03	Couffo	Lalo	0	Kingnenouhoue	595	990	1403	1875	2019	2018	/
06-5-07-02	Couffo	Lalo	0	Kouivonhoue	1421	2361	3346	4474	2016	2027	2024
06-5-10-05	Couffo	Lalo	0	Kowome	625	1011	1432	1916	2021	2019	/
06-5-06-04	Couffo	Lalo	0	Kpassakanmey	564	927	1315	1758	2019	2018	/
06-5-02-05	Couffo	Lalo	0	Lokoli	490	810	1148	1536	2025	2022	/
06-5-01-04	Couffo	Lalo	0	Lome	913	1516	2149	2874	2021	2019	2019
06-5-08-02	Couffo	Lalo	0	Ouinfa	678	1122	1590	2126	2021	2020	2019
06-5-09-04	Couffo	Lalo	0	Sawanou	606	992	1406	1881	2021	2019	/
06-5-01-05	Couffo	Lalo	0	Sewahoue	1017	1695	2402	3213	2024	2021	2019
06-5-06-06	Couffo	Lalo	0	Sohounouhoue	2134	3547	5027	6723	2017	2031	2028
06-5-06-07	Couffo	Lalo	0	Sowanouhoue	2370	3904	5534	7400	2034	2032	2031
06-5-05-05	Couffo	Lalo	0	Tandji	1042	1729	2450	3277	2017	2027	2025
06-5-08-03	Couffo	Lalo	1	Tchito	1057	1754	2486	3324	2017	2017	2017
06-5-09-05	Couffo	Lalo	1	Tohou	1365	2263	3207	4288	2017	2017	2017
06-5-01-06	Couffo	Lalo	0	Yamontou	1265	2069	2931	3919	2030	2027	2025
06-5-07-06	Couffo	Lalo	0	Yobohoue	970	1590	2254	3014	2027	2025	2022
06-5-10-06	Couffo	Lalo	1	Zalli	1565	2585	3664	4900	2016	2016	2016
06-5-51-05	Couffo	Lalo	0	Zonmondji	1780	2938	4163	5567	2017	2030	2027
06-5-09-06	Couffo	Lalo	0	Zoundotan	780	1229	1742	2330	2024	2021	2020
06-5-08-04	Couffo	Lalo	0	Zounhomey	1156	1928	2734	3656	2030	2027	2025
06-5-08-05	Couffo	Lalo	0	Zountokpa-codji	741	1220	1729	2313	2029	2027	2026
06-6-04-01	Couffo	Toviklin	0	Abloganme	882	1293	1684	2098	2024	2022	2020
06-6-04-02	Couffo	Toviklin	0	Affomadi	845	1236	1609	2005	2024	2022	2021
06-6-05-01	Couffo	Toviklin	0	Agbedoume	1114	1626	2116	2635	2024	2021	2019
06-6-04-03	Couffo	Toviklin	0	Agbozohoudji ii	903	1300	1693	2110	2024	2022	2021
06-6-01-02	Couffo	Toviklin	0	Agbozohoundji i	934	1221	1590	1981	2023	2021	/

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
06-6-05-02	Couffo	Toviklin	0	Agome	1020	1500	1952	2432	2022	2020	2018
06-6-51-01	Couffo	Toviklin	0	Akome	773	1134	1476	1839	2020	2018	/
06-6-01-03	Couffo	Toviklin	0	Atchioume	687	1000	1303	1623	2023	2021	/
06-6-01-04	Couffo	Toviklin	0	Awandji	604	887	1155	1438	2023	/	/
06-6-05-03	Couffo	Toviklin	0	Ayidjedo	429	631	821	1024	2019	/	/
06-6-01-05	Couffo	Toviklin	0	Dansouhoue	1146	1332	1734	2160	2024	2022	2021
06-6-03-01	Couffo	Toviklin	0	Djidowanou	1367	1993	2595	3233	2027	2023	2020
06-6-06-01	Couffo	Toviklin	0	Djikeme	484	711	926	1154	2019	/	/
06-6-03-03	Couffo	Toviklin	0	Djouganme	2499	3675	4785	5961	2033	2031	2029
06-6-06-02	Couffo	Toviklin	0	Dohodji	1245	1842	2398	2987	2026	2021	2019
06-6-51-04	Couffo	Toviklin	0	Doko atchanvigueme	1181	1742	2268	2826	2024	2021	2019
06-6-51-05	Couffo	Toviklin	1	Doko djoudome	1205	1761	2293	2857	2016	2016	2016
06-6-03-02	Couffo	Toviklin	1	Doko-centre	2250	3316	4316	5376	2017	2016	2016
06-6-06-03	Couffo	Toviklin	0	Gbayedji	1318	1911	2487	3098	2025	2026	2024
06-6-01-07	Couffo	Toviklin	0	Glidji	847	1244	1620	2018	2022	2019	2018
06-6-01-08	Couffo	Toviklin	0	Hedjame	1048	1479	1926	2400	2023	2020	2019
06-6-04-04	Couffo	Toviklin	0	Hewogbe	488	714	930	1159	2019	/	/
06-6-04-05	Couffo	Toviklin	1	Houedogli	1523	2204	2869	3574	2016	2016	2016
06-6-04-06	Couffo	Toviklin	0	Houegangbe	917	1333	1735	2161	2022	2019	2018
06-6-03-04	Couffo	Toviklin	0	Kleme	1058	1548	2016	2511	2023	2020	2018
06-6-04-07	Couffo	Toviklin	0	Kpahouihoue	967	1417	1844	2296	2023	2020	2019
06-6-51-06	Couffo	Toviklin	0	Kpeve	831	1221	1590	1981	2024	2021	/
06-6-01-09	Couffo	Toviklin	0	Kpodji	771	1133	1475	1838	2024	2022	/
06-6-51-07	Couffo	Toviklin	0	Kpohoudjou	1665	2446	3185	3967	2031	2028	2026
06-6-04-08	Couffo	Toviklin	0	Lagbahome	972	1415	1842	2295	2025	2022	2021
06-6-04-09	Couffo	Toviklin	0	Lagbakada	1605	2353	3062	3814	2029	2027	2023
06-6-01-10	Couffo	Toviklin	0	Maibou i	1109	1629	2120	2641	2024	2022	2022
06-6-01-11	Couffo	Toviklin	0	Maibou ii	800	1175	1530	1907	2024	2021	/
06-6-05-05	Couffo	Toviklin	1	Missinko	1353	1975	2571	3203	2016	2016	2016
06-6-03-05	Couffo	Toviklin	0	Nanonme	1343	1950	2538	3161	2026	2022	2019
06-6-06-04	Couffo	Toviklin	0	Oussoume	956	1398	1819	2265	2023	2023	2021

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
06-6-06-05	Couffo	Toviklin	1	Tannou gola	867	1272	1655	2062	2016	2016	2016
06-6-04-11	Couffo	Toviklin	0	Tchankada	845	1237	1610	2006	2025	2022	2020
06-6-06-06	Couffo	Toviklin	0	Tchankoe	430	632	822	1024	2019	/	/
06-6-06-07	Couffo	Toviklin	0	Tosso houe	597	890	1159	1444	2019	/	/
06-5-07-04	Couffo	Toviklin	0	Toulehoudji	2342	3411	4440	5530	2017	2031	2029
06-6-03-06	Couffo	Toviklin	0	Toulehoudji	1480	2170	2825	3518	2028	2025	2022
06-6-03-07	Couffo	Toviklin	0	Zohoudji	1435	2108	2744	3419	2027	2024	2021
06-6-04-12	Couffo	Toviklin	0	Zougoume	918	1344	1749	2179	2020	2019	2018
07-1-51-01	Donga	Bassila	0	Aoro-lokp0a	1351	2747	4476	6729	2017	2023	2030
07-1-51-02	Donga	Bassila	0	Aoro-nago	768	1523	2482	3732	2022	2019	2029
07-1-03-01	Donga	Bassila	0	Bayakou	2272	4591	7483	11249	2016	2029	2026
07-1-51-06	Donga	Bassila	0	Biguina	4564	9082	14803	22251	2018	2017	2032
07-1-01-03	Donga	Bassila	0	Boutou	976	1977	3223	4845	2031	2028	2027
07-1-51-07	Donga	Bassila	0	Diepani	1331	2675	4360	6554	2016	2023	2021
07-1-51-08	Donga	Bassila	0	Dogue	1809	1037	1690	2540	2034	2033	2033
07-1-51-10	Donga	Bassila	0	Firihoun	1564	3162	5153	7746	2027	2025	2022
07-1-02-01	Donga	Bassila	0	Igbere	1204	2449	3992	6001	2034	2034	2033
07-1-51-09	Donga	Bassila	0	Igbo-macro	1298	1859	3031	4557	2034	2033	2033
07-1-01-05	Donga	Bassila	0	Kaoute	741	1509	2458	3695	2031	2029	2028
07-1-51-11	Donga	Bassila	0	Kikele	3559	7199	11732	17634	2017	2033	2032
07-1-51-12	Donga	Bassila	1	Kprekete	1864	2950	4809	7229	2018	2017	2017
07-1-03-08	Donga	Bassila	0	Salmanga	1185	2405	3920	5893	2026	2023	2021
07-1-02-04	Donga	Bassila	0	Wannou	661	1319	2150	3232	2034	2033	2033
07-2-02-01	Donga	Copargo	0	Bamisso	1011	1493	1964	2466	2029	2027	2026
07-2-03-01	Donga	Copargo	0	Bissinra a	1359	2031	2669	3352	2023	2020	2020
07-2-03-02	Donga	Copargo	0	Dakpera	789	1136	1493	1875	2023	2021	/
07-2-01-02	Donga	Copargo	0	Foungou	961	1391	1829	2296	2026	2024	2023
07-2-51-02	Donga	Copargo	0	Galora	3598	5270	6928	8701	2034	2033	2032
07-2-02-02	Donga	Copargo	0	Gnanfounoun	1248	1795	2359	2962	2030	2027	2025
07-2-03-03	Donga	Copargo	0	Karhum-dora	1243	1778	2338	2937	2027	2025	2026
07-2-03-05	Donga	Copargo	0	Karhum-yaourou	1251	1808	2377	2985	2028	2026	2026

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
07-2-03-04	Donga	Copargo	0	Karhup-malero	1155	1640	2155	2706	2028	2025	2027
07-2-01-03	Donga	Copargo	0	Koubenebene	1504	2019	2654	3334	2029	2027	2026
07-2-01-04	Donga	Copargo	0	Koukoui bendi	991	1405	1847	2320	2025	2023	2022
07-2-01-05	Donga	Copargo	0	Koutchanti	689	974	1280	1607	2027	2024	/
07-2-03-06	Donga	Copargo	0	Maho	772	1129	1484	1863	2021	2019	/
07-2-03-07	Donga	Copargo	0	Nimourou	870	1276	1677	2106	2021	2019	2019
07-2-02-04	Donga	Copargo	0	Palampagou	2075	3170	4167	5233	2032	2030	2028
07-2-01-06	Donga	Copargo	0	Parkoute	1498	1993	2621	3291	2024	2021	2020
07-2-51-03	Donga	Copargo	0	Passabia	3324	4835	6356	7982	2017	2032	2031
07-2-03-08	Donga	Copargo	0	Passangre	702	1040	1367	1716	2021	2019	/
07-2-51-04	Donga	Copargo	0	Satieka	4039	5811	7639	9594	2034	2033	2032
07-2-01-07	Donga	Copargo	0	Setrah	1133	1623	2134	2680	2028	2028	2027
07-2-03-10	Donga	Copargo	0	Taho	2049	3043	4001	5025	2027	2025	2022
07-2-02-05	Donga	Copargo	0	Tchakiero i	1208	1780	2339	2938	2023	2021	2020
07-2-51-05	Donga	Copargo	0	Tchaklero ii	2516	3695	4857	6100	2033	2032	2031
07-2-02-06	Donga	Copargo	0	Tigninoun	1099	1521	1999	2510	2029	2027	2025
07-3-02-01	Donga	Djougou	0	Afatalanga	777	1169	1592	2060	2025	2023	2022
07-3-53-01	Donga	Djougou	0	Angara	462	712	969	1253	2025	/	/
07-3-01-03	Donga	Djougou	0	Bandetchouri	557	835	1138	1472	2027	/	/
07-3-09-03	Donga	Djougou	0	Bounvari	1858	2908	3961	5123	2032	2030	2029
07-3-07-01	Donga	Djougou	0	Dabagou	2481	3664	4989	6453	2034	2033	2032
07-3-01-05	Donga	Djougou	0	Dangoussar	1837	2864	3901	5046	2027	2025	2022
07-3-06-02	Donga	Djougou	0	Danogou	641	991	1350	1746	2020	2018	/
07-3-07-02	Donga	Djougou	0	Demsirou	1505	2325	3166	4096	2032	2030	2029
07-3-53-04	Donga	Djougou	0	Dendougou	1383	2167	2952	3818	2028	2025	2023
07-3-52-04	Donga	Djougou	0	Djakpingou	2010	3077	4191	5420	2016	2028	2027
07-3-02-04	Donga	Djougou	0	Donga	11651	18085	24627	31853	2018	2017	2017
07-3-05-02	Donga	Djougou	0	Gangamou	1875	2922	3979	5147	2033	2032	2031
07-3-02-05	Donga	Djougou	0	Gaounga	7328	11178	15222	19688	2018	2017	2017
07-3-02-06	Donga	Djougou	0	Gnansonga	817	1277	1739	2250	2030	2027	2026
07-3-01-06	Donga	Djougou	0	Gondessar	627	971	1322	1710	2024	2021	/

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu d'arr.		INSAE 2002	2015	2025	2035	Scénario Haut	Scénario Moyen	Scénario Faible
07-3-51-03	Donga	Djougou	0	Kamourou	1367	2077	2828	3658	2024	2022	2022
07-3-02-07	Donga	Djougou	0	Koua	2503	3913	5329	6893	2017	2031	2029
07-3-53-06	Donga	Djougou	0	Kpamalangou	502	772	1051	1360	2022	/	/
07-3-04-03	Donga	Djougou	0	Kpandouga	452	674	918	1187	2032	/	/
07-3-04-04	Donga	Djougou	0	Краоиуа	876	1301	1772	2292	2031	2029	2028
07-3-05-04	Donga	Djougou	0	Kpebouko	2506	3923	5342	6910	2034	2032	2032
07-3-03-02	Donga	Djougou	0	Kpegounou	382	586	798	1033	2024	/	/
07-3-02-08	Donga	Djougou	0	Mone	2189	3384	4609	5961	2029	2026	2023
07-3-52-09	Donga	Djougou	0	Nalohou	889	1369	1864	2411	2021	2019	2018
07-3-01-07	Donga	Djougou	0	Selera	695	1089	1483	1918	2020	2020	/
07-3-51-08	Donga	Djougou	0	Serlo	764	1186	1615	2090	2023	2021	2021
07-3-03-03	Donga	Djougou	0	Sosso	1081	1670	2273	2939	2022	2020	2019
07-3-05-05	Donga	Djougou	0	Tebou	1744	2674	3641	4708	2031	2029	2028
07-3-03-04	Donga	Djougou	0	Tolra	515	803	1093	1413	2021	/	/
07-3-02-03	Donga	Djougou	0	Tossahou	2197	3431	4673	6044	2030	2027	2024
07-3-08-03	Donga	Djougou	0	Yarakeou	1650	2511	3420	4423	2030	2022	2021
07-3-05-06	Donga	Djougou	0	Yorossonga	1797	2802	3815	4934	2033	2031	2030
07-4-02-03	Donga	Ouake	0	Adjede	1054	1838	2709	3743	2022	2020	2019
07-4-02-01	Donga	Ouake	0	Akoussite	695	1201	1770	2445	2021	2019	2018
07-4-01-01	Donga	Ouake	0	Akpade	1305	2190	3227	4459	2026	2023	2022
07-4-01-02	Donga	Ouake	0	Alitokoum	398	700	1032	1426	2020	/	/
07-4-02-02	Donga	Ouake	0	Assode	891	1510	2225	3074	2030	2030	2030
07-4-04-01	Donga	Ouake	1	Awotobi	5960	10406	15334	21184	2018	2017	2017
07-4-01-04	Donga	Ouake	0	Bohomdo	792	1393	2052	2835	2020	2019	2018
07-4-04-03	Donga	Ouake	0	Gnangbakabia	864	1519	2238	3091	2027	2025	2024
07-4-01-05	Donga	Ouake	0	Itchode	424	695	1024	1415	2019	/	/
07-4-01-06	Donga	Ouake	0	Kadolassi	481	846	1247	1723	2023	2021	/
07-4-01-07	Donga	Ouake	0	Kakpala	1086	1908	2811	3883	2025	2022	2021
07-4-04-04	Donga	Ouake	0	Kangnifele	374	658	969	1339	2022	/	/
07-4-05-01	Donga	Ouake	0	Kawado	841	1447	2132	2946	2021	2019	2019
07-4-03-04	Donga	Ouake	0	Kim kim	1369	2390	3522	4867	2028	2025	2024

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
07-4-51-05	Donga	Ouake	0	Kpeloude	1038	1784	2629	3633	2023	2020	2020
07-4-05-02	Donga	Ouake	0	Landa	393	618	911	1257	2027	/	/
07-4-05-03	Donga	Ouake	0	Madjatom	1726	2851	4201	5804	2028	2029	2027
07-4-03-05	Donga	Ouake	0	Mami	1108	1934	2849	3935	2022	2023	2022
07-4-04-06	Donga	Ouake	0	N'djakada	681	1198	1765	2439	2026	2024	2023
07-4-01-09	Donga	Ouake	0	Talinta	1058	1802	2655	3667	2016	2020	2019
07-4-01-10	Donga	Ouake	0	Tchitchakou	799	1393	2052	2835	2025	2023	2022
09-1-03-01	Mono	Athieme	0	Abloganme	603	840	1118	1419	2024	/	/
09-1-01-01	Mono	Athieme	0	Adame	823	1244	1655	2101	2028	2028	2027
09-1-51-02	Mono	Athieme	0	Adjove	547	829	1103	1400	2022	/	/
09-1-51-03	Mono	Athieme	0	Agbobada	874	1315	1751	2221	2023	2021	2018
09-1-51-04	Mono	Athieme	0	Agniwedji	663	1001	1332	1690	2023	2021	/
09-1-01-05	Mono	Athieme	0	Aguidahoue	1118	1662	2212	2807	2027	2028	2026
09-1-03-02	Mono	Athieme	1	Ahoho	1174	1775	2363	3000	2017	2016	2016
09-1-02-02	Mono	Athieme	0	Allounkoui	599	882	1174	1490	2024	/	/
09-1-51-05	Mono	Athieme	0	Assedji	1040	1564	2083	2643	2027	2024	2021
09-1-51-06	Mono	Athieme	0	Atchontoe	688	1033	1375	1745	2016	2019	/
09-1-51-08	Mono	Athieme	0	Awame i	1007	1518	2021	2565	2025	2022	2020
09-1-51-09	Mono	Athieme	0	Awame ii	897	1346	1792	2275	2025	2022	2020
09-1-01-06	Mono	Athieme	0	Ayoucome	963	1422	1893	2402	2025	2023	2020
09-1-04-03	Mono	Athieme	0	Bocohoue	646	965	1284	1630	2020	2019	/
09-1-01-08	Mono	Athieme	0	Devedodji	893	1341	1784	2264	2025	2024	2022
09-1-03-03	Mono	Athieme	0	Deveme	548	815	1084	1376	2021	/	/
09-1-04-06	Mono	Athieme	0	Don condji	579	833	1108	1406	2021	/	/
09-1-02-05	Mono	Athieme	0	Goudon	629	937	1247	1582	2023	2021	/
09-1-02-06	Mono	Athieme	0	Hokpame	933	1411	1878	2384	2029	2027	2026
09-1-02-07	Mono	Athieme	0	Houegle	495	742	989	1255	2023	/	/
09-1-02-08	Mono	Athieme	0	Hounkpon	680	1011	1346	1708	2024	2021	/
09-1-01-07	Mono	Athieme	0	Kodji	964	1472	1959	2487	2027	2024	2021
09-1-51-11	Mono	Athieme	0	Koudohounhoue	524	776	1033	1310	2021	/	/
09-1-01-02	Mono	Athieme	0	Kpodji	1288	1954	2601	3301	2030	2027	2024

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
09-1-03-04	Mono	Athieme	0	Madebui	395	592	789	1001	2023	/	/
09-1-01-10	Mono	Athieme	0	Sevotinou	1143	1716	2283	2897	2029	2029	2027
09-1-01-03	Mono	Athieme	0	Tchicomey	1257	1858	2473	3139	2029	2027	2024
09-1-01-11	Mono	Athieme	0	Toguido	577	864	1150	1460	2026	/	/
09-1-03-05	Mono	Athieme	0	Zedonou	510	724	965	1225	2023	/	/
09-2-04-01	Mono	Вора	0	Adjame	415	616	807	1011	2023	/	/
09-2-01-01	Mono	Вора	1	Agbodji	1974	2911	3818	4786	2017	2017	2017
09-2-03-01	Mono	Вора	0	Ahloume	815	1210	1587	1989	2026	2024	/
09-2-02-01	Mono	Вора	0	Aplenou	1127	1672	2193	2748	2027	2024	2024
09-2-02-02	Mono	Вора	0	Atoe	1687	2477	3249	4071	2031	2029	2026
09-2-04-09	Mono	Вора	0	Atohoue	924	659	864	1084	2021	/	/
09-2-06-01	Mono	Вора	0	Avegame	1951	2878	3774	4731	2032	2031	2028
09-2-03-02	Mono	Вора	0	Bolime	622	923	1211	1518	2024	2021	/
09-2-04-04	Mono	Вора	0	Dhodho	3493	5123	6719	8422	2018	2017	2017
09-2-06-02	Mono	Вора	0	Djekian	1667	2472	3242	4064	2032	2030	2026
09-2-01-02	Mono	Вора	0	Djidjozoun	1367	2029	2661	3336	2029	2027	2027
09-2-04-03	Mono	Вора	0	Djofoun	901	1333	1748	2191	2026	2025	2023
09-2-51-06	Mono	Вора	0	Doguia	432	641	841	1053	2021	/	/
09-2-06-03	Mono	Вора	0	Fandinwin	1048	1556	2041	2558	2026	2022	2019
09-2-03-03	Mono	Вора	1	Gbakpodji	1593	2364	3101	3887	2017	2017	2016
09-2-02-04	Mono	Вора	0	Gnidonou	1473	2187	2867	3594	2030	2028	2025
09-2-04-08	Mono	Вора	0	Hangnanmee	971	1371	1798	2253	2028	2025	2023
09-2-02-05	Mono	Вора	0	Honbete	837	1236	1621	2032	2026	2023	2023
09-2-02-06	Mono	Вора	0	Honhoui	1532	2238	2935	3679	2030	2028	2025
09-2-03-04	Mono	Вора	0	Houeganmey	953	1415	1856	2326	2027	2025	2025
09-2-01-03	Mono	Вора	0	Houegbo	798	1185	1553	1947	2022	2019	/
09-2-01-04	Mono	Вора	0	Hounviatouin	1065	1582	2075	2601	2026	2027	2026
09-2-02-07	Mono	Вора	0	Kpave	1208	1791	2349	2944	2027	2025	2024
09-2-03-05	Mono	Вора	0	Kplatoe	1528	2267	2974	3728	2032	2030	2028
09-2-01-05	Mono	Вора	0	Logloe	1267	1872	2456	3079	2028	2027	2025
09-2-06-04	Mono	Вора	0	Lonfin	1271	1883	2470	3097	2028	2026	2024

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
09-2-51-10	Mono	Вора	0	Masse	871	1293	1695	2124	2027	2024	2022
09-2-02-08	Mono	Вора	0	Medessedji	726	1077	1412	1770	2025	2022	/
09-2-01-06	Mono	Вора	0	Medetogbo	1145	1682	2207	2766	2017	2027	2026
09-2-51-11	Mono	Вора	0	Sehougbato	909	1349	1769	2217	2028	2027	2025
09-2-04-11	Mono	Вора	0	Tanve	1972	1426	1870	2344	2025	2022	2020
09-2-06-05	Mono	Вора	0	Tchantchankpo	739	1098	1440	1805	2022	2021	/
09-2-06-06	Mono	Вора	0	Tekozouin	1162	1723	2260	2833	2027	2024	2021
09-2-06-07	Mono	Вора	0	Tohoueta	1262	1873	2457	3079	2028	2025	2022
09-2-51-13	Mono	Вора	0	Tokpoe	1114	1651	2164	2712	2016	2024	2022
09-2-04-10	Mono	Вора	0	Yonouhoue	444	1356	1779	2229	2028	2025	2023
09-2-01-07	Mono	Вора	0	Zizague	795	1177	1544	1935	2022	2026	/
09-2-02-09	Mono	Вора	0	Zoungbo	1348	1992	2613	3275	2029	2026	2023
09-3-51-01	Mono	Come	0	Agoutome	1988	2842	3652	4502	2033	2032	2030
09-3-51-07	Mono	Come	0	Honve come	1859	2633	3384	4170	2033	2031	2030
09-3-02-05	Mono	Come	0	Medemahoue	979	1412	1815	2238	2026	2023	2021
09-3-02-06	Mono	Come	0	Mongnonwi	1078	1539	1978	2438	2026	2023	2020
09-3-03-05	Mono	Come	0	Totchon agni	463	654	840	1035	2019	/	/
09-4-03-02	Mono	Grand-popo	1	Avloh centre	513	735	979	1243	2017	2016	2016
09-4-03-03	Mono	Grand-popo	0	Avloh plage	593	592	789	1001	2019	/	/
09-4-04-01	Mono	Grand-popo	0	Devicanmey	664	984	1311	1665	2022	2020	/
09-4-06-02	Mono	Grand-popo	0	Gnito	1252	1839	2449	3108	2031	2029	2026
09-4-04-03	Mono	Grand-popo	0	Hakandji	733	1100	1465	1859	2024	2022	/
09-4-04-04	Mono	Grand-popo	0	Hanlagni	975	1475	1964	2492	2029	2026	2026
09-4-03-04	Mono	Grand-popo	0	Hohoue	1147	1562	2081	2642	2026	2022	2021
09-4-51-05	Mono	Grand-popo	0	Houndjohoundji	1200	1816	2419	3071	2029	2026	2023
09-4-51-06	Mono	Grand-popo	0	Houssoukoue	1304	1937	2580	3276	2029	2026	2023
09-4-03-05	Mono	Grand-popo	0	Koenta	867	1028	1369	1738	2020	2020	/
09-4-04-05	Mono	Grand-popo	0	Kpatcha-condji	452	683	909	1153	2024	/	/
09-4-03-06	Mono	Grand-popo	0	Kpeko	543	820	1093	1387	2019	/	/
09-4-01-04	Mono	Grand-popo	0	Kpovidji	1343	1951	2599	3300	2030	2027	2024
09-4-06-03	Mono	Grand-popo	1	Sazue	1048	1549	2062	2618	2016	2016	2016

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
09-4-01-05	Mono	Grand-popo	0	Seho condji	675	1016	1354	1719	2027	2025	/
09-4-01-06	Mono	Grand-popo	0	Todjonkoun	1096	1584	2110	2678	2028	2026	2023
09-4-01-07	Mono	Grand-popo	0	Tokpa aizo	918	1388	1848	2347	2029	2027	2025
09-4-04-06	Mono	Grand-popo	0	Tolebekpa	624	935	1245	1581	2025	2022	/
09-4-04-07	Mono	Grand-popo	0	Tomadjihoue	584	882	1174	1490	2024	/	/
09-4-06-04	Mono	Grand-popo	0	Vodome	900	1332	1774	2251	2025	2023	2024
09-5-02-01	Mono	Houeyogbe	0	Adjame	1264	1764	2224	2697	2030	2028	2025
09-5-01-01	Mono	Houeyogbe	0	Aguehon	1498	2070	2611	3167	2032	2031	2029
09-5-52-02	Mono	Houeyogbe	0	Allogo	541	755	952	1154	2019	/	/
09-5-01-04	Mono	Houeyogbe	0	Danhoue	734	1021	1287	1561	2027	2025	/
09-2-04-02	Mono	Houeyogbe	0	Devedji	1210	1692	2133	2588	2029	2026	2023
09-5-03-01	Mono	Houeyogbe	0	Devedji	998	1396	1761	2136	2026	2023	2020
09-5-02-06	Mono	Houeyogbe	0	Didongbodo	654	903	1138	1381	2019	/	/
09-5-01-05	Mono	Houeyogbe	0	Djetoe	791	1106	1394	1691	2022	2020	/
09-5-01-06	Mono	Houeyogbe	0	Djibio	2027	2832	3572	4334	2033	2032	2030
09-5-02-07	Mono	Houeyogbe	0	Dodji	1552	2167	2733	3315	2031	2029	2027
09-5-02-04	Mono	Houeyogbe	0	Doutou agongo	2691	3731	4705	5708	2034	2033	2031
09-5-03-02	Mono	Houeyogbe	0	Gave	927	1298	1637	1986	2027	2026	/
09-5-02-10	Mono	Houeyogbe	0	Gbagbonou	984	1311	1654	2006	2023	2020	2018
09-5-52-05	Mono	Houeyogbe	0	Gbedji	950	1332	1680	2038	2027	2025	2024
09-5-02-11	Mono	Houeyogbe	0	Gboho	533	747	942	1142	2025	/	/
09-5-01-07	Mono	Houeyogbe	0	Gnanmako	902	1264	1594	1934	2027	2026	/
09-5-02-12	Mono	Houeyogbe	0	Gogohondji	750	1037	1308	1586	2021	2019	/
09-5-52-08	Mono	Houeyogbe	0	Hinde	842	1155	1456	1767	2026	2023	/
09-5-02-13	Mono	Houeyogbe	0	Hlassigoume	1469	2061	2599	3153	2030	2028	2024
09-5-52-09	Mono	Houeyogbe	0	Honnougbo	1588	2175	2743	3328	2031	2028	2025
09-5-01-08	Mono	Houeyogbe	0	Houankpa	1767	2470	3115	3779	2032	2031	2029
09-5-04-02	Mono	Houeyogbe	0	Houinga houegbe	588	819	1032	1252	2024	/	/
09-5-04-03	Mono	Houeyogbe	0	Hounga salahoue	575	800	1009	1225	2023	/	/
09-5-51-02	Mono	Houeyogbe	0	Hounvi	927	1300	1639	1987	2025	2025	/
09-5-02-14	Mono	Houeyogbe	0	Hounvi atchago	573	804	1015	1231	2024	/	/

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
09-5-02-15	Mono	Houeyogbe	0	Kowenou	1228	1688	2128	2581	2028	2025	2022
09-5-03-05	Mono	Houeyogbe	0	Kpetou gbadji	611	857	1080	1310	2021	/	/
09-5-02-16	Mono	Houeyogbe	0	Maiboui	2103	2938	3706	4496	2033	2032	2029
09-5-52-12	Mono	Houeyogbe	0	Sebo	709	985	1243	1508	2020	2018	/
09-5-01-10	Mono	Houeyogbe	0	Tohoin	676	948	1196	1451	2020	/	/
09-5-04-05	Mono	Houeyogbe	0	Tohonou	1044	1445	1823	2212	2029	2027	2025
09-5-02-17	Mono	Houeyogbe	0	Tokpa	1673	2336	2946	3574	2031	2029	2027
09-5-52-14	Mono	Houeyogbe	0	Zounme	1407	1923	2425	2941	2030	2027	2024
09-6-04-01	Mono	Lokossa	0	Adjigo kpodave	1051	1490	1905	2337	2028	2025	2023
09-6-04-02	Mono	Lokossa	0	Adjohoue	615	879	1123	1378	2024	/	/
09-6-03-01	Mono	Lokossa	0	Adrodji	1288	1841	2353	2887	2029	2026	2022
09-6-01-01	Mono	Lokossa	0	Adrogbo	2368	3385	4326	5307	2034	2032	2031
09-6-01-03	Mono	Lokossa	0	Agnigbavedji	2851	4062	5191	6369	2034	2033	2031
09-6-04-03	Mono	Lokossa	0	Agonkanme	740	1059	1354	1661	2023	2020	/
09-6-01-04	Mono	Lokossa	0	Ahotinsa	38	1485	1899	2330	2028	2025	2023
09-6-01-06	Mono	Lokossa	0	Azizonsa	1056	1510	1931	2369	2027	2023	2021
09-6-04-04	Mono	Lokossa	0	Dansihoue	486	696	890	1092	2020	/	/
09-6-02-01	Mono	Lokossa	0	Dessa	2007	2861	3657	4486	2033	2032	2030
09-6-51-05	Mono	Lokossa	0	Djehadji	686	982	1255	1541	2022	2020	/
09-6-04-05	Mono	Lokossa	0	Djondjizoume	1272	1820	2327	2855	2030	2029	2027
09-6-51-06	Mono	Lokossa	0	Doukonta	1187	1704	2178	2672	2029	2027	2024
09-6-03-04	Mono	Lokossa	0	Kplogodome	1619	2313	2956	3626	2031	2029	2026
09-6-03-05	Mono	Lokossa	0	Tinou	1430	2038	2605	3196	2031	2030	2027
09-6-03-06	Mono	Lokossa	0	Tozoume	3407	4842	6189	7593	2034	2033	2032
09-6-02-06	Mono	Lokossa	0	Veha	1040	1487	1901	2332	2030	2028	2026
09-6-51-14	Mono	Lokossa	0	Zoungame	467	1385	1771	2173	2028	2024	2023
10-1-01-01	Oueme	Adjarra	0	Agbomey-takplikpo	401	707	908	1125	2021	/	/
10-1-04-01	Oueme	Adjarra	0	Alladako	1864	3289	4223	5231	2033	2032	2030
10-1-01-03	Oueme	Adjarra	0	Ayihounzo	536	946	1215	1505	2019	2018	/
10-1-01-04	Oueme	Adjarra	0	Bocovi-tchaka	800	1404	1803	2233	2024	2025	2023
10-1-01-05	Oueme	Adjarra	0	Do-hongla	815	1430	1835	2274	2025	2024	2022

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
10-1-52-03	Oueme	Adjarra	0	Drogbo	893	1576	2104	2729	2022	2021	2019
10-1-02-05	Oueme	Adjarra	0	Gassako	426	757	1011	1311	2020	/	/
10-1-04-04	Oueme	Adjarra	0	Gbeadji	1492	2621	3366	4170	2030	2029	2026
10-1-04-05	Oueme	Adjarra	0	Gbehamey	640	1129	1449	1795	2021	2020	/
10-1-02-07	Oueme	Adjarra	0	Hounsa assiogbossa	1472	2613	3490	4526	2031	2030	2027
10-1-52-04	Oueme	Adjarra	1	Kpota	407	723	965	1252	2016	2016	2016
10-1-03-06	Oueme	Adjarra	0	Oueke	741	1307	1678	2079	2022	2020	2019
10-2-02-01	Oueme	Adjohoun	0	Abidomey	647	899	1131	1368	2021	/	/
10-2-05-01	Oueme	Adjohoun	0	Agonlin	1356	1888	2374	2872	2029	2027	2025
10-2-05-02	Oueme	Adjohoun	0	Ahouandjannanfon	773	1078	1355	1640	2020	2018	/
10-2-01-02	Oueme	Adjohoun	0	Allandohou ii	630	879	1105	1337	2020	/	/
10-2-02-02	Oueme	Adjohoun	0	Assigui	628	877	1103	1335	2025	/	/
10-2-02-03	Oueme	Adjohoun	1	Awonou	728	1017	1279	1548	2017	2016	2017
10-2-05-03	Oueme	Adjohoun	0	Dannou	2519	3469	4362	5278	2033	2032	2031
10-2-04-01	Oueme	Adjohoun	1	Deme	737	1030	1295	1568	2016	2016	2016
10-2-04-02	Oueme	Adjohoun	0	Fanvi	664	928	1167	1412	2020	/	/
10-2-01-04	Oueme	Adjohoun	0	Fonly	486	677	852	1031	2020	/	/
10-2-05-04	Oueme	Adjohoun	1	Gangban	4569	6335	7966	9640	2018	2017	2017
10-2-03-07	Oueme	Adjohoun	1	Gbekandji i	2363	3295	4142	5012	2018	2017	2017
10-2-03-08	Oueme	Adjohoun	0	Gbekandji ii	1374	1901	2390	2892	2030	2029	2028
10-2-05-05	Oueme	Adjohoun	0	Gogbo	2375	3314	4167	5043	2017	2032	2031
10-2-06-06	Oueme	Adjohoun	0	Gouke	710	992	1247	1510	2022	2020	/
10-2-06-03	Oueme	Adjohoun	0	Hlankpa	1042	1454	1828	2212	2028	2029	2029
10-2-01-06	Oueme	Adjohoun	0	Houedo-wo	587	819	1030	1246	2024	/	/
10-2-06-04	Oueme	Adjohoun	0	Kakanitchoe	1238	1729	2174	2631	2030	2028	2026
10-2-06-05	Oueme	Adjohoun	0	Kode ague	653	912	1146	1387	2021	/	/
10-2-02-04	Oueme	Adjohoun	0	Siliko	2181	3034	3815	4616	2033	2032	2031
10-2-01-09	Oueme	Adjohoun	0	Sokpetinkon	679	945	1189	1439	2020	/	/
10-2-07-01	Oueme	Adjohoun	0	Togbota-ague	1321	1841	2315	2801	2032	2030	2029
10-2-07-02	Oueme	Adjohoun	1	Togbota-oudjra	1471	2053	2582	3124	2017	2016	2016
10-3-02-01	Oueme	Aguegues	0	Agbodjedo	419	759	1149	1624	2020	2018	/

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
10-3-01-06	Oueme	Aguegues	0	Akpadon togodo	1566	2839	4297	6070	2031	2030	2027
10-3-01-03	Oueme	Aguegues	1	Djekpe	1846	3346	5065	7157	2017	2016	2016
10-3-03-02	Oueme	Aguegues	0	Djigbekome	848	1550	2345	3312	2024	2023	2021
10-3-03-03	Oueme	Aguegues	0	Donoukpa	1127	2060	3118	4405	2028	2026	2023
10-3-01-04	Oueme	Aguegues	0	Gbodje	429	784	1187	1677	2019	2018	/
10-3-01-05	Oueme	Aguegues	0	Houinta	2663	4849	7340	10370	2034	2033	2032
10-3-03-04	Oueme	Aguegues	0	Houndekome	1641	2956	4474	6321	2016	2016	2027
10-3-03-05	Oueme	Aguegues	0	Kindji	1294	2293	3470	4902	2016	2027	2024
10-3-03-06	Oueme	Aguegues	1	Kintokome	1137	2022	3060	4323	2016	2016	2016
10-3-03-07	Oueme	Aguegues	0	Sohekome	781	1421	2150	3038	2021	2020	2018
10-3-03-08	Oueme	Aguegues	0	Trankome	1077	1970	2981	4212	2027	2024	2022
10-4-01-01	Oueme	Akpro-misserete	0	Agondozoun	2145	3781	5049	6548	2017	2017	2031
10-4-51-03	Oueme	Akpro-misserete	0	Akpro hanzounme	2345	4164	5560	7211	2017	2017	2032
10-4-04-01	Oueme	Akpro-misserete	0	Allagba	1274	2254	3010	3904	2028	2029	2027
10-4-51-05	Oueme	Akpro-misserete	0	Blehouan	593	1055	1408	1827	2019	2018	/
10-4-51-07	Oueme	Akpro-misserete	0	Ganmi	422	749	999	1296	2019	/	/
10-4-02-03	Oueme	Akpro-misserete	0	Gbakpo sedje	1279	2263	3021	3918	2030	2028	2025
10-4-51-08	Oueme	Akpro-misserete	0	Gbedji adokon	1276	2225	2972	3854	2028	2027	2024
10-4-04-02	Oueme	Akpro-misserete	0	Houezounme-kpevi	954	1696	2264	2937	2027	2027	2025
10-4-01-04	Oueme	Akpro-misserete	0	Hounli	888	1546	2064	2677	2028	2026	2024
10-4-04-03	Oueme	Akpro-misserete	0	Koudjananda	1236	2196	2932	3802	2029	2026	2025
10-4-51-09	Oueme	Akpro-misserete	0	Kouve	1887	3356	4481	5811	2033	2032	2031
10-4-04-04	Oueme	Akpro-misserete	0	Kpanoukpade	2329	4142	5531	7174	2034	2033	2031
10-4-51-10	Oueme	Akpro-misserete	0	Kpogon	2660	4724	6308	8181	2034	2033	2032
10-4-04-05	Oueme	Akpro-misserete	0	Kpole	1048	1865	2490	3230	2028	2027	2025
10-4-02-07	Oueme	Akpro-misserete	0	Ouiya	534	948	1266	1643	2020	2019	/
10-4-01-05	Oueme	Akpro-misserete	0	Tchoukou kpevi	1276	2103	2808	3642	2030	2028	2026
10-4-02-10	Oueme	Akpro-misserete	0	Tohouikanme	770	1364	1822	2363	2023	2021	2020
10-4-02-11	Oueme	Akpro-misserete	0	Tokpa ouete	538	930	1242	1611	2019	2018	/
10-4-02-12	Oueme	Akpro-misserete	0	Vante	782	1390	1856	2407	2027	2025	2024
10-4-01-06	Oueme	Akpro-misserete	0	Zoundji	1743	3062	4089	5303	2032	2031	2028

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
10-4-04-06	Oueme	Akpro-misserete	1	Zoungbome	2140	3797	5070	6576	2018	2017	2017
10-5-04-01	Oueme	Avrankou	0	Affomadje-kada	1589	2746	3667	4756	2032	2031	2029
10-5-03-01	Oueme	Avrankou	0	Agamadin	866	1496	1998	2591	2022	2020	2019
10-5-06-01	Oueme	Avrankou	0	Danme-tovihoudji	1087	1880	2510	3256	2026	2024	2022
10-5-04-03	Oueme	Avrankou	0	Gbagla-koke	1668	2885	3852	4996	2032	2031	2030
10-5-04-04	Oueme	Avrankou	0	Gbohoungbo	764	1319	1762	2285	2024	2022	2020
10-5-02-09	Oueme	Avrankou	0	Houngo	556	961	1283	1665	2020	2019	/
10-5-03-04	Oueme	Avrankou	0	Houngon djinon	1069	1844	2462	3193	2028	2026	2023
10-5-06-02	Oueme	Avrankou	0	Kate-kliko	791	1368	1827	2370	2021	2019	2018
10-5-06-03	Oueme	Avrankou	0	Kotan	1116	1919	2563	3324	2027	2024	2021
10-5-04-07	Oueme	Avrankou	0	Loko-dave	538	930	1242	1611	2020	2019	/
10-5-02-11	Oueme	Avrankou	0	Sedje-ahovo	400	692	924	1199	2020	/	/
10-5-02-12	Oueme	Avrankou	0	Sekanme	1724	2980	3980	5161	2032	2031	2029
10-5-03-05	Oueme	Avrankou	0	Seligon	735	1270	1695	2199	2020	2019	2018
10-5-04-08	Oueme	Avrankou	0	Tokpo	1985	3425	4573	5931	2033	2032	2030
10-5-06-05	Oueme	Avrankou	0	Vagnon	1480	2556	3413	4427	2030	2029	2026
10-6-04-01	Oueme	Bonou	0	Adido	1304	2081	2886	3789	2030	2030	2030
10-6-51-01	Oueme	Bonou	0	Agbonan	2361	3768	5225	6860	2034	2033	2031
10-6-01-05	Oueme	Bonou	0	Agbosso	1215	1930	2675	3512	2027	2025	2023
10-6-02-02	Oueme	Bonou	0	Agomahan	1424	2289	3173	4165	2031	2029	2029
10-6-02-01	Oueme	Bonou	0	Agonhoui	555	892	1237	1624	2019	2023	/
10-6-03-01	Oueme	Bonou	0	Ahouanzonme	1397	2243	3109	4083	2029	2027	2024
10-6-04-02	Oueme	Bonou	0	Allankpon	1468	2360	3271	4295	2018	2029	2030
10-6-03-02	Oueme	Bonou	0	Assrossa	1595	2563	3553	4665	2016	2029	2026
10-6-04-03	Oueme	Bonou	0	Atankpe	929	1496	2074	2724	2025	2028	2029
10-6-03-03	Oueme	Bonou	0	Avlankanme	685	1102	1528	2006	2020	2018	2018
10-6-51-03	Oueme	Bonou	0	Ayogo	423	681	945	1241	2019	/	/
10-6-51-04	Oueme	Bonou	0	Azongbossa	489	782	1084	1424	2016	/	/
10-6-03-05	Oueme	Bonou	0	Gnanhoui zounme	348	556	770	1012	2020	/	/
10-6-01-04	Oueme	Bonou	0	Sota	526	826	1146	1506	2020	2018	/
10-6-01-07	Oueme	Bonou	0	Wovime	703	1130	1568	2059	2020	2018	2018

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
10-6-01-08	Oueme	Bonou	0	Zoukou	925	1487	2062	2706	2023	2021	2020
10-7-03-01	Oueme	Dangbo	0	Adjido	2435	3769	5095	6550	2033	2032	2031
10-7-01-01	Oueme	Dangbo	1	Affio	1708	2633	3559	4575	2017	2016	2016
10-7-02-01	Oueme	Dangbo	0	Agbanta	1671	2943	3978	5112	2032	2031	2029
10-7-03-02	Oueme	Dangbo	0	Agbonou	698	1078	1457	1873	2023	2024	/
10-7-03-03	Oueme	Dangbo	0	Agongue	2331	3550	4798	6168	2033	2032	2030
10-7-06-01	Oueme	Dangbo	0	Akokponawa	481	738	998	1283	2021	/	/
10-7-02-02	Oueme	Dangbo	0	Alanwadan	1899	672	909	1169	2020	/	/
10-7-03-04	Oueme	Dangbo	1	Dame	2670	4134	5588	7182	2017	2017	2017
10-7-02-03	Oueme	Dangbo	0	Danko	433	1736	2348	3018	2026	2024	2023
10-7-03-05	Oueme	Dangbo	0	Deweme daho	913	1411	1908	2452	2024	2024	2023
10-7-02-05	Oueme	Dangbo	0	Gbessoume	479	743	1003	1289	2024	/	/
10-7-05-01	Oueme	Dangbo	0	Glahounsa	2400	3712	5017	6449	2033	2032	2031
10-7-05-02	Oueme	Dangbo	0	Hetin-glehoue	565	876	1184	1521	2019	2018	/
10-7-05-03	Oueme	Dangbo	0	Hetin-sota	2724	4212	5694	7319	2017	2033	2031
10-7-03-06	Oueme	Dangbo	0	Houedomey	1762	2729	3689	4742	2031	2030	2027
10-7-01-02	Oueme	Dangbo	0	Hounhoue	1121	1733	2343	3012	2026	2023	2021
10-7-05-05	Oueme	Dangbo	1	Kessounnou i	2687	4146	5605	7205	2017	2017	2017
10-7-01-03	Oueme	Dangbo	0	Kodekpeme	872	1352	1828	2350	2024	2022	2021
10-7-05-04	Oueme	Dangbo	0	Kodonou	1458	2260	3054	3926	2030	2028	2025
10-7-02-06	Oueme	Dangbo	0	Seho	890	1380	1865	2398	2025	2023	2022
10-7-03-07	Oueme	Dangbo	0	Sodji	522	810	1095	1408	2022	/	/
10-7-01-04	Oueme	Dangbo	0	Togbohounsou	1553	4981	6733	8655	2034	2034	2032
10-7-03-08	Oueme	Dangbo	0	Wozoumey	961	1483	2005	2577	2023	2025	2024
10-7-06-04	Oueme	Dangbo	0	Yokon	2092	3245	4386	5638	2032	2031	2030
10-7-06-05	Oueme	Dangbo	1	Zoungue	2097	3245	4386	5638	2017	2016	2016
10-7-06-06	Oueme	Dangbo	0	Zounta	1451	2220	3002	3859	2030	2028	2026
11-1-03-01	Plateau	Adja-ouere	0	Abadago	3796	5736	7627	9671	2018	2017	2032
11-1-01-01	Plateau	Adja-ouere	0	Atan-ewe	1293	1952	2596	3292	2028	2026	2024
11-1-01-02	Plateau	Adja-ouere	0	Atan-ouignan	966	1461	1943	2464	2022	2020	2018
11-1-51-02	Plateau	Adja-ouere	0	Dogbo	1285	1943	2583	3275	2029	2026	2024

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
11-1-02-01	Plateau	Adja-ouere	0	Houedame	2092	3150	4189	5311	2033	2032	2030
11-1-51-05	Plateau	Adja-ouere	0	Houeli gaba	1618	2450	3258	4132	2032	2031	2030
11-1-03-03	Plateau	Adja-ouere	0	Ichougbo	642	972	1292	1638	2019	2018	/
11-1-51-04	Plateau	Adja-ouere	0	Igba	1993	3016	4011	5086	2032	2031	2028
11-1-03-02	Plateau	Adja-ouere	0	Igbo ikoko	2109	3167	4212	5340	2016	2030	2028
11-1-01-05	Plateau	Adja-ouere	0	Igbo oro	910	1327	1764	2236	2027	2018	2018
11-1-01-04	Plateau	Adja-ouere	0	Igbo-iroko	642	971	1291	1637	2025	2023	/
11-1-01-07	Plateau	Adja-ouere	0	Ilako abiala	603	909	1210	1534	2024	2022	/
11-1-01-08	Plateau	Adja-ouere	0	Ita bolarinwa	3339	5037	6698	8494	2017	2033	2032
11-1-04-02	Plateau	Adja-ouere	0	Ita egbebi	1379	2071	2754	3492	2029	2027	2028
11-1-05-03	Plateau	Adja-ouere	0	Itchagba gbadodo	700	1057	1406	1782	2019	2018	/
11-1-05-02	Plateau	Adja-ouere	0	Itchangni	932	1412	1877	2380	2021	2019	2018
11-1-04-07	Plateau	Adja-ouere	0	Iwinka	818	1239	1648	2090	2023	2022	2027
11-1-04-03	Plateau	Adja-ouere	0	Kokorokonhoun	1778	2672	3554	4506	2030	2029	2026
11-1-02-03	Plateau	Adja-ouere	0	Kpoulou idi ekpe	960	1452	1931	2447	2023	2021	2019
11-1-02-05	Plateau	Adja-ouere	0	Kpoulou itchougan	1166	1734	2306	2924	2027	2025	2023
11-1-05-04	Plateau	Adja-ouere	0	Logou	2457	3722	4950	6276	2033	2032	2030
11-1-03-05	Plateau	Adja-ouere	0	Mowobani	2679	4053	5389	6833	2033	2032	2031
11-1-04-01	Plateau	Adja-ouere	0	Obanigbe fouditi	1166	1766	2349	2978	2026	2023	2021
11-1-03-06	Plateau	Adja-ouere	0	Ogouro	1172	1763	2344	2972	2025	2023	2023
11-1-03-08	Plateau	Adja-ouere	0	Oke ola	2910	4405	5856	7425	2034	2034	2032
11-1-03-09	Plateau	Adja-ouere	0	Oko djeguede	1110	1677	2230	2827	2023	2021	2020
11-1-04-06	Plateau	Adja-ouere	0	Ologo	2622	3953	5256	6664	2018	2017	2031
11-1-05-05	Plateau	Adja-ouere	0	Olohoungbodje	944	1429	1900	2410	2022	2021	2020
11-1-05-06	Plateau	Adja-ouere	0	Ouignan gbadodo	807	1222	1625	2060	2020	2018	2018
11-1-05-07	Plateau	Adja-ouere	1	Tatonnonkon	2885	4343	5775	7322	2018	2017	2017
11-1-03-07	Plateau	Adja-ouere	0	Tefi oke igbala	765	1158	1540	1952	2020	2019	/
11-1-02-02	Plateau	Adja-ouere	0	Tohoui	1186	1795	2387	3027	2028	2026	2024
11-1-02-06	Plateau	Adja-ouere	0	Trobossi	886	1339	1781	2259	2025	2023	2022
11-2-02-01	Plateau	Ifangni	0	Adanmayi	758	1301	1892	2584	2023	2022	2021
11-2-01-01	Plateau	Ifangni	0	Akadja	3174	5472	7956	10868	2034	2034	2032

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
11-2-01-02	Plateau	Ifangni	0	Banigbe gare	2836	4891	7112	9715	2034	2033	2032
11-2-51-02	Plateau	Ifangni	0	Baodjo	1752	2996	4355	5949	2032	2031	2030
11-2-02-05	Plateau	Ifangni	0	Dan	1016	1737	2526	3452	2026	2024	2021
11-2-01-05	Plateau	Ifangni	0	Dangban	568	978	1423	1944	2019	2018	/
11-2-05-01	Plateau	Ifangni	0	Dessah	883	1523	2215	3027	2021	2019	2018
11-2-02-06	Plateau	Ifangni	0	Djegou djedje	1877	3203	4657	6362	2032	2031	2029
11-2-02-07	Plateau	Ifangni	0	Djegou nagot	1015	1738	2527	3452	2026	2024	2022
11-2-01-06	Plateau	Ifangni	0	Doke	3306	5627	8181	11176	2018	2034	2032
11-2-02-02	Plateau	Ifangni	0	Gbloblo	1301	2237	3251	4441	2027	2025	2023
11-2-51-04	Plateau	Ifangni	0	Gbokoutou	621	1063	1546	2113	2022	2020	2019
11-2-01-07	Plateau	Ifangni	0	Hego	902	1556	2262	3091	2021	2020	2019
11-2-04-01	Plateau	Ifangni	0	Houmbo djedje	1308	2216	3222	4401	2030	2028	2026
11-2-04-02	Plateau	Ifangni	0	Houmbo nagot	920	1577	2292	3132	2026	2024	2022
11-2-51-06	Plateau	Ifangni	0	Iguignanhoun	835	1433	2084	2846	2031	2030	2029
11-2-51-07	Plateau	Ifangni	0	Ita soumba	1608	2653	3856	5268	2032	2031	2030
11-2-05-04	Plateau	Ifangni	0	Ko-anagodo	1123	1923	2795	3819	2024	2022	2020
11-2-03-02	Plateau	Ifangni	0	Ko-ayidjedo	749	1271	1849	2526	2022	2020	2019
11-2-03-03	Plateau	Ifangni	0	Ko-dogba	3285	5623	8176	11170	2034	2034	2032
11-2-03-04	Plateau	Ifangni	1	Ko-koumolou	2106	3631	5279	7212	2017	2016	2016
11-2-03-05	Plateau	Ifangni	0	Ko-ogou	1007	1737	2526	3452	2025	2023	2021
11-2-04-03	Plateau	Ifangni	0	Kouye	664	1146	1666	2276	2021	2020	2019
11-2-01-08	Plateau	Ifangni	0	Sedo	1131	1943	2825	3859	2029	2026	2025
11-2-04-06	Plateau	Ifangni	0	Sokou	1475	2538	3690	5041	2032	2030	2028
11-3-01-02	Plateau	Ketou	0	Agounlin pahou	974	1641	2349	3166	2021	2019	2018
11-3-01-03	Plateau	Ketou	0	Aguigadji	972	1627	2328	3137	2033	2032	2031
11-3-04-01	Plateau	Ketou	0	Atanka	2411	4061	5810	7830	2034	2033	2032
11-3-04-02	Plateau	Ketou	0	Atantchoukpa	2546	4266	6103	8227	2034	2033	2032
11-3-01-04	Plateau	Ketou	0	Dogo	2526	4203	6013	8104	2034	2033	2031
11-3-01-05	Plateau	Ketou	0	Ewe	3404	5718	8180	11025	2034	2033	2032
11-3-05-01	Plateau	Ketou	0	Idjou	1753	2920	4178	5632	2032	2032	2030
11-3-02-03	Plateau	Ketou	0	Illadji	2661	4454	6372	8588	2034	2033	2032

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu d'arr.		INSAE 2002	2015	2025	2035	Scénario Haut	Scénario Moyen	Scénario Faible
11-3-02-05	Plateau	Ketou	0	Illechin	1006	1690	2418	3259	2022	2020	2019
11-3-03-05	Plateau	Ketou	0	Mowodani	5273	8841	12648	17048	2018	2017	2033
11-3-02-08	Plateau	Ketou	0	Oba tedo	1272	2126	3041	4099	2029	2027	2024
11-3-05-02	Plateau	Ketou	0	Ofia	549	925	1324	1784	2024	2022	/
11-3-05-04	Plateau	Ketou	0	Omou	3110	5233	7487	10092	2034	2034	2032
11-3-03-06	Plateau	Ketou	0	Sodji	1739	2909	4162	5609	2031	2030	2027
11-3-03-07	Plateau	Ketou	0	Vedji	2474	4164	5957	8028	2033	2032	2031
11-4-02-01	Plateau	Pobe	0	Agbele	606	823	1137	1490	2028	/	/
11-4-01-01	Plateau	Pobe	1	Ahoyeye	2876	4579	6329	8288	2018	2017	2017
11-4-02-02	Plateau	Pobe	0	Akpate	1174	563	778	1019	2026	/	/
11-4-01-02	Plateau	Pobe	1	Banigbe	809	1279	1768	2315	2016	2016	2016
11-4-04-01	Plateau	Pobe	0	Chaffou	1334	2138	2955	3870	2030	2028	2026
11-4-02-03	Plateau	Pobe	0	Eguelou	2612	1861	2573	3369	2029	2029	2027
11-4-03-02	Plateau	Pobe	0	Gbanago	1963	3143	4345	5690	2032	2030	2028
11-4-04-02	Plateau	Pobe	0	Ibate	1985	3157	4363	5714	2016	2030	2028
11-4-01-03	Plateau	Pobe	0	Idi-oro	839	1335	1845	2415	2021	2019	2019
11-4-04-04	Plateau	Pobe	0	Iga	2411	2521	3486	4565	2030	2029	2030
11-4-01-04	Plateau	Pobe	0	Igbidi	627	1003	1386	1815	2019	2018	/
11-4-04-05	Plateau	Pobe	0	Igbo ocho	1523	2441	3374	4418	2016	2027	2024
11-4-04-03	Plateau	Pobe	0	Igbo-ede	1035	1659	2294	3004	2022	2021	2019
11-4-02-05	Plateau	Pobe	0	Ihoro	1832	1068	1476	1933	2027	2026	/
11-4-02-06	Plateau	Pobe	0	Illemon	259	2881	3982	5214	2031	2030	2029
11-4-03-03	Plateau	Pobe	0	Illoulofin	1927	3081	4259	5578	2031	2030	2027
11-4-01-05	Plateau	Pobe	0	Issale-ibere	2146	3405	4706	6162	2018	2033	2031
11-4-03-06	Plateau	Pobe	1	Itchakpo	1253	2007	2775	3634	2016	2016	2016
11-4-03-07	Plateau	Pobe	0	Itchede	728	1165	1610	2109	2021	2019	2018
11-4-03-09	Plateau	Pobe	0	lwoye	728	1164	1610	2109	2021	2018	2018
11-4-03-10	Plateau	Pobe	0	Ketty	2146	3410	4714	6174	2033	2032	2031
11-4-04-06	Plateau	Pobe	0	Lafenwa	638	1019	1408	1844	2025	2024	/
11-4-02-07	Plateau	Pobe	0	Ogouba	816	1308	1808	2368	2028	2027	2028
11-4-01-06	Plateau	Pobe	0	Okeita	2252	3595	4970	6509	2033	2033	2031

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
11-4-04-07	Plateau	Pobe	0	Otekotan	905	1445	1998	2616	2023	2021	2019
11-4-03-12	Plateau	Pobe	0	Ouignan-ile	479	766	1058	1385	2019	/	/
11-5-03-03	Plateau	Sakete	0	Adjahoun kolle	2483	4363	6436	8901	2034	2033	2031
11-5-02-01	Plateau	Sakete	0	Adjegounle	6485	11290	16657	23037	2018	2017	2017
11-5-01-01	Plateau	Sakete	0	Agada-hounme	1025	1789	2639	3650	2026	2024	2022
11-5-01-03	Plateau	Sakete	0	Akpechi	2157	3735	5511	7621	2033	2032	2030
11-5-01-04	Plateau	Sakete	0	Assa idi otche	1073	1880	2774	3837	2031	2029	2027
11-5-03-02	Plateau	Sakete	0	Ayidjedo	1109	1935	2854	3947	2025	2022	2020
11-5-03-04	Plateau	Sakete	0	Dra	639	1122	1655	2288	2019	2018	2018
11-5-03-05	Plateau	Sakete	0	Gbagla nounagnon	1226	2155	3178	4395	2030	2028	2026
11-5-04-01	Plateau	Sakete	0	Gbagla yovogbedji	1899	3346	4938	6829	2032	2031	2031
11-5-52-03	Plateau	Sakete	0	Gbozounmon	564	988	1457	2014	2024	2021	2021
11-5-03-07	Plateau	Sakete	0	Houegbo	840	1473	2172	3004	2023	2021	2020
11-5-52-04	Plateau	Sakete	0	Hounme	718	1238	1827	2527	2020	2019	2018
11-5-01-05	Plateau	Sakete	0	Idjigboro	676	1190	1756	2428	2025	2023	2023
11-5-02-03	Plateau	Sakete	0	Igba	2335	4102	6053	8372	2018	2033	2032
11-5-02-02	Plateau	Sakete	0	Igbo abikou	1711	2993	4416	6107	2031	2032	2030
11-5-02-04	Plateau	Sakete	0	Igbo ossan	441	753	1111	1537	2025	2027	/
11-5-01-06	Plateau	Sakete	1	Ikpedjile	2834	4973	7337	10147	2018	2017	2017
11-5-01-07	Plateau	Sakete	0	Ilako idi oro	1103	1942	2866	3965	2030	2028	2026
11-5-04-02	Plateau	Sakete	0	Ilasso-nagot	835	1426	2104	2911	2021	2020	2018
11-5-04-03	Plateau	Sakete	0	Ilasso-sahoro	865	1513	2232	3085	2022	2020	2019
11-5-01-02	Plateau	Sakete	0	Iloro-iguidi	2014	3503	5169	7149	2033	2032	2031
11-5-52-05	Plateau	Sakete	0	Issale eko	852	1496	2206	3051	2022	2020	2019
11-5-52-06	Plateau	Sakete	0	Ita gbokou	690	1216	1793	2480	2023	2022	2021
11-5-01-08	Plateau	Sakete	0	Kobedjo	955	1683	2483	3435	2030	2028	2028
11-5-01-09	Plateau	Sakete	0	Modogan	1003	1752	2585	3575	2031	2029	2029
11-5-04-04	Plateau	Sakete	0	Sahoro djedji	702	1230	1814	2509	2019	2018	2018
11-5-04-05	Plateau	Sakete	0	Sahoro nagot	551	970	1432	1979	2023	2022	/
11-5-04-06	Plateau	Sakete	0	Sanrim-kpinle	1753	3089	4559	6305	2016	2016	2016
11-5-52-08	Plateau	Sakete	0	Wahi	712	1184	1747	2416	2020	2019	2018

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
11-5-52-09	Plateau	Sakete	0	Yogoun tohoun	911	1606	2370	3278	2029	2028	2026
11-5-52-10	Plateau	Sakete	0	Ziman	697	1228	1811	2503	2021	2020	2019
12-2-07-01	Zou	Agbangnizoun	0	Adjido	733	1016	1274	1538	2021	2018	/
12-2-06-01	Zou	Agbangnizoun	0	Akodebakou	622	864	1082	1305	2023	/	/
12-2-51-02	Zou	Agbangnizoun	0	Akpeho-dokpa	1315	1810	2268	2738	2029	2026	2022
12-2-51-03	Zou	Agbangnizoun	0	Akpeho-seme	1921	2625	3290	3971	2033	2031	2029
12-2-01-03	Zou	Agbangnizoun	0	Azozoundji	596	819	1026	1239	2023	/	/
12-2-08-01	Zou	Agbangnizoun	0	Dekanme	1339	1840	2306	2784	2030	2027	2024
12-2-04-01	Zou	Agbangnizoun	0	Dilli-fanou	976	1325	1660	2003	2027	2024	2022
12-2-07-02	Zou	Agbangnizoun	0	Dodome	576	799	1001	1207	2020	/	/
12-2-05-02	Zou	Agbangnizoun	0	Dovota	1340	1855	2324	2804	2031	2029	2027
12-2-05-04	Zou	Agbangnizoun	0	Gbozoun i	966	1294	1621	1956	2025	2025	/
12-2-06-03	Zou	Agbangnizoun	0	Hagbladou	641	872	1093	1318	2022	/	/
12-2-08-03	Zou	Agbangnizoun	0	Hodja	1187	1630	2043	2465	2029	2027	2024
12-2-08-04	Zou	Agbangnizoun	0	Houala	1241	1708	2140	2582	2030	2028	2025
12-2-08-05	Zou	Agbangnizoun	0	Kpodji-aga	1166	1613	2021	2439	2029	2027	2024
12-2-05-06	Zou	Agbangnizoun	0	Loukpe	764	1017	1275	1539	2024	2022	/
12-2-04-02	Zou	Agbangnizoun	0	Mignonhito	979	1349	1691	2041	2028	2025	2023
12-2-08-07	Zou	Agbangnizoun	0	Tohoueto	788	1090	1366	1649	2027	2024	/
12-4-54-03	Zou	Cove	0	Bagon	739	1153	1564	2017	2027	2025	2023
12-4-54-04	Zou	Cove	0	Dekpada	805	1254	1702	2196	2027	2024	2022
12-4-54-05	Zou	Cove	0	Makpegon	753	1173	1592	2053	2026	2024	2022
12-4-53-07	Zou	Cove	0	Toue	1311	2045	2774	3577	2030	2028	2024
12-5-06-01	Zou	Djidja	0	Adame	395	606	823	1064	2019	/	/
12-5-08-01	Zou	Djidja	0	Adame houeglo	885	1325	1802	2329	2025	2023	2021
12-5-03-01	Zou	Djidja	0	Agbohoutogon	1057	1655	2252	2911	2028	2026	2023
12-5-51-01	Zou	Djidja	0	Agonhohoun	694	1084	1475	1907	2031	2029	/
12-5-06-02	Zou	Djidja	0	Ahito	650	996	1356	1752	2021	2019	/
12-5-11-01	Zou	Djidja	0	Ahozoun	746	1140	1550	2002	2022	2019	2018
12-5-06-03	Zou	Djidja	0	Aihouidji	711	1047	1424	1841	2020	2018	/
12-5-11-02	Zou	Djidja	0	Aiogbe	949	1464	1991	2573	2028	2026	2023

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
12-5-09-01	Zou	Djidja	0	Aklime	566	874	1190	1538	2022	2019	/
12-5-07-01	Zou	Djidja	0	Amakpa	721	1129	1536	1984	2021	2018	/
12-5-09-02	Zou	Djidja	0	Amontika	951	1490	2027	2620	2031	2031	2030
12-5-02-01	Zou	Djidja	0	Aotrele	1725	2693	3664	4735	2017	2031	2029
12-5-03-02	Zou	Djidja	0	Asssantoun	885	1376	1872	2418	2028	2026	2026
12-5-01-01	Zou	Djidja	0	Avokanzoun	1310	2011	2735	3535	2030	2027	2024
12-5-05-02	Zou	Djidja	0	Bohokou	433	675	919	1188	2024	/	/
12-5-04-01	Zou	Djidja	0	Bohoue	678	1061	1444	1866	2021	2019	/
12-5-09-03	Zou	Djidja	0	Chie	386	587	800	1033	2019	/	/
12-5-02-02	Zou	Djidja	0	Denou	1890	2936	3995	5162	2017	2016	2016
12-5-01-02	Zou	Djidja	0	Djoho	464	692	942	1218	2019	/	/
12-5-04-02	Zou	Djidja	1	Dohouime	357	523	712	921	2016	2016	2016
12-5-51-04	Zou	Djidja	0	Dona	805	1257	1710	2210	2031	2030	2029
12-5-03-04	Zou	Djidja	0	Dridji	1981	3090	4205	5435	2017	2032	2030
12-5-01-03	Zou	Djidja	0	Fonkpame	1924	2997	4077	5269	2033	2032	2029
12-5-10-01	Zou	Djidja	0	Gbadagba	2230	3435	4674	6041	2034	2034	2032
12-5-05-03	Zou	Djidja	1	Gobe	495	747	1016	1313	2016	2016	2016
12-5-07-02	Zou	Djidja	0	Gounoukoui	1522	2384	3244	4194	2033	2031	2030
12-5-03-05	Zou	Djidja	0	Hannagbo	777	1213	1651	2133	2026	2023	2021
12-5-04-04	Zou	Djidja	0	Honhoun	760	1183	1610	2080	2025	2022	2021
12-5-07-03	Zou	Djidja	0	Kaka tehou	3228	5053	6875	8886	2018	2017	2033
12-5-10-02	Zou	Djidja	0	Kassehlo	976	1508	2051	2650	2026	2022	2020
12-5-06-04	Zou	Djidja	0	Kingbe	758	1187	1614	2085	2025	2022	2021
12-5-02-04	Zou	Djidja	0	Koekoekanme	641	977	1329	1717	2020	2018	/
12-5-09-04	Zou	Djidja	0	Kokoroko	371	581	791	1022	2026	/	/
12-5-51-06	Zou	Djidja	0	Kome	953	1493	2031	2625	2031	2030	2028
12-5-07-04	Zou	Djidja	0	Kougbadji	651	1020	1388	1794	2032	2031	/
12-5-02-05	Zou	Djidja	0	Koutagba	1800	2709	3686	4764	2034	2032	2031
12-5-08-02	Zou	Djidja	0	Kpakpanene	786	1085	1476	1907	2021	2019	/
12-5-05-04	Zou	Djidja	0	Lagbado	459	719	979	1265	2022	/	/
12-5-05-05	Zou	Djidja	0	Lakpo	1803	2791	3797	4907	2033	2033	2031

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu d'arr.		INSAE 2002	2015	2025	2035	Scénario Haut	Scénario Moyen	Scénario Faible
12-5-03-06	Zou	Djidja	0	Lalo	1862	2869	3903	5044	2034	2033	2031
12-5-03-00	Zou	Djidja	0	Lele-adato	1103	1511	2055	2656	2028	2035	2022
12-5-08-03	Zou	Djidja	0	Linsinlin	596	933	1269	1640	2028	2025	/
12-5-03-07	Zou	Djidja	0	Lobeta	1902	2974	4045	5228	2027	2023	2032
12-5-06-05		Djidja	0	Lotcho ahuame	536	835	1135	1467	2034	2055	/
12-5-06-03	Zou	Djidja	0		926	1449	1972	2548	2025	2030	2028
12-5-10-03	Zou			Mangassa	596	922	1255	1622	2031	2030	2028
	Zou	Djidja	1	Monsourou							
12-5-09-05	Zou	Djidja	1	Outo	1246	1940	2639	3410	2018	2017	2017
12-5-10-04	Zou	Djidja	0	Saloudji	958	1470	2000	2584	2031	2030	2028
12-5-02-06	Zou	Djidja	0	Sankpiti	2852	4408	5997	7752	2034	2033	2032
12-5-01-05	Zou	Djidja	0	Savakon	581	875	1191	1539	2019	2018	/
12-5-51-07	Zou	Djidja	0	Sawlakpa	1105	1726	2349	3035	2033	2031	2030
12-5-10-05	Zou	Djidja	1	Setto	2937	4526	6159	7960	2018	2017	2017
12-5-51-08	Zou	Djidja	0	Sovlegni	1513	2365	3217	4158	2033	2032	2032
12-5-06-07	Zou	Djidja	1	Sozoun	1065	1574	2142	2768	2016	2016	2016
12-5-06-08	Zou	Djidja	0	Tannouho	965	1345	1830	2364	2026	2022	2020
12-5-10-06	Zou	Djidja	0	Tokegon	917	1435	1953	2524	2027	2025	2022
12-5-08-06	Zou	Djidja	0	Tossata	978	1530	2082	2691	2026	2023	2020
12-5-09-06	Zou	Djidja	0	Vevi	753	1173	1595	2062	2028	2026	2024
12-5-51-09	Zou	Djidja	0	Wo gbaye	870	1361	1852	2394	2029	2026	2024
12-5-03-08	Zou	Djidja	0	Wokon	1012	1585	2156	2786	2029	2027	2026
12-5-51-10	Zou	Djidja	0	Ye	746	1169	1590	2055	2022	2021	2019
12-5-04-05	Zou	Djidja	0	Zadakon	389	602	819	1058	2019	/	/
12-5-11-03	Zou	Djidja	1	Zounkon	449	690	938	1212	2016	2016	2016
12-5-11-04	Zou	Djidja	0	Zounme	820	1204	1637	2115	2021	2020	2018
12-6-01-01	Zou	Ouinhi	0	Agonkon	1022	1715	2459	3322	2031	2029	2027
12-6-51-01	Zou	Ouinhi	0	Ahicon	1531	2573	3690	4983	2032	2030	2027
12-6-02-03	Zou	Ouinhi	0	Ahize	4213	7070	10140	13696	2018	2034	2033
12-6-02-02	Zou	Ouinhi	0	Ahogo	662	1119	1605	2168	2028	2026	2024
12-6-51-03	Zou	Ouinhi	0	Akante zoungo	917	1546	2218	2996	2028	2026	2023
12-6-03-01	Zou	Ouinhi	0	Akassa	1071	1809	2594	3503	2030	2028	2026

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
12-6-03-02	Zou	Ouinhi	0	Allanbande	633	1071	1536	2075	2028	2026	2025
12-6-03-03	Zou	Ouinhi	1	Gagban	1474	2491	3573	4826	2018	2017	2017
12-6-51-04	Zou	Ouinhi	0	Ganhounme	1428	2347	3366	4546	2033	2032	2030
12-6-01-05	Zou	Ouinhi	0	Gbokpago	1271	2149	3081	4161	2031	2029	2027
12-6-01-06	Zou	Ouinhi	0	Gnanli	1249	2098	3008	4062	2030	2028	2025
12-6-01-07	Zou	Ouinhi	0	Houanve	436	732	1049	1416	2019	/	/
12-6-02-05	Zou	Ouinhi	0	Houedja	1743	2897	4155	5612	2034	2032	2031
12-6-03-05	Zou	Ouinhi	0	Hounnoume	1015	1716	2460	3322	2029	2026	2026
12-6-03-04	Zou	Ouinhi	0	Midjannangan	817	1368	1963	2652	2028	2025	2026
12-6-51-06	Zou	Ouinhi	0	Monzoungoudo	1943	3211	4605	6219	2034	2032	2030
12-6-51-08	Zou	Ouinhi	0	Ouokon 2 zoungome	1599	2704	3879	5239	2032	2031	2028
12-6-51-07	Zou	Ouinhi	0	Ouokon ahlan	1159	1959	2810	3794	2029	2026	2023
12-6-02-01	Zou	Ouinhi	0	Sagon	2047	3448	4945	6679	2034	2033	2032
12-6-02-06	Zou	Ouinhi	0	Tevedji	1364	2262	3245	4383	2033	2031	2030
12-6-01-08	Zou	Ouinhi	0	Yaago	791	1338	1920	2593	2020	2018	2018
12-6-01-09	Zou	Ouinhi	0	Zoungue	2267	3833	5498	7425	2034	2033	2031
12-7-05-02	Zou	Zagnanado	0	Agonve	1240	1974	2731	3580	2031	2030	2028
12-7-05-03	Zou	Zagnanado	0	Ahlan	553	887	1227	1608	2019	2018	/
12-7-02-01	Zou	Zagnanado	1	Assiangbomey	3487	5579	7719	10117	2018	2017	2017
12-7-04-01	Zou	Zagnanado	0	Dizigo	675	1078	1492	1955	2025	2023	/
12-7-04-02	Zou	Zagnanado	1	Dove	577	922	1275	1672	2016	2016	2016
12-7-05-04	Zou	Zagnanado	0	Kpoto	624	1001	1384	1814	2021	2018	/
12-7-04-03	Zou	Zagnanado	0	Legbado	922	1479	2045	2680	2026	2024	2021
12-7-05-05	Zou	Zagnanado	0	Loko alankpe	436	698	966	1266	2022	/	/
12-7-02-03	Zou	Zagnanado	0	N'dokpo	1162	1829	2530	3315	2029	2027	2023
12-7-04-04	Zou	Zagnanado	0	Sagboni	636	1019	1410	1849	2028	2027	/
12-7-02-04	Zou	Zagnanado	0	Sowe	1154	1823	2521	3304	2028	2025	2022
12-7-04-05	Zou	Zagnanado	0	Vodo	943	1508	2085	2733	2026	2023	2021
12-7-05-06	Zou	Zagnanado	0	Wometo	427	685	948	1242	2023	/	/
12-7-05-07	Zou	Zagnanado	0	Zantan	1011	1598	2211	2897	2026	2023	2020
12-7-04-06	Zou	Zagnanado	0	Zounou	776	1244	1721	2255	2029	2026	2027

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
12-8-07-01	Zou	Za-kpota	1	Adaweme	1349	2239	3170	4236	2016	2016	2016
12-8-51-01	Zou	Za-kpota	0	Adjido	1650	2737	3875	5177	2032	2030	2028
12-8-07-02	Zou	Za-kpota	0	Adjoko	1883	3104	4395	5872	2033	2032	2030
12-8-04-01	Zou	Za-kpota	0	Affossowogba	916	1505	2130	2845	2027	2025	2022
12-8-06-02	Zou	Za-kpota	0	Agbakou	2583	4256	6026	8051	2034	2033	2032
12-8-06-03	Zou	Za-kpota	0	Agondokpoe	1419	2333	3302	4411	2032	2030	2027
12-8-06-04	Zou	Za-kpota	0	Agonkanme	928	1539	2178	2910	2026	2023	2020
12-8-03-01	Zou	Za-kpota	0	Aketekpa	1530	2537	3591	4797	2033	2032	2030
12-8-01-01	Zou	Za-kpota	1	Allahe	1513	2437	3450	4610	2017	2017	2017
12-8-02-02	Zou	Za-kpota	1	Assanlin	3612	5909	8365	11177	2018	2017	2017
12-8-07-03	Zou	Za-kpota	0	Dantota	754	1251	1771	2366	2022	2020	2019
12-8-51-03	Zou	Za-kpota	0	Detekpa	1787	2935	4155	5551	2034	2032	2031
12-8-51-04	Zou	Za-kpota	0	Djoyitin	1097	1798	2545	3400	2030	2029	2026
12-8-01-02	Zou	Za-kpota	0	Dogbanlin	1750	2863	4053	5416	2033	2032	2031
12-8-51-05	Zou	Za-kpota	0	Dokpa	646	1072	1517	2027	2022	2019	2018
12-8-04-03	Zou	Za-kpota	0	Drame	1986	3296	4666	6234	2034	2032	2031
12-8-03-04	Zou	Za-kpota	0	Folli	1376	2280	3227	4312	2031	2029	2026
12-8-01-03	Zou	Za-kpota	0	Ganhoua	892	1464	2073	2769	2025	2022	2021
12-8-04-05	Zou	Za-kpota	0	Guingnin-mlinkpin	731	1211	1714	2290	2025	2023	2021
12-8-01-04	Zou	Za-kpota	0	He-hounly	735	1214	1719	2296	2026	2023	2021
12-8-05-04	Zou	Za-kpota	0	Houangon	809	1338	1894	2530	2024	2022	2019
12-8-51-06	Zou	Za-kpota	0	Houkanme	1452	2401	3398	4540	2031	2030	2027
12-8-51-07	Zou	Za-kpota	0	Kemondji azouihoue	1020	1693	2396	3202	2027	2024	2021
12-8-51-08	Zou	Za-kpota	0	Kodota	1606	2665	3774	5042	2032	2030	2027
12-8-03-05	Zou	Za-kpota	0	Koguede	1732	2829	4006	5352	2033	2031	2029
12-8-05-08	Zou	Za-kpota	0	Lontonkpa	717	1156	1636	2185	2021	2019	2018
12-8-06-07	Zou	Za-kpota	0	Sohoungo	763	1254	1776	2372	2027	2025	2023
12-8-51-09	Zou	Za-kpota	0	Sohounta	1255	2082	2948	3938	2030	2028	2025
12-8-02-03	Zou	Za-kpota	0	Sowekpa	640	1056	1495	1998	2022	2020	/
12-8-04-07	Zou	Za-kpota	0	Tangbe	1221	2014	2851	3809	2030	2028	2025
12-8-06-09	Zou	Za-kpota	0	Za-aga	1765	2928	4145	5539	2017	2031	2029

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu 		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
12-8-51-10	Zou	Za-kpota	0	Za-agbokpa	800	1328	1880	2512	2029	2027	2025
12-8-01-05	Zou	Za-kpota	0	Zahla	2096	3476	4920	6573	2034	2033	2031
12-8-51-11	Zou	Za-kpota	0	Za-kekere	1635	2705	3830	5118	2032	2031	2029
12-8-51-13	Zou	Za-kpota	0	Za-zounme	895	1482	2099	2804	2029	2026	2024
12-8-07-04	Zou	Za-kpota	0	Zeko	1721	2848	4032	5387	2032	2031	2029
12-9-05-01	Zou	Zogbodomey	0	Agoita	1332	1786	2211	2642	2028	2030	2028
12-9-10-01	Zou	Zogbodomey	0	Agrimey	856	1150	1424	1701	2026	2024	/
12-9-07-01	Zou	Zogbodomey	0	Ahouandjitome	906	1216	1506	1800	2022	2021	/
12-9-51-02	Zou	Zogbodomey	0	Ahoundeme	1080	1424	1764	2108	2027	2024	2022
12-9-02-01	Zou	Zogbodomey	0	Alladaho	999	1362	1686	2014	2027	2023	2021
12-9-51-03	Zou	Zogbodomey	0	Atchia	724	988	1224	1462	2026	/	/
12-9-02-02	Zou	Zogbodomey	1	Avlame	2429	3286	4069	4862	2017	2017	2017
12-9-10-02	Zou	Zogbodomey	0	Bognongon	969	1324	1640	1960	2026	2024	/
12-9-05-02	Zou	Zogbodomey	0	Bolame	1050	1419	1758	2100	2029	2028	2028
12-9-07-03	Zou	Zogbodomey	0	Dehounta	987	1347	1668	1994	2027	2024	/
12-9-06-01	Zou	Zogbodomey	0	Deme	1324	1807	2238	2674	2031	2029	2028
12-9-01-03	Zou	Zogbodomey	0	Denou	2137	2868	3551	4243	2033	2031	2029
12-9-07-04	Zou	Zogbodomey	0	Dogo	1088	1469	1819	2174	2025	2023	2020
12-9-10-03	Zou	Zogbodomey	0	Dohoue	820	1121	1388	1659	2030	2028	/
12-9-05-03	Zou	Zogbodomey	0	Dome aga	1082	1461	1809	2161	2025	2023	2020
12-9-05-04	Zou	Zogbodomey	1	Dome centre	1660	2223	2753	3289	2018	2017	2017
12-9-09-02	Zou	Zogbodomey	0	Don	2047	2791	3456	4129	2017	2033	2031
12-9-01-01	Zou	Zogbodomey	0	Don agonlin	511	698	865	1033	2019	/	/
12-9-01-04	Zou	Zogbodomey	0	Don akadjamey	1429	1942	2405	2874	2029	2028	2027
12-9-51-04	Zou	Zogbodomey	0	Dovogon	797	1064	1317	1574	2025	2023	/
12-9-05-05	Zou	Zogbodomey	0	Gbaffo	1379	1857	2300	2748	2029	2027	2023
12-9-01-05	Zou	Zogbodomey	0	Gueme	819	1108	1372	1640	2023	2021	/
12-9-07-06	Zou	Zogbodomey	0	Hinzoume	519	698	865	1033	2027	/	/
12-9-08-04	Zou	Zogbodomey	0	Hlagba zakpo	634	851	1054	1260	2023	/	/
12-9-08-01	Zou	Zogbodomey	0	Hlagba-denou	1405	1890	2340	2795	2031	2030	2030
12-9-08-03	Zou	Zogbodomey	0	Hlagbawassa	2334	3177	3935	4702	2018	2033	2031

N° INSAE	Départ-	Commune	Chef-	Nom	Population	Population	Population	Population	Ann	ée d'électrific	ation
	ement		lieu		INSAE 2002	2015	2025	2035	Scénario	Scénario	Scénario
			d'arr.						Haut	Moyen	Faible
12-9-10-04	Zou	Zogbodomey	0	Hlanhonou	1378	1879	2328	2781	2031	2029	2029
12-9-08-05	Zou	Zogbodomey	0	Hon	1513	2043	2530	3022	2032	2031	2030
12-9-06-02	Zou	Zogbodomey	1	Housoukpa	1689	2288	2834	3387	2018	2017	2017
12-9-10-05	Zou	Zogbodomey	0	Koto ayivedji	918	1249	1547	1848	2028	2025	/
12-9-02-03	Zou	Zogbodomey	0	Kotokpa	1567	2128	2635	3148	2032	2030	2030
12-9-07-07	Zou	Zogbodomey	1	Kpokissa	903	1216	1506	1800	2017	2016	2017
12-9-08-02	Zou	Zogbodomey	0	Lonme	769	1040	1288	1540	2022	2025	/
12-9-09-03	Zou	Zogbodomey	0	Ouassa	1102	1496	1853	2214	2026	2022	2020
12-9-02-04	Zou	Zogbodomey	0	Samionkpa	865	1181	1463	1748	2031	2029	/
12-9-06-03	Zou	Zogbodomey	0	Samionta	1822	2475	3065	3662	2033	2032	2031
12-9-01-06	Zou	Zogbodomey	0	Seme	968	1321	1636	1954	2023	2020	/
12-9-09-04	Zou	Zogbodomey	1	Tanwe hessou	1124	1532	1898	2268	2016	2016	2016
12-9-09-05	Zou	Zogbodomey	0	Tegon	2925	3933	4871	5821	2034	2033	2032
12-9-01-07	Zou	Zogbodomey	0	Togbin	797	1089	1349	1613	2028	2026	/
12-9-01-08	Zou	Zogbodomey	0	Tovlame	932	1272	1575	1882	2023	2020	/
12-9-02-05	Zou	Zogbodomey	0	Yokon	1290	1753	2171	2594	2032	2030	2029
12-9-51-01	Zou	Zogbodomey	0	Zado adagon	2103	2748	3404	4068	2032	2031	2028
12-9-08-06	Zou	Zogbodomey	0	Zalime	1360	1849	2289	2735	2032	2031	2031
12-9-10-06	Zou	Zogbodomey	1	Zoukou	1187	1619	2005	2395	2017	2017	2017
12-9-04-06	Zou	Zogbodomey	0	Zoungbo zounme	718	964	1194	1427	2024	/	/
12-9-04-05	Zou	Zogbodomey	0	Zoungo bogon	749	1006	1246	1488	2025	/	/

Plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

DAEM - MERPMEDER

Tome 5 Analyses Financières

Rapport Final Aout 2015

Rapport Final

Plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

Tome 5:

ANALYSES FINANCIERES

Références du contrat : DAEM : 206/MEF/MERPMEDER/DNCMP/SP

IED: 2014/007

Client IDA

Consultant IED Innovation Energie Développement

2 chemin de la Chauderaie 69340 Francheville, France Tel : +33 (0)4 72 59 13 20

Fax: +33 (0)4 72 59 13 39

Site web: www.ied-sa.fr

Rédaction du document

	VERSION 1	VERSION 2	VERSION 3
Date	Avril 2015	Aout 2015	
Rédaction	CA/HP/PS	CA/HP/PS	
Relecture	CA/HP/PS	CA/HP/PS	
Validation	HP	HP	

Ce rapport a été rédigé par IED dans le cadre du contrat Elaboration du plan directeur de développement du sous-secteur de l'énergie électrique au Bénin à parti des informations collectées au cours des missions effectuées au Bénin et des échanges avec les personnes rencontrées. Il ne reflète pas nécessairement les opinions de la Banque Mondiale, du Ministère de l'Energie du Bénin, de la SBEE, de l'ABERME.

PLAN DIRECTEUR DE DEVELOPPEMENT DU SOUS-SECTEUR DE L'ENERGIE ELECTRIQUE AU BENIN

LISTE DES TOMES:

TOME 0 : RESUME EXECUTIF

TOME 1: SCENARIOS DE DEMANDE

TOME 2: PLAN D'EXPANSION DES MOYENS DE PRODUCTION

TOME 3: DEVELOPPEMENT DU RESEAU

TOME 4: ELECTRIFICATION RURALE

TOME 5: ANALYSE FINANCIERE

TOME 6: PLAN D'ACTION

TOME 5 - TABLE DES MATIERES

1	INTRODUCTION	11
2	PRODUCTION	11
2.1	Coûts de production des centrales de la SBEE, MRI, Agrekko et CAI	12
2.2	Prix de vente de la CEB	
2.2.1	Prix d'importation	13
2.2.2	Coûts de production des centrales de la CEB	13
2.2.3	Prix de vente des IPP	14
2.2.4	Budget de fonctionnement de la CEB	15
3	RESEAU DE TRANSPORT	16
3.1	Coûts d'investissement	
3.2	Coûts O&M	
3.3	Financement des coûts d'investissement	18
4	ELECTRIFICATION – DENSIFICATION DANS LES GCU ET LES LOCALITES DEJA ELECTRII	FIEES EN
201		
4.1	Développement du nombre d'abonnés	18
4.2	Calcul des coûts d'investissement	18
4.3	Coûts O&M	19
4.4	Financement des coûts d'investissement	20
5	PROGRAMME D'ELECTRIFICATION RURALE	21
5.1	Développement de l'électrification	21
5.2	Calcul des coûts d'investissement	
5.3	Coûts O&M	
5.4	Financement des coûts d'investissement	22

6	SBEE — COUTS O&M DU RESEAU EXISTANT, BUDGET DE FONCTIONNEMENT ET FONDS D	E
ROULE	MENT	23
6.1	Coûts O&M du réseau existant	23
6.2	Budget de fonctionnement	23
6.3	Fonds de roulement	23
7 R	ESULTATS	24
7.1	Tarifs de la CEB	24
7.1.1	Scénario Haut	24
7.1.2	Scénario Moyen et Faible	26
7.2	Tarifs pour le Bénin	27
7.2.1	Scénario Haut	27
7.2.2	Scénario Moyen et Faible	28
7.3	Analyses complémentaires	28
	EXE 2 EXEMPLE DU CALCUL DU TARIF AU BENIN	
Liste d	es tableaux	
Tablea Tablea Tablea Tablea Tablea Tablea	u 1 : Coût de production et prix d'achat d'énergie électrique (FCFA/kWh au prix 2015) u 2 : Prix de ventes des IPP (US cents par kWh)	15 16 17 19 19
Liste d	es figures	
	1 Développement du tarif de la CEB dans le Scénario Haut	
•	2: Développement du tarif pour le Bénin dans le Scénario Haut	
Figure	3 : Scénario Haut - Développement du tarif de la CEB qui recouvre les dépenses	25

ACRONYMES

BT : Basse Tension

CEB: Communauté électrique du Bénin

CEET: Compagnie d'Energie Electrique du Togo

GCU :Grand Centres Urbain GNL : Gaz Naturel Liquéfié HFO : Heavy Fuel Oil

IPP: Independant Power Producer

kWc : kiloWatt crête

HT: Haute Tension

MBTU: Million British Thermal Unit

MPC : Million de Pieds Cube MT : Moyenne Tension

MW : MegaWatt

O&M: Opération et Maintenance

PV: Photovoltaïque

SBEE : Société Béninoise d'Energie Electrique

TAG: Turbine à gaz

TCN: Transport Company of Nigeria

VRA: Volta River Authority

WASP: Wien Automatic System Package

RESUME

Approche et hypothèses principales

Les tarifs qui permettent de recouvrir les dépenses de la CEB et les tarifs qui permettent de recouvrir les dépenses du secteur de l'électricité du Bénin ont été calculés dans les analyses financières. Les calculs ont été faits au prix constant de 2015. Tous les tarifs présentés ici sont des tarifs hors taxes.

Les dépenses comprennent les paiements à effectuer par la CEB et la SBEE pour leurs domaines d'activité. Dans le cas où l'Etat Béninois ou Togolais prend un crédit pour financer des investissements faits pour la CEB ou la SBEE, les dépenses associées au crédit (remboursement, paiement d'intérêts) sont traitées dans le calcul comme dépenses de la CEB et de la SBEE respectivement. Les subventions reçues pour les investissements ne font cependant pas partie des dépenses.

Les tarifs ont été déterminés pour les solutions d'approvisionnement en énergie électrique qui constituent les solutions à moindre coût économique.

Les dépenses liées à l'approvisionnement en énergie électrique déterminent largement les tarifs. Dans le cas de la CEB, ces dépenses comptent typiquement pour 85% - 95% des dépenses totales ; dans le cas du Bénin pour 75 - 85%.

Les hypothèses les plus importantes concernant l'approvisionnement en énergie électrique sont :

- Hormis la centrale hydroélectrique d'Adjarala, toutes les nouvelles centrales sont traitées dans le modèle comme des centrales appartenant à des IPP. Un prix de vente est donc calculé qui assure une certaine rentabilité (environ 10% sur fonds propres). L'approche IPP est en ligne avec la politique du Gouvernement qui a ouvert le secteur aux producteurs privés. Il se peut que dans la réalité toutes nouvelles centrales ne soient pas construites par des IPP et que la construction se fasse sous l'égide de la SBEE. Cela donnerait des coûts plus faibles par rapport au prix de vente des IPP. Mais il est peu probable que la différence soit importante.
- La nouvelle centrale à Maria Gleta (120 MW) vend sa production à la SBEE. Cela s'applique aussi aux centrales PV qui seront installées jusqu'en 2019 et les centrales à biomasse.
- La centrale de ContourGlobal à Lomé continue de vendre sa production à la CEET. Les coûts de cette centrale n'entrent donc ni dans le calcul du tarif de la CEB ni dans le calcul du tarif pour le Bénin.
- Les centrales existantes de MRI, d'Agrekko et de la CAI vendent leur production à la SBEE. Les centrales de MRI et d'Agrekko sont mises hors service fin 2019 ; la centrale de CAI fin 2025. Cette date s'applique aussi aux centrales diesel de la SBEE et aux TAG de la CEB.

- Les prix des produits pétroliers et du gaz (pipeline et GNL) sont une fonction du prix du pétrole brut. Deux scénarios sont analysés :
 - Le prix du pétrole brut reste au niveau actuel de 50 65 US/baril en termes réelles. Les prix des produits pétroliers et du gaz restent dans ce cas aussi au niveau actuel. Pour le gaz de pipeline le prix est de 11 US\$/MMBTU.
 - Le prix du pétrole brut augmente à partir de 2017 pour atteindre 100 US/baril en 2020 et reste ensuite à ce niveau. Les prix des produits pétroliers et du gaz augmentent dans ce cas ; le prix du gaz de pipeline à 14 US\$/MMBTU.

Le prix d'importation de charbon est considéré dans le modèle comme indépendant du développement du prix du pétrole brut. Les calculs sont faits avec deux prix : 4 US\$/MMBTU et 5 US\$/MMBTU (≈ 2400 et 3000 FCFA/MMBTU).

Le tableau suivant présente les coûts de production et les prix d'achat.

Tableau 1 : Coût de production et prix d'achat d'énergie électrique (FCFA/kWh au prix 2015)

Centrale	Fioul	Prix de combustible (#)	Coûts production.
		(PV : prix par kWc installé)	Prix d'achat.
			(FCFA/kWh)
Centrales SBEE	Gasoil	13,1 / 21,9 US\$/GJ	83 / 119
Centrales location	Gasoil	13,1 / 21,9 US\$/GJ	107 / 208
Centrale CAI	Jet A1	29,2 / 48,7 US\$/GJ	208 / 340
Centrale CAI	Gaz	Gaz : 11 / 14 US\$/MMBTU	77 / 100
TAG CEB	Gaz	Gaz : 11 / 14 US\$/MMBTU	71 / 89
Import. Nigeria	Mixte		60 / 71
Import Ghana/CdI	Mixte		66 / 77
Import Niger	Charbon	Charbon: 4 / 5 US\$/MMBTU	60 / 66
Centrale dual fuel	HFO	8,5 / 12,9 US\$/GJ	67 / 92
Centrale dual fuel	Gaz pipe	Gaz : 11 / 14 US\$/MMBTU	75 / 91
Cycle combiné	Gaz pipe	Gaz : 11 / 14 US\$/MMBTU	61 / 73
Cycle combiné	GNL (Barge)	GNL: 12,7 / 16,1 US\$/MMBTU	79 / 93 *
Centrale à charbon	Importation de charbon	Charbon: 4 / 5 US\$/MMBTU	58 / 63
Centrale PV	Solaire	1000 / 2000 US\$/kWc	45 / 89
Centrale biomasse	Biomasse	Biomasse : 20 US\$/MWh	64

^(#) Premier prix des produit pétroliers : prix actuel (mi 2015). Deuxième : si pétrole brut à 100 US\$/bl.

^{*} Une surcharge d'environ 12 FCFA/kWh est ajoutée pour les coûts de location d'une barge pour le stockage et la regazéification du GNL.

Les coûts d'investissements en réseau de transport et l'électrification sont présentés ci-après (Scénario Haut / Moyen / Faible). Il s'agit des coûts moyens sur la période 2015 – 2035. Les coûts annuels montrent des (fortes) variations d'une année à l'autre.

- CEB, réseau de transport : 8,3 / 4,3 / 3,8 milliards de FCFA. Pas de subvention.
- SBEE, réseau de transport : 8,9 / 8,2 / 6,7 milliards de FCFA. Les subventions financent ≈ 35%.
- SBEE, densification : 26,6 / 23,1 / 18,1 milliards de FCFA. Les subventions financent $\approx 40\%^1$.
- Bénin, électrification rurale : 18,7 / 15,2 / 10,8 milliards de FCFA. Les subventions financent ≈ 55%².

Tarifs de la CEB

La figure 1 montre le développement du tarif de vente de la CEB si la demande au Bénin et au Togo suit le Scénario Haut.

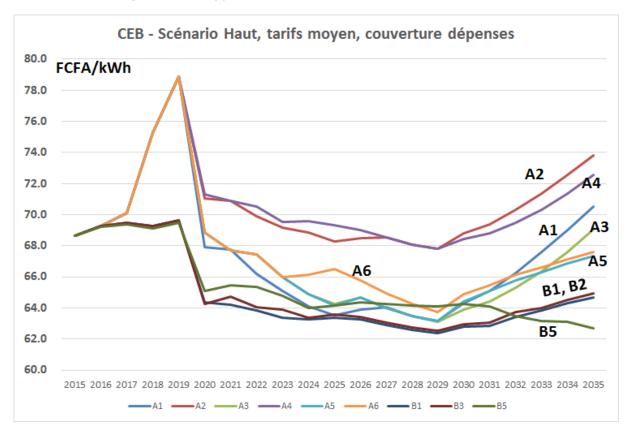


Figure 1 Développement du tarif de la CEB dans le Scénario Haut

Légende: Disponibilité de gaz: Jusqu'à et compris 2019, 10 MPC/jour. Ensuite 10 MPC/jour dans les cas B1, A1 et A2, 50 MPC/jour dans les cas B3, A3, A4 et jusqu'à 200 MPC/jour dans les cas B5, A5 et A6.

Prix du gaz : toujours 11 US\$/MMBTU dans B1, B3 et B5. Dans les cas A1, ..., A6, 14 US\$/MMBTU à partir de 2020.

<u>Prix charbon</u>:4 US\$/MMBTU (B1, B3, B5, A1, A3, A5) et 5 US\$/MMBTU (A2, A4, A6). <u>PV</u>: 1000 US\$/kWc dans tous les cas.

¹ Environ 17% des coûts d'investissement sont payés par les abonnés sous forme de frais de branchement.

² Environ 9% des coûts d'investissement sont payés par les abonnés sous forme de frais de branchement.

Le tarif qui permettra de recouvrir les dépenses de la CEB est en 2015 de l'ordre de 69 FCFA/kWh.

Le tarif reste plus ou moins à ce niveau jusqu'en 2019 si les prix des produits pétroliers et du gaz ne changent pas en termes réelles (cas B1, B3, B5). S'ils augmentent, le tarif augmente et un tarif de 79 FCFA/kWh sera nécessaire en 2019 (A1, ..., A6).

En 2020, le tarif chute dans tous les cas ; à 64 – 65 FCFA/kWh (prix produits pétroliers/gaz au niveau actuel) et à 68 – 71 FCFA/kWh respectivement (prix plus élevés).

La chute est notamment due à la mise en service des centrales à charbon dont le prix d'achat est dans les calculs entre 58 - 63 FCFA/kWh.

Dans le cas B5 où il y a suffisamment de gaz (jusqu'au 200 MPC/jour) au prix de 11 US\$/MMBTU, c'est la mise en service des cycles combinés à gaz qui est à l'origine de la chute. Le prix d'achat est d'environ 61 FCFA/kWh.

La tendance à la baisse continue jusqu'en 2029 pour la raison principale que plus de capacité charbon est installée. L'installation de plus de capacité PV et les importations du Niger à partir de 2025 contribuent à la réduction du tarif. Ces importations deviennent la source d'importation la plus importante. Les importations du Nigéria montrent une tendance à la baisse et les importations du Ghana/Côte d'Ivoire deviennent très faibles. Ces sources d'approvisionnement perdent de compétitivité par rapport aux centrales à charbon. Signalons que dans le cas B5, plus de capacité en cycle combiné est installée et à partir de 2023 aussi des centrales à charbon.

La raison principale pour l'augmentation du tarif à partir de 2030 est que la capacité des centrales à charbon atteint la limite de 1000 MW. Cela conduit à l'installation de cycles combinés à gaz naturel s'il y a suffisamment de gaz (200 MPC/jour dans les cas A5 et A6), ou des centrales qui utilisent le HFO ou le GNL (après regazéification). Toutes ces technologies coûtent plus cher que la production des centrales à charbon. Le tarif est en 2035 à 64 – 65 FCFA/kWh (prix produits pétroliers/gaz au niveau actuel) et à 68 – 71 FCFA/kWh respectivement (prix plus élevés).

Les tarifs dans le Scénario Moyen et Faible montrent les mêmes tendances et les tarifs ne sont que peu différents. Raison : La structure du parc de production est sensiblement la même et les prix unitaires des sources d'approvisionnement sont identiques au prix dans le Scénario Haut.

Tarifs pour le Bénin

Le Graphique 2 montre le développement du tarif pour le Bénin si la demande au Bénin et au Togo suit le Scénario Haut.

Le tarif d'achat à la CEB et les hypothèses qui déterminent ce tarif ont été décrits plus haut. Outre l'achat à la CEB, les centrales diesel de la SBEE, de MRI et d'Agrekko et les TAG gérées par CAI contribuent à l'approvisionnement du Bénin ; jusqu'à fin 2019 (MRI, Agrekko) ou fin 2025 (SBEE, CAI). De plus le Bénin est supposé disposer la nouvelle centrale à Maria Gleta à partir de 2018 et des centrales PV à partir de 2017. La centrale de Maria Gleta tourne jusqu'en 2019 au HFO parce que le gazoduc fournit seulement 10 MPC/jour et ce gaz est utilisé par les TAG de la CEB. La centrale de Maria Gleta utilise le gaz à partir de 2020 dans les cas où il y a au moins de 50 MPC/jour. Cela est aussi vrai pour la centrale CAI dont la production est la plus coûteuse tant que la centrale tourne au Jet A1.

En 2013, le tarif moyen hors taxes était de 110 FCFA/kWh. La Figure 2 montre que **le tarif qui recouvre les dépenses en 2015 devrait être de 117 FCFA/kWh**. Si le prix du gaz et des produits pétroliers reste au niveau actuel, le tarif de 117 FCFA/kWh suffit en 2016 et 2017. En 2018, la mise en service de Maria Gleta permet de réduire le tarif à 101 FCFA/kWh, suivi d'une légère augmentation à 106 FCFA/kWh en 2019.

Si les prix des produits pétroliers et du gaz augmentent, ce qui se réalise dans les cas A1, ..., A6 à partir de 2017, le tarif augmente à 130 FCFA/kWh en 2019. La nouvelle centrale à Maria Gleta (prix d'achat d'environ 67 FCFA/kWh) réduit l'augmentation mais ne l'évite pas.

La raison principale pour la chute du tarif en 2020 est la raison mentionnée pour le tarif de la CEB : la disponibilité de centrales à charbon ou de cycles combinés s'il y a suffisamment de gaz (200 MPC/jour) au prix de 11 US\$/MMBTU. Les raisons mentionnées plus haut pour la CEB expliquent aussi essentiellement le développement jusqu'en 2035 : une tendance à la baisse jusqu'en 2035 ou jusqu'en 2029 suivi d'une faible augmentation (cas A1, A2, A3 et A4 ou le gaz est limité à 10 ou 50 MPC/jour). En 2035, le tarif est entre 83 et 86 FCFA/kWh (prix des combustibles au niveau actuel en termes réelles) et entre 90 et 95 FCFA/kWh respectivement (prix plus élevés en termes réelles).

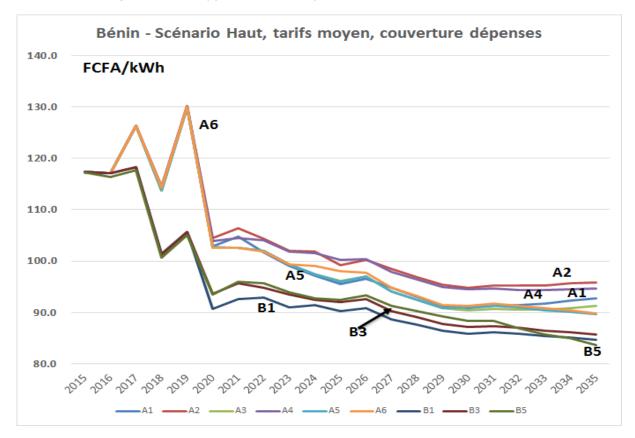


Figure 2: Développement du tarif pour le Bénin dans le Scénario Haut

Légende : voir Figure 1

A partir de 2020, les dépenses pour le réseau deviennent importantes : densification, extension du réseau de transport, dépenses liées à l'électrification rurale (extension des réseaux construits sous l'égide de l'ADERME et O&M de tous les réseaux construites en milieu rural), O&M du réseau

existant. Mais ces dépenses ne dépassent normalement pas 15% des dépenses totales. C'est le prix de l'énergie qui la déterminante principale du tarif.

Trois résultats des analyses complémentaires méritent mention :

- ❖ Si le prix des systèmes PV est de 2000 US\$/kW au lieu de 1000, une augmentation du tarif de 3 − 5 FCFA/kWh est nécessaire à partir de 2020.
- ❖ Sans subventions pour l'électrification rurale et les investissements de la SBEE en réseau de transport et de distribution (densification), le tarif est de 3 − 6 FCFA/kWh plus élevé à partir de 2020³.
- Les résultats présentés plus haut supposent que le fonds de roulement couvre un mois de dépenses. Un mois est considéré le minimum. Si on calcule avec deux mois, le tarif serait en 2015 de 126 FCFA/kWh au lieu de 117. Dans les années suivantes, les augmentations par rapport au tarif « un mois » seraient faibles ; typiquement 1 ou 2 FCFA.

Résumé: Les résultats montrent que le tarif qui permet de recouvrir les dépenses pourrait beaucoup diminuer en termes réels si les centrales à charbon ou les cycles combinés à gaz constituent la source principale d'approvisionnement dans le futur. L'installation de capacité PV aide à réduire les tarifs si le coût des centrales est de l'ordre de 1000 US\$/kWc. Cela nécessite aujourd'hui des subventions importantes mais pourrait se réaliser après 2020 avec des faibles subventions ou même sans subvention si la baisse des coûts des systèmes PV continue. Signalons que la réduction du tarif tient compte qu'un programme ambitieux d'électrification est réalisé. Ce programme est supposé bénéficier de subventions. Sans subvention, la réduction serait plus faible mais encore importante.

La tendance des tarifs est dans le Scénario Moyen et Faible identique à la tendance dans le Scénario Haut. On constate également que les tarifs sont peu différents de ceux du Scénario Haut et cela pour essentiellement les mêmes raisons qui expliquent pourquoi il n'y a que de très faibles différences entre les tarifs de la CEB dans les trois scénarios de demande : la structure du parc de production est sensiblement la même et les prix unitaires des sources d'approvisionnement sont identiques.

_

³ Le montant financé par des subventions est remplacé par un crédit dans les calculs. Les dépenses liées au crédit (intérêts, remboursement) entrent donc dans les calculs. Tenant compte que le remboursement se fait sur plusieurs années et ne commence qu'après la période de grâce, l'impact de l'absence des subventions ne se réalise pas tout de suite mais est réparti sur plusieurs années.

ANALYSES FINANCIERES

1 Introduction

L'objectif principal de ce rapport est le calcul du tarif moyen que le Bénin devrait appliquer pour recouvrir les dépenses associées aux recommandations du Plan Directeur. Les dépenses qui entrent dans le calcul sont :

- 1. Les dépenses pour l'achat de l'énergie auprès de la CEB.
- 2. Les dépenses pour la production ou l'achat d'énergie électrique par des centrales qui ne font pas partie du portefeuille de la CEB.
- 3. Les dépenses pour l'extension du réseau de transport de la SBEE.
- 4. Les dépenses pour le programme de densification (électrification dans les localités déjà électrifiées à la fin de 2014).
- 5. Les dépenses pour le programme d'électrification rurale.
- 6. Les dépenses O&M pour le réseau existant de la SBEE.
- 7. Le budget de fonctionnement de la SBEE et un fonds de roulement pour la SBEE.

Les tarifs sont déterminés pour les solutions d'approvisionnement en énergie électrique qui constituent les solutions à moindre coût économique.

Sauf quelques exceptions, les coûts économiques ne constituent pas les dépenses qui entrent dans le calcul des tarifs. Le présent rapport décrit d'abord les hypothèses et les méthodes utilisées pour estimer les dépenses et présente ensuite les tarifs qui permettent de recouvrir les dépenses. Les tarifs sont des tarifs au prix 2015 et hors taxes.

2 Production

Le plan de production couvre le Togo et le Bénin. Le plan indique les centrales à installer et la production des centrales existantes et nouvelles pour satisfaire la demande en énergie et en puissance dans les deux pays au moindre coût économique. L'analyse financière pour le Bénin nécessite de déterminer quelle source de production et d'importation approvisionne le Bénin. Les hypothèses suivantes sont utilisées à cette fin :

- Les centrales suivantes ne font pas partie du portefeuille de la CEB mais leur production est utilisée pour satisfaire la demande du Bénin : les diesel de la SBEE, les centrales en location (MRI, Agrekko), la centrale CAI, la centrale dual-fuel dont l'installation est envisagée à Maria Gleta (120 MW), les centrales PV qui sont installées jusqu'en 2019 et les centrales à biomasse installées au Bénin.
- La CEB vend au Togo et au Bénin :
 - (1) l'énergie qu'elle importe,
 - (2) la production de ses propres centrales,
 - (3) la production qu'elle achète auprès des IPP.

Le tarif de la CEB est identique pour le Togo et le Bénin.

Toutes les nouvelles centrales, hormis Adjarala, qui sont étudiées dans le modèle sont des centrales appartenant à des IPP. Les IPP financent la construction et exploitent les centrales. Un prix de vente est calculé qui assure une certaine rentabilité (10% sur fonds propres). L'approche IPP est en ligne avec la politique du Gouvernement qui a ouvert le secteur aux producteurs privés. Ceci dit, toutes les nouvelles centrales ne seront probablement pas construites et exploitées par des IPP. Si les centrales rentrent dans le portefeuille des sociétés d'électricité, il se peut que les conditions de financement soient plus favorables et que la rentabilité accordée par le régulateur aux sociétés d'électricité – la SBEE et la CEET – soit plus faible. Par conséquent, le coût par kWh peut être plus faible mais il est peu probable que la différence par rapport au prix de vente d'un IPP soit importante. Vue l'incertitude sur tous les paramètres, une approche prudente nous semble le plus appropriée et cela nous a conduit à utiliser l'approche IPP qui donne, peut-être, des prix légèrement plus élevé que l'approche sans IPP.

Signalons dans ce contexte qu'il y a au Bénin un grand intérêt des sociétés privées pour la construction et l'exploitation des centrales PV et, dans une moindre mesure, des centrales à biomasse. On peut aussi s'attendre à ce qu'il y ait un intérêt du secteur privé à la construction et l'exploitation des grandes centrales thermiques. Durant la visite de ContourGlobal par le consultant, le management de ContourGlobal a mentionné son intérêt pour s'impliquer aussi au Bénin. La société Danish Gateway a exprimé son intérêt comme promoteur privé d'une centrale thermique dual-fuel à Maria Gleta. Au Sénégal, une centrale à charbon est construite par un IPP. En Côte d'Ivoire, il y a plusieurs grandes centrales qui appartiennent à des privés.

Le plus grand problème pour l'implication des privés comme IPP des grandes centrales thermiques au Bénin est vu par le consultant au niveau de la situation financière du secteur. Le risque qu'une partie du montant facturé ne soit pas payé ou seulement avec des délais importants n'est pas à ignorer. Les tarifs proposés dans la présente étude ne modélise pas ce risque mais l'expérience montre que les propositions tarifaires ne sont souvent pas appliquées pour des raisons politiques. Si les IPP ne sont pas convaincu que leurs factures seront payés entièrement et dans le délai convenu, ils demanderont des garantis. L'expérience faite avec des projets des IPP en Afrique indique que la mise à disposition des garantis qui sont jugés satisfaisants peut poser des problèmes.

• La centrale de ContourGlobal à Lomé vend sa production à la CEET. Le Bénin n'obtient pas d'énergie de cette centrale (6 groupes à dual fuel) et les coûts de production de cette centrale n'entrent donc pas dans le calcul du tarif moyen à payer par les abonnés au Bénin.

2.1 Coûts de production des centrales de la SBEE, MRI, Agrekko et CAI

Les coûts suivants comprennent les coûts du carburant et les coûts O&M. Les coûts économiques des émissions (coûts par tonne d'émissions de CO2 équivalent) ne sont pas inclus.

La production des centrales diesel de la SBEE coûte environ 0,14 US\$/kWh au prix actuel. Si le prix du pétrole brut augmente à 100 US\$/baril, le coût augmente à environ 0,20 US\$/kWh. Les centrales ne font plus partie du parc de production à partir de 2026.

Les prix de vente des centrales en location (MRI et Agrekko) varient en fonction de leur niveau de sollicitation entre 0,18 et 0,35 US\$/kWh. Cela suppose qu'une prime fixe de 5,0 millions de US\$ est à payer par an. Les centrales tournent au diesel dont le prix actuel est de 13,1 US\$/GJ. Si le prix du pétrole brut est de 100 US\$/baril, le prix du diesel est de 21,9 US\$/GJ. Les centrales sont retirées du parc de production à partir en 2020.

La centrale CAI tourne au Jet A1 dans le modèle si le gaz est limité à 10 MPC/jour. Cela fait que la production des centrales est très chère ; environ 0,35 US\$/kWh (≈ 208 FCFA/kWh) au prix actuel du Jet A1 (29 US\$/GJ). Si le prix du pétrole augmente à 100 US\$/baril, le prix du Jet A1 est de 48,7 US\$/GJ dans le modèle et le kWh produit par la centrale coûte environ 0,50 US\$/kWh. L'utilisation de gaz permettrait une forte réduction. Au un prix du gaz à 11 (14) US\$/MMBTU, le coût d'un kWh est d'environ 0,13 (0,17) US\$/kWh (≈ 77 et 100 FCFA/kWh). La centrale est retirée du parc de production à partir de 2026.

Le modèle prévoit la mise en service de nouvelles centrales qui vendent leur production à la SBEE. Il s'agit de centrales PV construites jusqu'en 2019 et de centrales à biomasse. Les prix de ventes sont donnés dans le paragraphe 2.2.3 plus bas. Cela s'applique aussi à la nouvelle centrale de 120 MW à Maria Gleta qui est étudiée dans le modèle comme une centrale IPP.

2.2 Prix de vente de la CEB

Les éléments qui entrent dans le calcul sont :

- Les coûts d'achat des importations
- Les coûts de production des centrales de la CEB
- Les coûts d'achat auprès des IPP.
- Les pertes de transport jusqu'au postes de sources (5% de l'énergie produite et achetée)
- ❖ Le budget de fonctionnement de la CEB.

2.2.1 Prix d'importation

Les sources potentielles d'importation sont le Nigéria, le Ghana (VAR) et le Niger. Les prix d'importations du Nigéria et du Ghana (VRA) sont fonction dans le modèle du prix du pétrole brut sur le marché mondial. Le prix d'importation du Nigéria est de 0,10 US\$/kWh au prix actuel du pétrole brut (50 – 65 US\$/baril) et de 0,12 US\$/kWh si le prix du pétrole brut augmente à 100 US\$/baril. Le prix correspondant du Ghana (VRA) est de 0,11 et de 0,13 US\$/kWh.

L'énergie que la CEB pourrait importer du Niger est supposée être produite par une centrale à charbon. Le prix d'importation est 0,10 US\$/kWh si le prix du charbon est de 4 US\$/MBTU et de 0,11 US\$/kWh si le prix du charbon est de 5 US\$/MBTU. Les prix d'importations incluent les prix de transport jusqu'à la frontière.

2.2.2 Coûts de production des centrales de la CEB

Centrales hydroélectriques

Les dépenses pour la centrale hydroélectrique de Nangbeto (65 MW) correspondent aux coûts O&M de 2,65 millions de US\$ par an. La centrale existe depuis 1987.

La centrale hydroélectrique d'Adjarala (147 MW) est sous construction. Sa mise en service est prévue pour 2020. Les coûts d'investissement sont de 315 millions US\$⁴. Le modèle suppose que le financement soit fait par des crédits conditionnés : taux d'intérêt 2% par an, pas de paiement des intérêts durant la période de construction (2015 – 2019), période de grâce 5 ans (dernière année 2019), remboursement des crédits sur 20 ans (à compter à partir de la fin de la période de grâce). Les intérêts à payer, les montants de remboursement (16,4 millions US\$ par an entre 2020 et 2039) et les coûts O&M (6,0 millions de US\$ par an) entrent dans le calcul du tarif de la CEB.

Centrales thermiques

Les centrales thermiques de la CEB sont les TAG installées à Maria Gleta (20 MW) et à Lomé (20 MW). Les TAG tournent au gaz naturel. Le coût de production est de 12 US cents par kWh si le prix du gaz est de 11 US\$/MMBTU et de 15 US cents par kWh si le prix du gaz est de 14 US\$/MMBTU.

2.2.3 Prix de vente des IPP

Le prix est calculé à partir des hypothèses suivantes :

- Coûts spécifiques d'investissement
 - Centrale à dual fuel : 1350 US\$/kW
 Cycle combiné : 1100 US\$/kW
 Centrale à charbon : 2500 US\$/kW
 Centrale biomasse : 2600 US\$/kW
 - O Centrale PV: 1000 US\$/kWc ou 2000 US\$/kWc. Le prix de 1000 US\$/kWc nécessite actuellement des subventions. Il se peut qu'un prix de 1000 US\$/kWc soit envisageable après 2020 si la baisse des coûts des systèmes PV continue; voir l'Annexe 1 du rapport «Plan d'Expansion des Moyens de Production » de la présente étude.
- Financement des coûts d'investissement
 - o Centrale à dual fuel, cycle combiné et centrale à charbon : 20% fonds propres, 80% crédits avec les conditions : taux d'intérêt 6%, période de grâce 3 ans⁵, remboursement sur 10 ans (à compter de la fin de la période de grâce).
 - Centrale PV: 33% fonds propres; 67% crédits avec les conditions: taux d'intérêt 6%, période de grâce 1 an, remboursement sur 8 ans
 - Centrale biomasse : 33% fonds propres ; 67% crédits avec les conditions : taux d'intérêt
 6%, période de grâce 3 an, remboursement sur 8 ans
- ❖ Coûts O&M: 4% des coûts d'investissement; PV: 1%; biomasse: 6%.
- Coûts du fuel : voir le tableau en bas.
- ❖ Production: Centrales thermiques production « normale » ⁶. Centrales PV − 1400 kWh/kWc/an.

⁴ Source : Tractebel, Actualisation des Etudes d'Ingénierie et des Dossiers d'Appel d'Offres de l'Aménagement d'Adjarala, Octobre 2013.

⁵ La durée de construction des centrales est de trois ans. La durée de la période de grâce commence dans le modèle dans la première année de construction. Le remboursement des montants déboursés dans la 1^{ère}, la 2^{ème} et la 3^{ème} année commence donc dans la 4^{ème} année, c'est-à-dire dans l'année de la mise en service.

⁶ Exemple : la production normale d'une centrale à charbon suppose que la centrale tourne environ 7400 heures par an à 90% de la capacité installée.

- Durée de vie des centrales : 20 ans pour les centrales à dual fuel et les cycles combinés, 30 ans pour les centrales à charbon, 20 ans pour les systèmes PV, 15 ans pour les centrales à biomasse.
- Taxe sur les bénéfices : 25%. La taxe est prélevée à partir de l'année où le bénéfice cumulé est positif.
- Rentabilité: environ 10% sur les fonds propres. La rentabilité est calculée comme taux interne de rentabilité sur 20 ans et 15 ans respectivement (biomasse).

Ces hypothèses donnent les prix suivants :

Tableau 2 : Prix de ventes des IPP (US cents par kWh)

Centrale	Fioul	Prix de combustible	Prix de vente
			US cents par kWh
Centrale dual fuel	HFO	Actuel : 8,5 US\$/GJ	11,3
Centrale dual fuel	HFO	Si Brent 100 US\$/baril: 12,9 US\$/GJ	15,4
Centrale dual fuel	Gaz pipe	Gaz : 11 US\$/MMBTU	12,6
Centrale dual fuel	Gaz pipe	Gaz : 14 US\$/MMBTU	15,2
Cycle combiné	Gaz pipe	Gaz : 11 US\$/MMBTU	10,2
Cycle combiné	Gaz pipe	Gaz : 14 US\$/MMBTU	12,2
Cycle combiné	GNL (Barge)	Gaz : 11 US\$/MMBTU	13,3
Cycle combiné	GNL (barge)	Gaz : 14 US\$/MMBTU	15,6
Centrale à charbon	Importation	Charbon: 4 US\$/MMBTU	9,7 *
Centrale à charbon	de charbon	Charbon: 5 US\$/MMBTU	10,6 *
Centrale PV	Solaire		15,0
Centrale PV	Solaire		7,5
Centrale biomasse		Biomasse : 20 US\$/MWh	10,7

^{*} Ces estimations sont supportées par une centrale à charbon qui est en phase de construction à Sendou au Sénégal. Un article dans le journal Le Soleil du 1 septembre 2014 mentionne que « la Senelec pourrait acheter l'électricité produite par la centrale à raison de 62 FCFA le kWh » (≈ 9,9 US cents/kWh).

2.2.4 Budget de fonctionnement de la CEB

Le budget de fonctionnement en 2015 est estimé à 28 millions US\$. Ce montant augmente dans le modèle à hauteur de 25% de l'accroissement des ventes de la CEB. Si, par exemple, les ventes de la CEB augmentent de 5%, le budget de fonctionnement augmente de 1,25%.

L'estimation de 28 millions US\$ en 2015 est basée sur le document « Simulation de Relèvement des Tarifs de la CEB » de 2012. En 2012, les charges de personnel, les services extérieurs, les frais financiers et les pertes de change⁷ s'élevaient au total à environ 31 millions de US\$ (taux de change :

⁷ Les pertes de change indiquées dans le document de la CEB sont de 2,8 milliards de FCFA par an jusqu'en 2016 et ensuite de 1,5 milliards de FCFA entre 2017 et 2021. Supposant que les pertes soient principalement liées au taux de change FCFA par US\$, les pertes pourraient être plus élevées à cause de l'appréciation du US\$.

1,30 US\$/Euro). Le calcul correspondant avec les charges estimées par la CEB pour 2015 donne pour cette année environ 28 millions de US\$ (taux de change : 1,10 US\$/Euro).

3 Réseau de Transport

3.1 Coûts d'investissement

Les plans d'expansion des réseaux de transport ont été préparés pour la CEB et la SBEE. Les investissements à réaliser pour le réseau de transport de la CEB et de la SBEE sont décrits dans le rapport « Développement du Réseau de Transport » de la présente étude.

Le tableau ci-dessous présente un résumé des coûts unitaires.

Tableau 3 : Coûts unitaires utilisés dans les calculs des réseaux de transport à construire

Composante	Coût	Unité	Composante	Coût	Unité
ligne aérienne 63kV	78,750	US\$/km	TFO 63-MT 5 MVA	67,526	US\$
ligne souterraine 63kV	210,000	US\$/km	TFO 63-MT 20 MVA	135,051	US\$
			TFO 63-MT 40 MVA	270,102	US\$
ligne 161kV simple terne	115,500	US\$/km			
ligne 161kV double terne	210,000	US\$/km	TFO 161-MT 5 MVA	441,000	US\$
ligne 330 simple terne	157,500	US\$/km	TFO 161-MT 20 MVA	882,000	US\$
ligne 330 double terne	279,300	US\$/km	TFO 161-MT 40 MVA	1,764,000	US\$
poste 63/20 ou 63/33 hors TFO	2,100,000	US\$	TFO 161-63 50 MVA	2,100,000	US\$
poste 161/20 ou 161/33 hors TFO	2,100,000	US\$	TFO 161-63 100 MVA	4,200,000	US\$
poste 161/63 hors TFO	2,100,000	US\$	TFO 161-63 200 MVA	8,400,000	US\$
poste 330/161 ou 330/63	3,150,000	US\$			
			capacité	525	US\$/MVAr
TFO 330-161 200MVA	10,500,000	US\$	inductance 161kV	44,100	US\$/MVAr
TFO 330-63 200MVA	10,500,000	US\$			

Le Tableau 4 présente les coûts d'investissement de la CEB et le Tableau 5 ceux de la SBEE.

Tableau 4 : CEB – Coûts d'investissement en réseau de transport (Millions US\$ au prix 2015)

	CEB	- Coûts d	'investis	sement e	n réseau	de trans	port (mil	lions US\$	2015)		
CAS DE PREDOMINA	NCE CHARBON	1									
Scen. Demande	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	202
HAUT	1.1	11.0	11.0	13.2	11.0	42.1	6.6	6.6	8.8	8.8	36.0
MOYEN	1.1	6.6	6.6	8.8	6.6	27.1	6.6	6.6	6.6	8.8	19.1
FAIBLE	1.1	6.6	6.6	8.8	6.6	21.3	6.6	6.6	6.6	8.8	19.1
Scen. Demande	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	
HAUT	13.2	11.0	11.0	15.4	50.2	11.0	6.6	6.6	6.6	6.6	
MOYEN	6.6	2.2	2.2	7.7	23.7	4.4	0.0	0.0	0.0	0.0	
FAIBLE	4.4	0.0	0.0	4.4	21.5	4.4	0.0	1.1	0.0	0.0	
CAS DE PREDOMINA	NCE GAZ										
Scen. Demande	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
HAUT	1.1	8.8	8.8	11.0	8.8	24.9	6.6	6.6	23.8	8.8	36.0
MOYEN	1.1	6.6	6.6	8.8	6.6	25.9	6.6	6.6	6.6	8.8	19.1
FAIBLE	1.1	6.6	6.6	8.8	6.6	35.1	6.6	6.6	6.6	8.8	19.1
Scen. Demande	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	
HAUT	11.0	8.8	8.8	13.2	48.0	11.0	6.6	6.6	6.6	6.6	
MOYEN	6.6	2.2	2.2	7.7	23.7	19.4	0.0	0.0	0.0	0.0	
FAIBLE	6.6	2.2	2.2	6.6	23.7	4.4	0.0	1.1	0.0	0.0	

Fichier: CompilPosteV4_1, E69

Tableau 5 : SBEE – Coûts d'investissement en réseau de transport (Millions US\$ au prix 2015)

	SBEE	- Coûts	d'investis	sement	en réseau	ı de trans	sport (mi	llions US\$	2015)		
CAS DE PREDOMINA	NICE CHAPPON	u .									
CAS DE PREDOIVIINA	INCE CHARBOI	•									
Scen. Demande	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	202
HAUT	12.0	20.8	17.6	13.2	13.2	20.3	9.6	17.7	12.9	23.1	34.0
MOYEN	2.2	18.2	23.2	10.6	10.6	17.7	9.8	14.4	13.1	11.4	32.0
FAIBLE	2.2	14.9	19.9	7.3	7.3	14.4	9.4	13.9	7.0	10.9	31.6
Scen. Demande	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	
HAUT	30.1	8.1	12.0	8.1	8.1	8.2	8.2	8.2	8.2	19.2	
MOYEN	27.9	22.2	9.7	13.1	5.8	8.2	8.2	8.2	9.3	13.7	
FAIBLE	41.4	5.3	9.1	11.1	7.5	3.4	3.4	3.4	4.5	8.9	
CAS DE PREDOMINA	NCE GAZ										
Scen. Demande	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	202
HAUT	12.0	15.5	12.3	7.9	7.9	15.0	14.1	22.2	17.3	27.5	38.5
MOYEN	2.2	14.9	19.9	7.3	7.3	14.4	9.8	14.4	13.1	11.4	32.0
FAIBLE	2.2	14.9	19.9	7.3	7.3	14.4	9.4	13.9	7.0	10.9	31.6
Scen. Demande	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	
HAUT	30.2	8.2	12.0	8.2	8.2	7.7	7.7	7.7	7.7	18.7	
MOYEN	27.9	22.2	9.7	13.1	5.8	9.3	9.3	9.3	10.4	14.8	
FAIBLE	42.0	5.8	9.7	11.6	8.0	5.6	5.6	5.6	6.7	11.1	

Fichier: CompilPosteV4_1, E99

3.2 **Coûts 0&M**

Les coûts O&M sont dans les calculs tarifaires de 2% des coûts d'investissement.

3.3 Financement des coûts d'investissement

Le financement des coûts d'investissement est dans le modèle fait pour l'année 2015 et pour les périodes 2016 – 2020, 2021 – 2025, 2026 – 2030, 2031 – 2035.

CEB: La CEB est supposée financer 15% sur fonds propres. Le restant (85%) est financé par un crédit avec des conditions: taux d'intérêt 4%, début de remboursement dans l'année qui suit la dernière année de la période sous considération (Exemple: le remboursement des montants déboursés dans la période 2016 – 2020 commence en 2021), durée de remboursement 10 ans.

SBEE: La SBEE est supposée financer 25% sur fonds propres. Le budget national finance 10% et les bailleurs de fonds financent 25% sous forme de dons. La contribution reçue du budget national n'est pas à rembourser. Le restant (40%) est financé par un crédit avec des conditions : taux d'intérêt 4%, début de remboursement dans l'année qui suit la dernière année de la période sous considération ; durée de remboursement 10 ans.

4 Electrification – Densification dans les GCU et les localités déjà électrifiées en 2014

4.1 Développement du nombre d'abonnés

En 2014, le taux d'électrification étendu⁸ était de : Cotonou 115%, Abomey-Calavi 52%, Sémé-Kpodji 21%, Abomey-Bohicon 55%, Porto Novo 95%, Parakou 79%. Ces taux augmentent beaucoup dans tous scénarios. Dans le Scénario Haut, par exemple, les valeurs en 2035 sont : Cotonou 160%, Abomey-Calavi 105%, Sémé-Kpodji 95%, Abomey-Bohicon 105%, Porto Novo 130%, Parakou 105%⁹. Combiné avec l'accroissement de la population dans les GCU, cela se traduit dans le Scénario Haut par 778 000 nouveaux abonnés BT au total dans la période 2015 – 2035.

Dans les localités en dehors des GCU mais déjà électrifiées, le taux d'électrification étendu était de 21% en 2014. Le taux augmente jusqu'en 2035 à 75% (Scénario Haut), 66% (Scénario Moyen) et 50% (Scénario Faible). Dans la période 2015 – 2035, au total 733 000 abonnés BT sont raccordés dans le Scénario Haut, 630 000 dans le Scénario Moyen et 446 000 dans le Scénario Faible.

4.2 Calcul des coûts d'investissement

Le tableau suivant présente les coûts spécifiques d'investissement. Les coûts comprennent le coût de matériel, de transport et d'installation. Le coût de branchement inclut le coût d'un compteur de prépaiement. Le tableau indique le nombre d'abonnés BT par km de ligne BT et MT. Ces paramètres ont été utilisés pour calculer la longueur des lignes BT et MT à installer.

⁸ Nombre d'abonnés BT/Nombre de ménage

⁹ Voir le Tableau 4.5 dans le rapport « Scénarios de Demande » pour les valeurs dans le Scénario Moyen et Faible.

Tableau 6 : Coûts spécifiques d'investissement

(Densification dans les GCU et les localités déjà électrifiées en 2014)

	Grands Centres Urbains	Localités hors GCU déjà électrifiées		
		en 2014		
Abonnés BT par km BT	50	35		
Abonnés BT par km MT	1100	1000		
Coût ligne BT (US\$/km)	15 000	11 000		
Coût ligne MT (US\$/km)	16 000	14 000		
Coût de branchement (US\$/abonné BT)	250	250		
Coûts des transformateurs	8% des coûts totaux			

Source : Projet d'extension et de restructuration du réseau de la SBEE dans le département de l'Atlantique et la ville d'Abomey-Calavi (en cours).

Concernant les nouveaux abonnés MT, ceux-ci sont supposés être raccordés au réseau MT existant ou aux lignes MT qui seront construites dans le cadre de l'extension du réseau de distribution. Il s'agit là de l'extension du réseau MT dont on a besoin pour desservir les nouveaux abonnés BT (1 km de ligne MT pour 1100 ou 1000 nouveaux abonnés BT). Avec l'hypothèse que les abonnés MT paient les coûts de branchement, cela implique qu'il n'y a pas d'autres coûts à financer pour le raccordement de nouveaux abonnés MT que les coûts d'extension des lignes MT. Ces coûts sont pris en compte dans le calcul des coûts d'investissement pour l'électrification des clients BT.

Le Tableau 7 présente les coûts d'investissement. Le financement qui détermine les dépenses est décrit dans le paragraphe 4.4.

Tableau 7: Coûts d'investissement du programme de densification (millions US\$ au prix 2015)

Scénario	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
HAUT	16.1	17.2	18.2	19.4	20.6	21.9	40.6	42.7	44.9	47.2	49.4
MOYEN	14.3	15.1	16.1	17.1	18.1	19.2	35.9	37.7	39.6	41.5	43.4
FAIBLE	11.7	12.4	13.2	14.0	14.8	15.7	28.8	30.2	31.6	33.0	34.4
Scénario		2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
HAUT		51.2	53.5	55.8	58.0	60.1	61.6	63.6	65.3	66.6	64.0
MOYEN		44.8	46.7	48.6	50.4	52.2	53.3	54.9	56.2	56.9	54.2
FAIBLE		35.3	36.7	38.1	39.4	40.6	41.0	42.0	42.8	43.0	40.1

Fichier: coûts élec réseau, coûts, AE8

4.3 Coûts O&M

Les coûts annuels O&M sont de 2% des coûts d'investissement.

4.4 Financement des coûts d'investissement

Le modèle calcule le financement pour l'année 2015 et ensuite pour les périodes de : 2016 – 2020, 2021 – 2025, 2026 – 2030 et 2031 – 2035.

Le modèle prévoit cinq sources de financement : les abonnés BT, autofinancement par la SBEE, financement par l'Etat (budget national), subvention par les bailleurs de fonds, emprunt bancaire à la SBEE ou à l'Etat.

Frais de branchement payés par les abonnés BT

- GCU Cotonou : 160 US\$ par abonné (≈ 100 000 FCFA/abonné BT)
- Autres GCU et localités déjà électrifiées en 2014 : 160 US\$ par abonné en 2015 (≈ 100 000 FCFA/abonné BT). Il s'agit des frais qui sont actuellement appliqués. Les frais correspondent à environ deux-tiers des coûts de branchement. Les coûts sont donc subventionnés à hauteur d'un tiers. Les frais sont supposés diminuer à 62,50 US\$ par abonné en 2035 (≈ 39 000 FCFA/abonné BT au prix 2015) ce qui correspond à un quart des coûts de branchement. La raison derrière la réduction des frais de branchement est que la forte augmentation des taux d'électrification implique que les nouveaux abonnés ont une capacité de paiement de plus en plus faible. Pour que les pauvres puissent se raccorder, il faut réduire les frais de branchement.

Cette hypothèse n'a pas été retenue pour Cotonou parce que (presque) 100% des ménages sont déjà raccordés. Les nouveaux abonnés BT seront des commerçants, restaurants, banques, services publiques, petites industries etc. qui sont supposés être capable de payer les frais actuels de 160 US\$ (ou même les coûts de 250 US\$).

Autofinancement par la SBEE

La SBEE est supposée financer 20% des coûts qui restent à financer en tenant compte des frais de branchement.

Financement par l'Etat (budget national)

L'Etat est supposé financer 10% des coûts qui restent à financer en tenant compte des frais de branchement. Le financement par le budget national est traité dans le modèle comme subvention. Les coûts financés par le budget national n'entrent donc pas dans le calcul du tarif.

Subventions par les bailleurs de fonds

Les bailleurs de fonds sont supposés financer 30% des coûts qui restent à financer en tenant compte des frais de branchement. La contribution des bailleurs de fonds est sous forme de dons.

Crédit bancaire à la SBEE (ou à l'Etat)

Le restant est financé par un crédit avec des conditions : taux d'intérêt 4%, début de remboursement dans l'année qui suit la dernière année de la période sous considération ; durée de remboursement 10 ans.

5 Programme d'Electrification Rurale

5.1 Développement de l'électrification

Le programme d'électrification rurale électrifie dans la période 2016 – 2018 les chefs-lieux des arrondissements qui ne sont pas encore être raccordés au réseau (au total 127 chefs-lieux). Ensuite, d'autres localités sont raccordées. L'algorithme utilise les critères suivants :

- La distance au réseau existant,
- La taille de la localité : dans le Scénario Haut, le nombre d'habitants doit être au moins de 1000 en 2035. Les valeurs correspondantes dans le Scénario Moyen et Faible sont de 1500 et de 2000.
- Le nombre annuel de localités raccordées est d'environ 100 dans le Scénario Haut, 90 dans le Scénario Moyen et 80 dans le Scénario Faible.

Vers la fin de la période considérée, l'importance du premier critère (distance) est amoindrie dans le sens que l'algorithme donne la priorité aux grandes localités même si elles sont loin du réseau.

Ces hypothèses ont pour conséquence que toutes localités qui ont au moins 1000, 1500 ou 2000 habitants en 2035 sont raccordées au réseau à l'horizon de cette étude (2035). Au total, 1850 localités sont raccordées dans la période 2016 – 2035 dans le Scénario Haut ; 1641 dans le Scénario Moyen et 1385 dans le Scénario Faible.

Dans la première année d'électrification, entre 10% (Scénario Faible) et 30% (Scénario Haut) des ménages sont branchés sur le réseau. Ce pourcentage augmente jusqu'à 25% (Scénario Faible) et 50% (Scénario Haut) à la fin de la cinquième année. Ensuite, l'augmentation est relativement faible. A la fin de la 20^{ème} année, le taux est de 50% dans le Scénario Faible et de 75% dans le Scénario Haut.

5.2 Calcul des coûts d'investissement

Le réseau de distribution établi dans la première année d'électrification suffit pour raccorder les abonnés qui se branchent jusqu'à la cinquième année incluse. Les seuls coûts additionnels dans ces années sont les coûts de branchement.

Après la cinquième année, l'extension du réseau de distribution est alors nécessaire pour raccorder plus d'abonnés. Il est supposé que les extensions sont faites avec un horizon de cinq années. L'extension en 2023, par exemple, installe des lignes BT de manière à ce que tous nouveaux abonnés dans les années 2023, 2024, 2025, 2026 et 2027 puissent se brancher au réseau. Le calcul suppose qu'un kilomètre de ligne BT soit nécessaire pour raccorder 20 abonnés. L'extension du réseau MT est calculée à partir de l'hypothèse que 200 mètres MT sont nécessaire par kilomètre BT. Pour tenir compte des coûts de transformateurs, les coûts d'extension BT + MT sont augmentés de 5%.

Les coûts qui résultent du calcul sont augmentés de **15**% pour tenir compte des coûts des études à faire pour réaliser le programme d'électrification et du budget de fonctionnement de l'ABERME.

Tableau 8 : Coûts spécifiques d'investissement – Electrification rurale

Abonnés BT par km de ligne BT	20

Ligne MT par km de ligne BT	200 mètres
Coût ligne BT (US\$/km)	11 000
Coût ligne MT (US\$/km)	14 000
Coût de branchement (US\$/abonné BT)	250
Coûts des transformateurs	Entre 4200 US\$ (50 kVA)
Couts des transformateurs	et 5565 USS (160 kVA)

5.3 Coûts O&M

Les coûts annuels O&M sont de 2% des coûts d'investissement.

5.4 Financement des coûts d'investissement

Le modèle calcule le financement pour l'année 2015 et ensuite pour les périodes de : 2016 – 2020, 2021 – 2025, 2026 – 2030 et 2031 – 2035.

Le modèle prévoit cinq sources de financement : les abonnés BT, l'ABERME, l'Etat (budget national), les subventions par les bailleurs de fonds, les emprunts bancaires à la SBEE ou à l'Etat.

Frais de branchement payés par les abonnés BT

160 US\$ par abonné en 2015 (≈ 100 000 FCFA/abonné BT). Il s'agit des frais qui sont actuellement appliqués. Les frais correspondent à environ deux-tiers des coûts de branchement. Les coûts sont donc subventionnés à hauteur d'un tiers. Les frais sont supposés diminuer à 62,50 US\$ par abonné en 2035 (≈ 39 000 FCFA/abonné BT au prix 2015) ce qui correspond à un quart des coûts de branchement. La raison derrière la réduction des frais de branchement est que la forte augmentation des taux d'électrification implique que les nouveaux abonnés ont une capacité de paiement de plus en plus faible. Pour que les plus pauvres puissent se raccorder, il faut réduire les frais de branchement.

Financement par l'ABERME

Une taxe en faveur de l'électrification rurale et de la maitrise de l'énergie est payée par tous abonnés BT. La taxe est collectée par la SBEE et finalement transférée à l'ABERME. La taxe correspond à environ 2,6% du montant chargé pour la consommation d'énergie (montant hors TVA). Le modèle suppose que 2,0% soit utilisé pour l'électrification rurale et 0,6% pour la maitrise d'énergie. Le montant collecté pour l'électrification rurale dans l'année t est utilisé à cette fin dans l'année t+1.

Financement par l'Etat (budget national)

L'Etat est supposé contribuer à hauteur de 10% des coûts hors frais de branchement à travers le budget national.

Subventions par les bailleurs de fonds

Les bailleurs de fonds sont supposés financer le minimum de (i) 50% des coûts qui restent à financer en tenant compte des frais de branchement et (ii) le montant qui reste à financer en tenant compte des frais de branchement et du financement par l'ABERME et le budget national.

Crédits des bailleurs de fonds

Si le financement décrit en haut ne suffit pas pour couvrir les coûts d'investissement, le restant est supposé être financé par un crédit des bailleurs de fonds. Les conditions du crédit sont : période de grâce 4 années, taux d'intérêt 2%, pas d'intérêts intercalaires, durée de remboursement de 15 années (à compter à partir de la fin de la période de grâce).

6 SBEE - Coûts O&M du réseau existant, budget de fonctionnement et fonds de roulement

6.1 Coûts O&M du réseau existant

Le Rapport Annuel 2013 de la SBEE donne (p. 25) la longueur du réseau existant :

- 5 256 km de lignes BT
- 4 177 km de lignes MT
- 136 km de lignes HT

L'évaluation avec les prix de 11 000 US/km (BT), 14 000 US\$/km (MT) et 156 000 US\$/km (HT) donne des coûts totaux de 138 millions de US\$. Supposant que 2% de ce coût soient nécessaires pour la maintenance et l'entretien, les coûts O&M pour les lignes s'élèvent à 2,8 millions de US\$ par an. A ce montant il faut ajouter les coûts O&M pour les transformateurs et les branchements. L'estimation du consultant est que le budget total nécessaire pour l'O&M du réseau existant soit en 2015 de 5 millions de US\$. Le budget augmente dans le modèle chaque année en suivant un rapport de 50% du taux de croissance de la demande.

6.2 Budget de fonctionnement

L'estimation du budget de fonctionnement de la SBEE est basée sur le rapport « Rapport d'activités & Etats Financiers 2013 » de la SBEE. La somme des coûts de personnel, d'autres charges et des frais financiers donne pour 2012 environ 35 millions de US\$ et pour 2013 environ 31 millions de US\$ (taux de change 1 Euro = 1,30 US\$). Le calcul des coûts de 2013 avec le taux de change actuel de 1,05 US\$/Euro donne 25 millions de US\$. Ce montant est utilisé dans le modèle pour 2015.

Le montant augmente ensuite en suivant un rapport de 25% du taux de croissance de la demande. Si, par exemple, la demande à satisfaire par le réseau interconnecté du Bénin augmente de 6%, le budget de fonctionnement augmente de 1,5%.

6.3 Fonds de roulement

Un tarif qui recouvre toutes les dépenses de l'année ne garantit pas que les recettes reçues durant l'année suffisent pour respecter les dates de paiement des dépenses. Le fonds de roulement couvre

ces déficits. Le fonds est calculé comme un mois des dépenses suivantes : achat CEB, achat auprès des IPP qui vendent à la SBEE (centrales PV mise en service jusqu'en 2019, centrales à biomasse, nouvelle centrale à Maria Gleta), production de la SBEE, MRI, Aggreko, CAI, O&M de tous réseaux, budget de fonctionnement. Le fonds de roulement est introduit dans le modèle à partir de 2015.

7 RESULTATS

Les tarifs moyens calculés par le modèle sont les tarifs qui assurent que les recettes suffisent pour payer les dépenses. Le calcul des tarifs est donc basé sur la trésorerie et pas sur le compte d'exploitation.

Encadre: Remarques sur l'approche « dépenses » et « compte d'exploitation ».

La différence principale entre l'approche « dépenses » et l'approche « compte d'exploitation » est le traitement des investissements. Dans le compte d'exploitation, les investissements entrent sous forme des amortissements et des intérêts payés pour les crédits utilisés pour financer les investissements. Dans l'approche « dépenses », les dépenses comprennent les fonds propres utilisés pour financer les investissements, le remboursement des crédits et les intérêts payés pour les crédits. Le remboursement des crédits se fait normalement sur une période qui est nettement plus courte que la durée de vie de l'investissement. La durée de vie est utilisée pour calculer l'amortissement. Baser les tarifs sur l'approche « dépenses » garantit que la société puisse payer les dépenses (à condition que les factures soient payées). Cela n'est pas garanti si le calcul du tarif est basé sur le compte d'exploitation. Il se peut qu'un tarif qui est basé le compte d'exploitation donne un bon profit mais ne suffit pas pour payer les dépenses.

7.1 Tarifs de la CEB

7.1.1 Scénario Haut

Le Graphique 3 présente les tarifs de CEB dans le Scénario Haut.

On constate qu'il y a trois périodes :

- a) Dans la période jusqu'en 2019, le tarif augmente si le prix du pétrole brut augmente (cas A1, ... A6).
- b) En 2020, le tarif chute dans tous les cas. Il montre ensuite une légère tendance à la baisse jusqu'à 2029.
- c) Sauf pour le cas B5, le tarif augmente à partir de 2030.

Les dépenses pour la production des centrales de la CEB, les importations et l'achat auprès des IPP comptent dans chaque période pour 85% – 95% des dépenses à recouvrir par le tarif de la CEB. L'évolution des sources d'approvisionnement en énergie électrique qui est à l'origine du développement est décrite dans la suite.

Période 2015 - 2019

Sur cette période, il y très peu de changements pour la CEB par rapport à la situation actuelle.

- Le gaz du pipeline continue d'être limité à 10 MPC/jour.
- Le gaz est utilisé par les TAG de la CEB à Maria Gleta et à Lomé.
- Les importations du Nigéria restent au niveau actuel d'environ 1400 GWh/an. Les importations du Ghana/Côte d'Ivoire sont de l'ordre de 450 550 GWh/an.

Dans les cas où les prix des combustibles et des importations restent au niveau actuel (cas B1, B3 et B5), un tarif de 69 – 70 FCFA/kWh permet de couvrir le dépenses de la CEB. Dans les cas où les prix augmentent, le tarif augmente de 69 à 79 FCFA/kWh en 2019.

CEB - Scénario Haut, tarifs moyen, couverture dépenses 80.0 FCFA/kWh 78.0 76.0 74.0 A2 72.0 70.0 68.0 66.0 B1, B2 64.0 **B5** 62.0 60.0 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

Figure 3 : Scénario Haut - Développement du tarif de la CEB qui recouvre les dépenses

Légende: Disponibilité de gaz: Jusqu'à et compris 2019, 10 MPC/jour. Ensuite 10 MPC/jour dans les cas B1, A1 et A2, 50 MPC/jour dans les cas B3, A3, A4 et jusqu'à 200 MPC/jour dans les cas B5, A5 et A6.

Prix du gaz : toujours 11 US\$/MMBTU dans B1, B3 et B5. Dans les cas A1, ..., A6, 14 US\$/MMBTU à partir de 2020.

<u>Prix charbon</u>: 4 US\$/MMBTU (B1, B3, B5, A1, A3, A5) et 5 US\$/MMBTU (A2, A4, A6). <u>PV</u>: 1000 US\$/kWc dans tous les cas.

<u>Période 2020 – 2029</u>

Cette période voit énormément de changements :

- La centrale hydroélectrique d'Adjarala est disponible à partir de 2020.
- Les cycles combinés à gaz deviennent les sources d'approvisionnement les plus importantes si le gaz du pipeline est disponible jusqu'à 200 MPC/jour et le prix du gaz reste au niveau actuel de 11 US\$/MMBTU.

- Dans tous les autres cas, la production des centrales à charbon devient la source la plus importante, achetée par la CEB au prix entre 9,7 et 10,6 US cents par kWh (58 – 63 FCFA/kWh).
- Des centrales PV vendent leur production au prix de 7,5 US cents par kWh (≈ 45 FCFA/kWh) à la CEB. La capacité de ces centrales est de 140 MWc en 2020, augmentant à 620 MWc en 2025.
- Les TAG de la CEB continuent à produire jusqu'en 2025. Elles fonctionnent au gaz.
- Les importations du Nigéria montrent une tendance à la baisse; dans certains des cas examinés à moins de 500 GWh/an. Les importations et du Ghana/Côte d'Ivoire deviennent très faibles. Les importations du Niger, produite par une centrale à charbon, commencent en 2025. Le prix de 0,10 − 0,11 US\$/kWh (≈ 60 − 66 FCFA/kWh) font deces importations une source attrayante et elles deviennent les importations les plus importantes (typiquement 1000 − 1200 GWh/an).
- Les dépenses pour la construction du réseau (161 et 330 kV) deviennent importantes dans cette période mais le montant reste faible par rapport aux dépenses pour l'électricité.

Le développement favorable de l'approvisionnement en énergie électrique permet de réduire le tarif de la CEB de 70 FCFA/kWh en 2019 à 63 - 64 FCFA/kWh en 2030 si le prix du gaz et des produits pétroliers reste au niveau actuel. Dans le cas des prix plus élevés (cas A1, ..., A6), une forte baisse du tarif est aussi constatée, de 79 FCFA/kWh en 2019 à 64 – 69 FCFA/kWh en 2025.

Période 2030 - 2035

A une exception, les tarifs montent dans cette période. Les raisons principales sont : la capacité des centrales à charbon atteint la limite de 1000 MW. Cela conduit à l'installation des cycles combinés à gaz naturel s'il y a suffisamment de gaz (A5 et A6), ou des centrales qui utilisent le HFO ou le GNL (après regazéification). Toutes ces technologies coûtent plus cher que la production des centrales à charbon. Le tarif monte légèrement de 63 -64 FCFA/kWh en 2029 à 65 FCFA/kWh si le prix du gaz et des produits pétroliers reste au niveau (B1 et B2). Le tarif monte de 64 – 69 FCFA/kWh en 2029 à 67 – 74 FCFA/kWh si les prix sont ceux associés avec le prix du pétrole brut de 100 US\$/baril (A1, ..., A6).

L'exception est le cas B5 où le gazoduc fournit jusqu'à 200 MPC/jour et cela au prix de 11 US\$/MMBTU (en termes réelles) ce qui se traduit en prix d'achat de 10,2 US cents par kWh (\approx 61 FCFA/kWh). Dans ce cas, beaucoup de capacité charbon est installée (625 MW entre 2030 et 2035) et le prix d'achat est de 9,7 US cents par kWh (\approx 58 FCFA/kWh). Cela réduit le tarif à 62 FCFA/kWh en 2025 ; une légère baisse par rapport au tarif de 64 FCFA en 2029.

7.1.2 Scénario Moyen et Faible

Les tendances sont dans ces scénarios identiques aux tendances dans le Scénario Haut et cela pour essentiellement les mêmes raisons. Les valeurs des tarifs sont aussi proche des valeurs dans le Scénario Haut.

Les graphiques qui montrent les tarifs de la CEB dans les Scénarios Moyen et Faible se trouvent dans l'Annexe 7.1.

7.2 Tarifs pour le Bénin

7.2.1 Scénario Haut

Le Graphique 4 montre les tarifs moyens au Bénin qui recouvrent les dépenses dans le Scénario Haut. Les annexes contiennent une présentation détaillée des catégories de dépenses pour un de cas analysés.

Figure 4 : Scénario Haut - Développement du tarif moyen qui recouvre les dépenses

<u>Légende</u>: voir Figure 3.

Période 2015 - 2019

L'analyse des tarifs montre que les coûts de production déterminent largement le tarif. Dans la période 2015 – 2019, ils comptent pour 77% - 85% des tarifs moyens.

Le tarif d'achat à la CEB et les hypothèses qui déterminent ce tarif ont été décrits plus haut. Outre l'achat à la CEB, les centrales diesel de la SBEE, de MRI et d'Agrekko et les TAG gérées par CAI contribuent à l'approvisionnement du Bénin. Les centrales diesel tournent au gasoil et les TAG au JET A1. De plus, il y a des centrales PV à partir de 2017 et la nouvelle centrale à Maria Gleta à partir de 2018. La centrale tourne au HFO à cause de manque de gaz. Le gazoduc fournit seulement 10

MPC/jour et ce gaz est utilisé par les TAG de la CEB. Voir le paragraphe 2.1 pour les coûts de production des toutes centrales mentionnées.

En 2013, le tarif moyen hors taxes était de 110 FCFA/kWh. La Figure 4 montre que le tarif qui recouvre les dépenses en 2015 devrait être de 117 FCFA/kWh. Si le prix du gaz et des produits pétroliers reste au niveau actuel, le tarif de 117 FCFA/kWh suffit en 2016 et 2017. En 2018, la mise en service de Maria Gleta permet de réduire le tarif à 101 FCFA/kWh, suivi d'une légère augmentation à 106 FCFA/kWh en 2019.

Si les prix des produits pétroliers et du gaz augmentent, ce qui se réalise dans les cas A1, ..., A6 à partir de 2017, le tarif augmente à 130 FCFA/kWh en 2019. La nouvelle centrale à Maria Gleta (prix d'achat d'environ 67 FCFA/kWh) réduit l'augmentation mais ne l'évite pas.

Les résultats supposent que les dépenses liés à l'extension du réseau de transport de la SBEE (63, 33 et 20 kV) et à la densification sont relativement faibles dans la période 2015 – 2019. Sinon, le niveau des tarifs serait plus élevé.

Période 2020 - 2035

Une forte réduction du tarif se réalise en 2020 dans tous les cas examinées, suivi d'une légère tendance à la baisse jusqu'en 2035 ou au moins jusqu'en 2029.

La chute du tarif en 2020 est notamment due à la mise en service d'une centrale à charbon ce qui réduit beaucoup les coûts d'achat à la CEB. Dans le cas B5, c'est la mise en service des cycles combinés à gaz. Le tarif en 2020 varie entre 91 et 105 FCFA/kWh selon le cas.

Comme déjà décrit en haut, d'autres centrales de ces types sont installées dans les années suivantes ce qui permet de continuer à réduire les tarifs. En 2029, ils varient entre 88 et 95 FCFA/kWh. En général, ils restent à ce niveau jusqu'à 2035 ; faible réduction dans quelques cas, faible augmentation dans d'autres.

Les dépenses pour l'approvisionnement en énergie comptent toujours pour la grande partie des dépenses totales (minimum environ 80%). A partir de 2020, les dépenses pour le réseau deviennent importantes : densification, extension du réseau de transport, dépenses liées à l'électrification rurale (extension des réseaux construites sous l'égide de l'ADERME et O&M des tous réseaux construites en milieu rural), O&M du réseau existant. Mais ces dépenses ne dépassent pas 12% des dépenses totales

7.2.2 Scénario Moyen et Faible

Les tendances sont les mêmes dans les Scénarios Moyen et Faible. Les tarifs sont aussi dans l'ordre des tarifs dans le Scénario Haut. L'Annexe 7.1 montre l'évolution des tarifs dans le Scénario Moyen et Faible.

7.3 Analyses complémentaires

Autofinancement

Les calculs supposent que la SBEE contribue au financement des investissements de densification et de l'extension du réseau de transport par des fonds propres. L'autofinancement entre dans la méthode de calcul du tarif mais il se peut que l'autofinancement doive être disponible avant que les recettes tarifaires soient disponibles. Pour éviter une telle situation, l'autofinancement à réaliser dans l'année t+1 pourrait être inclus dans le calcul du tarif pour l'année t. Un tel calcul augmente le tarif au début d'environ 5%. Dans les années suivantes, l'augmentation est faible, zéro ou même négative¹⁰.

Impact des subventions

Les résultats présentés dans le texte supposent que des subventions soient mises à disposition par le budget national ou les bailleurs de fonds. Les subventions financent une partie des investissements pour la densification, l'extension du réseau de la SBEE et l'électrification rurale. Les analyses de sensibilité ont été faites pour obtenir une idée de l'impact des subventions sur le tarif. Dans l'absence de subventions, le modèle utilise des crédits avec les conditions décrites dans les paragraphes 3.3, 4.4 et 5.4 pour financer le montant manquant. La contribution de la SBEE au financement des investissements ne change pas. L'impact de ces hypothèses est une augmentation des tarifs. L'augmentation est faible (moins de 1 FCFA/kWh) jusqu'en 2020 mais entre 3 et 6 FCFA/kWh après.

Impact du Fonds de Roulement

La SBEE a informé le consultant que les problèmes de trésorerie empêchent le paiement des factures à l'échéance normalement dûe. Les résultats présentés dans le présent report incluent le besoin en un fonds de roulement pour résoudre ce problème. Le fonds est calculé comme un mois des dépenses suivantes : achat CEB, achat auprès des IPP qui vendent à la SBEE, production de la SBEE, O&M de tous réseaux et le budget de fonctionnement. Un mois de ces dépenses est considéré le minimum que le fonds devrait couvrir. Si le calcul est fait avec deux mois, le tarif augmente au début (2015) d'environ 9 FCFA/kWh à un niveau de 126 FCFA/kWh. L'impact est faible dans la suite; typiquement 1 ou 2 FCFA de plus par rapport au tarif qui est basé sur la couverture d'un mois des dépenses susmentionnées.

Port minéralier pour une centrale à charbon

Dans le cas d'installation d'une centrale à charbon au Bénin, il faudrait construire un port minéralier. Une estimation grossière du coût d'investissement d'un tel port est de 100 US\$ par kW installé. Le coût est inclus dans les calculs économiques faites avec le logiciel WASP. Le coût n'est cependant pas pris en compte dans le prix de vente d'un IPP qui construit et exploite la centrale.

Un simple calcul a été fait pour obtenir une idée sur l'impact sur le tarif si la politique tarifaire envisage de recouvrir les coûts d'investissement. Les coûts ont été liés à la capacité de 1000 MW en

_

¹⁰ Le montant que les abonnés mettent à disposition dans l'année t pour l'autofinancement de l'année t+1 est à soustraire des dépenses de l'année t+1, Sinon, les abonnés paient deux fois. Le calcul dans l'année t+1 est donc : besoin en autofinancement dans l'année t+2 moins autofinancement mis à disposition pour t+1. C'est donc seulement la différence qui entre dans le calcul du tarif. La différence peut être négative. La méthode est essentiellement identique au calcul du besoin en fonds de roulement.

centrales à charbon qui est la capacité maximale dans le modèle. Les investissements s'élèvent donc à 100 millions de US\$. Pour recouvrir ce montant sur la période 2020 – 2029 (10 millions de US\$ par an), il faudrait augmenter le tarif dans la période 2020 – 2022 de 3 FCFA et ensuite de 2 FCFA¹¹. L'augmentation en pourcentage est de 3% dans la période 2020 – 2022 et de 2% après.

Impact des coûts des centrales PV : 2000 US\$/kWc au lieu de 1000 US\$/kWc

Les résultats présentés en haut supposent que le prix d'achat de la production des centrales PV est de 45 FCFA/kWh. Ce prix est basé sur le coût de 1000 US\$/kWc. Ce coût n'est aujourd'hui pas réalisable au Bénin sans subvention. Le consultant estime le coût est au moins de 2500 US\$/kWc et le prix de vente sans subvention au moins de 110 FCFA/kWh. Mais les bailleurs de fonds sont prêts à subventionner des projets d'installations des centrales PV - le MCC prévoit, par exemple, de financer 45 MWc sous forme de don – et cela laisse attendre que le prix moyen des projets avec et sans subvention soit aujourd'hui de l'ordre de 45 FCFA/kWh.

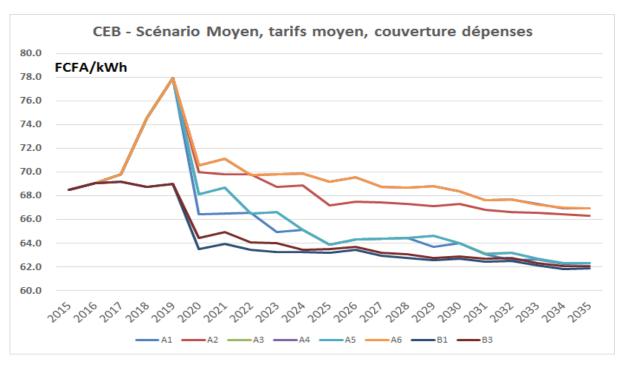
Après 2020, ce prix est peut-être même réalisable sans subvention si la baisse des coûts des systèmes PV continue – voir l'Annexe 1 du rapport «Plan des Moyens de Production ». Mais il se peut aussi que les centrales PV coûtent 2000 US\$/kWc après 2020 ce qui se traduit en prix d'achat de 90 FCFA/kWh (au prix de 2015). L'impact du prix d'achat sur le tarif a été examiné pour le cas A5 et le Scénario Haut (A5 : gazoduc fournit jusqu'à 200 MPC/jour au prix de 14 US\$/MMBTU et le charbon coûte 4 US\$/MMBTU).

L'impact du tarif est d'abord que cela change le parc de production à partir de 2020¹². Au lieu d'installer jusqu'en 2035 1120 MWc en PV, seulement 680 MWc sont installés dans la solution à moindre coût économique. La réduction de la production des centrales PV est notamment compensée par l'augmentation de la production des cycles combinés à gaz qui vendent leur production à 73 FCFA/kWh. Cela a pour conséquence que les tarifs au Bénin sont dans la période 2020 - 2035 entre 1 et 5 FCFA/kWh plus élevés. L'augmentation en termes de pourcentage est entre 1% et 6%; 1% seulement dans les années 2020 – 2022 ; ensuite typiquement entre 3% et 5%.

⁻

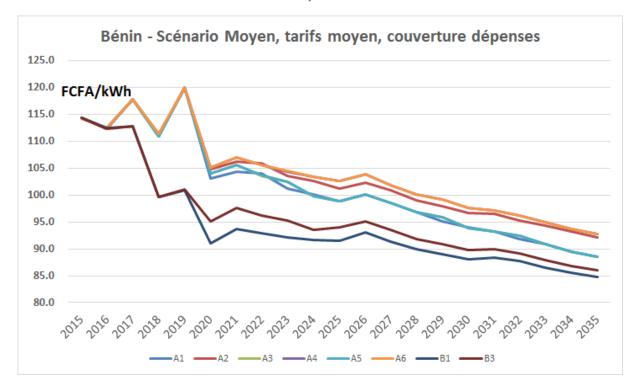
¹¹ Les calculs ont été faits avec les tarifs dans le Scénario Haut. C'est seul dans le Scénario Haut que la capacité en centrales à charbon atteint le maximum de 1000 MW.

¹² L'installation de 140 MWc jusqu'en 2019 est dans le calcul indépendant du prix des systèmes PV parce que les projets, y compris 45 MWc que le MCC envisage financer, sont considérés se réaliser en tout cas.

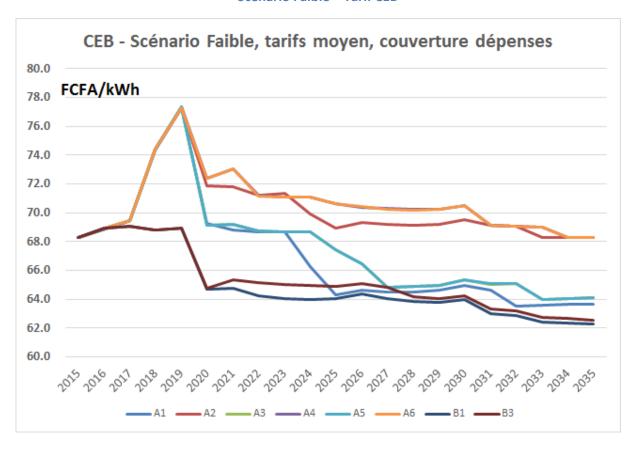


Annexes

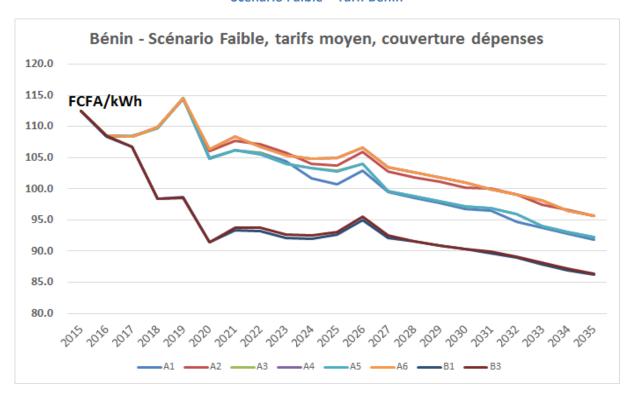
- Annexe 1 : Tarifs dans les Scénarios Moyen et Faible
- Annexe 2 : Exemple du calcul du tarif du Bénin
- Annexe 3 : Tarifs et capabilité de paiement des abonnés


ANNEXE 1 Tarifs dans les Scénarios Moyen et Faible

Scénario Moyen - Tarif CEB



Scénario Moyen – Tarif Bénin



Scénario Faible - Tarif CEB

Scénario Faible - Tarif Bénin

ANNEXE 2 Exemple du calcul du tarif au Bénin

Le tableau ci-dessous présente les résultats du cas A5 dans le Scénario Haut. Les hypothèses principales de ce cas sont :

- Le gazoduc fournit 10 MPC/jour dans la période 2015 2019.
- Le gazoduc fournit jusqu'à 200 MPC/jour à partir de 2020.
- Le prix du gaz fournit par le gazoduc est de 11 US\$/MMBTU entre 2015 et 2018, de US\$/MMBTU en 2019 et de 14 US\$/MMBTU à partir de 2020.
- Le prix du charbon est de 4 US\$/MMBTU.
- Le prix des centrales PV est de 1000 US\$/kWc.

	Achat par SBEE à CEB	Production SBEE et achat par SBEE (ex CEEB)	Achat à CEB	Production et achat à SBEE	Densifi- cation	Réseau SBEE	Electr. Rurale	O&M réseaux	Budget fonct.	FdR	Total	Total	Ventes	Tarif
												Milliards		FCFA par
	GWh	GWh		ions US\$		Millions US\$			Millions US		Millions US\$		GWh	kWh
2015	-	212	131.7		2.4		-	5.0	25.0	17.3	230.1	137.0	1,168	1:
2016		429	121.0	83.7	2.6		2.7	5.8	25.5	2.4	249.5	148.6	1,269	1:
2017		697	106.7	139.4	3.0		3.0	7.1	26.1	3.6	294.2	175.2	1,387	12
2018		1,341	51.4	191.6	3.4		3.4	8.6	26.7	-	289.7	172.5	1,516	_
2019	-	1,522	50.5	255.2	3.8		3.5	10.5	27.4	5.4	361.0	215.0	1,655	13
2020		1,110	111.4	145.5	4.3		3.8	11.7	28.0	-	311.4	185.4	1,806	10
2021		1,093	137.5	142.8	10.5		6.1	13.1	28.8	-	346.6	206.4	2,011	10
2022		1,118	162.2	146.8	11.3		6.7	14.8	29.6	0.8	382.1	227.5	2,232	10
2023		1,101	190.0	144.0	12.2		7.4	16.9	30.4	2.3	411.8	245.2	2,470	9
2024		1,094	218.7	143.0	13.1	-	7.7	19.0	31.1	2.5	446.4	265.8	2,726	9
2025		1,083	250.2	141.2	14.0		8.2	21.1	31.9	2.7	483.7	288.0	3,001	9
2026		1,077	288.3	139.4	22.1	17.1	9.9	23.6	-	3.3	536.5	319.4	3,295	9
2027		1,076	322.8	139.4	22.8		10.6	26.2		3.2	570.3	339.6	3,609	9
2028		1,076	359.7	139.4	23.6		11.4	28.6		3.3	612.8	364.9	3,945	9
2029		1,077	399.5	139.4	24.4		12.0	31.2	35.0	3.6	656.7	391.0	4,304	9
2030	,	1,076	452.8	139.4	25.2		12.8	33.7	35.8	4.7	715.8	426.2	4,687	9
2031	,	1,076	506.2	139.4	32.4		15.4	36.2		4.7	781.4	465.3	5,094	9
2032	,	1,077	563.5	139.5	33.0	_	16.3	39.0	37.4	5.1	844.0	502.5	5,524	9
2033	, -	1,076	623.1	139.4	33.6	_	17.2	41.9	38.1	5.3	908.8	541.1	5,981	9
2034	,	1,076	687.3	139.4	34.2		18.0	45.0		5.7	978.6	582.7	6,465	9
2035	1,714	1,077	753.8	139.4	34.2	12.7	14.9	48.1	39.7	5.9	1,048.7	624.5	6,968	!

ANNEXE 3 Tarifs et capabilité de paiement des abonnés

Le rapport « Scénario de Demande » de la présente étude contient une analyse sur l'impact que les prix moyens payés pour l'approvisionnement par la SBEE sur la période 2005 – 2013 avaient sur les ventes facturées. Résultat : les prix n'ont pas eu un impact sur les ventes ; voir p. 23 dudit rapport. Il n'y a pas non plus de corrélation entre les prix et le taux de recouvrement de la SBEE. Il est vrai que le taux n'a jamais été bon mais cela est notamment dû au non-paiement ou paiement avec d'énormes délais des institutions du secteur public. La mauvaise volonté du secteur public à payer n'est pas due aux tarifs mais reflète une faiblesse de la politique.

Il semble donc que les tarifs étaient abordables dans le passé. L'estimation des futurs tarifs inclut des cas où les tarifs qui permettent de recouvrir les coûts d'approvisionnement sont nettement plus élevés pendant plusieurs années par rapport aux tarifs actuels. La question est de savoir si ces tarifs ne dépassent pas la capacité de paiement des abonnés, ce qui pourrait se traduire en une demande plus faible qu'estimée. La question est notamment d'importance pour les nouveaux abonnés en milieu rural dont la plupart seront probablement (nettement) moins aisés que les abonnés existants.

Dans le calcul de la demande, la consommation spécifique des nouveaux abonnés est nettement plus faible que la consommation des abonnés existants. En milieu rural, elle est dans l'année d'électrification de 70% plus faible ; en milieu urbain de 20%¹³. Il est donc indirectement supposé que la capacité de paiement des nouveaux abonnés est inférieure à la capacité de paiement des abonnés existants. Mais la question de la solvabilité demeure : peut-on s'attendre à ce que les clients puissent payer les factures d'électricité ?

L'approche traditionnelle pour estimer la capacité à payer pour l'électricité est de réaliser des enquêtes qui portent sur (i) la volonté de payer pour cette électricité, (ii) les coûts évités et, peut-être, (iii) les revenus. Les personnes interrogées sont notamment des clients potentiels, c'est-à-dire des clients qui ne sont pas encore approvisionnés par une société d'électricité. Les coûts évités sont les coûts qui sont remplacés dans le cas de l'approvisionnement par la société d'électricité. Par exemples, les coûts du kérosène utilisé pour l'éclairage, les frais payés pour charger des batteries utilisées pour faire tourner un poste de télévision ou les coûts associés à l'autoproduction de l'électricité. Pour savoir si les valeurs qui résultent de ces enquêtes sont des bonnes estimations, il faudrait comparer les montants dépensés pour l'électricité après l'électrification avec les estimations des enquêtes réalisées avant l'électrification. Le consultant ne connait aucune étude qui a fait cette comparaison¹⁴. Le peu d'indications que l'on trouve dans les documents publiés laisse penser que les montants payés pour l'approvisionnement par la société d'électricité dépassent la capacité de paiement estimée à partir des enquêtes¹⁵.

¹³ Pourcentages par rapport à la consommation moyenne des abonnés BT en 2014. Exceptions : La consommation spécifique des nouveaux abonnés BT à Cotonou et Porto Novo. Leur consommation est identique à la consommation des abonnés existants en 2014. Voir page 22 et 23 du rapport « Scénarios de Demande » pour les raisons.

¹⁴ Une telle étude est actuellement en cours au Sénégal dans le cadre de l'électrification des régions de Kaolack – Niroro – Fatick – Gossas par un concessionnaire privé, mais les premiers résultats de cette étude ne seront pas disponibles avant mi-

¹⁵ Voir le livre "Decentralised Rural Electrification – An Opportunity for Mankind, Techniques for the Planet". Publié par Systèmes Solaires, août 2002.

Plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

DAEM - MERPMEDER

Tome 6
Plan de mise en œuvre

Rapport Final Aout 2015

RAPPORT Final

Plan directeur de développement du sous-secteur de l'énergie électrique au Bénin

Tome 6:

PLAN DE MISE EN ŒUVRE

Références du contrat : DAEM : 206/MEF/MERPMEDER/DNCMP/SP

IED: 2014/007

Client IDA

Consultant IED Innovation Energie Développement

2 chemin de la Chauderaie 69340 Francheville, France Tel: +33 (0)4 72 59 13 20 Fax: +33 (0)4 72 59 13 39

Site web: www.ied-sa.fr

Rédaction du document

	VERSION 1	VERSION 2	VERSION 3
Date	Avril 2015	Aout 2015	
Rédaction	CA/HP/PS	CA/HP/PS	
Relecture	CA/HP/PS	CA/HP/PS	
Validation	HP	HP	

Ce rapport a été rédigé par IED dans le cadre du contrat Elaboration du plan directeur de développement du sous-secteur de l'énergie électrique au Bénin à parti des informations collectées au cours des missions effectuées au Bénin et des échanges avec les personnes rencontrées. Il ne reflète pas nécessairement les opinions de la Banque Mondiale, du Ministère de l'Energie du Bénin, de la SBEE, de l'ABERME.

PLAN DIRECTEUR DE DEVELOPPEMENT DU SOUS-SECTEUR DE L'ENERGIE ELECTRIQUE AU BENIN

LISTE DES TOMES:

TOME 0: RESUME EXECUTIF

TOME 1: SCENARIOS DE DEMANDE

TOME 2: PLAN D'EXPANSION DES MOYENS DE PRODUCTION

TOME 3: DEVELOPPEMENT DU RESEAU

TOME 4: ELECTRIFICATION RURALE

TOME 5 : ANALYSE FINANCIERE

TOME 6: PLAN D'ACTION

TOME 6 - TABLE DES MATIERES

1	INTRODUCTION5
2	CENTRALE MULTI-FUEL 120MW DE MARIA-GLETA
2.1 cen	Etude des aspects logistiques, environnementaux et sociaux d'approvisionnement d'une trale a dual fuel a Maria Gleta (ou Lomé) en fioul lourd8
3 D'U	ETUDE SUR L'INSTAURATION DE LA CEB COMME « ACHETEUR UNIQUE », L'INTRODUCTION N ORGANE DE REGULATION ET L'IMPLICATION DU SECTEUR PRIVE COMME PRODUCTEUR
IND	EPENDANT9
4	INSTALLATION D'UNE CENTRALE A CHARBON ET DES INFRASTRUCTURES ASSOCIEES
4.1	Port minéralier9
4.2	Construction d'une centrale à charbon 2x125 MW et études associées10
4.3	Etudes et construction d'une ligne 330kV SèmèKpodji – Sakété11
5	ETUDES DE DISPONIBILITE DE GAZ ET D'UNE BARGE POUR STOCKAGE DE GNL ET DE
REG	AZEIFICATION
5.1 gaze	Etude sur la disponibilité du gaz naturel au Nigéria et au Ghana pour la fourniture via le oduc du WAPCo12
5.1.3	1 Objet de l'étude
5.1.2	2 Contexte
5.1.3	3 Objectifs de l'étude
5.1.3 5.1.4	h
5.1.	5 Qualification du Consultant
5.1.6	Organisation de la mission
5.1.	7 Délais

5.1.8	Rapports à fournir
5.2	Etude de l'opportunité d'importation de GNL14
6	IMPLANTATION D'UN TERMINAL METHANIER
6.1	Etude détaillées d'implantation16
6.2	Construction d'un terminal méthanier16
7	ETUDE DE FAISABILITE D'INSTALLATION D'UN CYCLE COMBINE DE 150 MW AU BENIN 17
8	CENTRALES SOLAIRES PVERREUR! SIGNET NON DEFINI.
9	CENTRALES BIOMASSEERREUR! SIGNET NON DEFINI.
10	ETUDES SUR LES FEED-IN TARIFF
11	INTERCONNEXION AVEC LE NIGER
12	ETUDES DES EXTENSIONS ET RENFORCEMENT DU RESEAU 63KV DE LA SBEE
12.1	Etudes Détaillées (APD) du réseau 63 kV de Cotonou19
12.2	Etudes détaillées de la ligne 63kV Ouidah-GrandPopo et du poste 161/63 d'Avakpa 19
12.3	Etudes détaillés du poste de Dogbo20
12.4	Etudes détaillés du poste de Tanzoun et restructuration des réseaux MT associés 20
12.5	Etudes des réseaux ruraux 63kV de la SBEE20
13	RENFORCEMENT DE L'ABERME
	eau 1 : Plan d'action période 2015 - 2022 (1/2)
	eau 2 : Plan d'action période 2015 - 2020 (1/2)
Table	eau 3 : Besoins en gaz naturel

ACRONYMES

APD : Avant-Projet Détaillé APS : Avant-Projet Sommaire

BT : Basse Tension

CEB : Communauté électrique du Bénin

CEET: Compagnie d'Energie Electrique du Togo

GCU :Grand Centres Urbain GNL : Gaz Naturel Liquéfié HFO : Heavy Fuel Oil

IPP: Independant Power Producer

kWc : kiloWatt crête

HT: Haute Tension

MMBTU: Million British Thermal Unit

MPC : Million de Pieds Cube MT : Moyenne Tension

MW : MegaWatt PV : Photovoltaïque

SBEE : Société Béninoise d'Energie Electrique

TAG: Turbine à gaz

TCN: Transport Company of Nigeria

VRA: Volta River Authority

WASP: Wien Automatic System Package

1 Introduction

Le présent tome décrit les activités à entreprendre afin de réaliser les ambitions du Plan Directeur. L'accent est mis sur la période 2015 – 2025.

Avant de présenter les activités, il convient d'aborder le sujet de rentabilité économique et financière des projets proposés comme expressément demandé dans les TDR. Les projets de production reflètent les solutions à moindre coût économique. Les projets d'extension de réseaux de transport sont nécessaires pour transporter l'énergie produite par les moyens de production participant à l'optimum économique. La rentabilité économique des projets d'électrification (densification et électrification rurale) n'est pas concernée. Certains projets d'électrification peuvent ne pas être rentables au plan financier parce que le tarif payé par les abonnés peut y être inférieur aux coûts d'approvisionnement mais si la tarification suit les propositions faites dans la présente étude, le secteur d'électricité du Bénin ne sera pas déficitaire au plan global.

Encadré: Bénéfices de l'électrification

Il est bien connu que l'électrification apporte de nombreux bénéfices. Il est cependant difficile de les quantifier parce que beaucoup se réalisent seulement à long terme. Un effort pour quantifier tous les bénéfices de l'ER a été fait dans une étude d'ESMAP menée aux Philippines en 1998. Le résultat a montré que le bénéfice par ménage était compris entre **80 et 150 US\$ par mois**. Source: ESMAP, Rural Electrification and Development in the Philippines: Measuring the Social and Economic Benefits, Report 255/02, May 2002, p. 3. Même si ce résultat est mis en doute et que le bénéfice réel ne représente qu'un dixième du résultat de l'étude, il serait toujours suffisamment élevé pour justifier au plan économique presque tous les projets d'électrification.

Ce rapport détaille les actions à mener d'ici à 2020. Le tableau suivant présente une vue synthétique du chronogramme de ces actions :

Tableau 1 : Plan d'action période 2015 - 2022 (1/2)

Projet	20)15	20	16	20	17	20	18	20	19	20	20	202	1	2022	20	23	2024	1 20	025	Coûts	Institution en charge
Etude CEB Comme acheteur unique			Х	Χ	Х																300 000\$	DGE
Centrale 120 MW DF Maria-Gléta	Х	Х	Х	Х	Х	Х																SBEE
études environnementale		Χ	Х																		100 000\$	SBEE
Lancement des AO			Х																			SBEE
Construction				Χ	Х	Χ																Privé
Centrale Charbon 250 MW			Х	Х	Х	Х	Х	Χ	X	X	X	X	X	Х								
recherche de financement pour l'étude du port			х																			DGE/Ministère
étude du port				Χ	Х	Χ															300 000\$	Economie/Ministère du
AO Port minéralier							Χ	Χ														Transport
Construction du port									Х	Χ	Χ	Χ	Χ	Х								
Etude APD centrale charbon				Χ	Х																200 000\$	CEB
AO Centrale Charbon						Χ	Χ	Χ														CEB
Construction centrale charbon									Χ	Χ	Χ	Χ	Χ	Х								Privé
Etudes, Financement, AO, construction Ligne 330 kV Sakété-SèmèKpodji						Х	Х	Х	Х	Х	х										Etude 200 000\$	СЕВ
Projets 63 kV																						SBEE
Ouidah-Grand Popo			Χ	Χ	Χ	Χ																SBEE
63 kV Cotonou	Х	Χ	Χ	Χ	Χ	Χ																SBEE
Etudes 63kV Rural													Χ	Х	X X	+						SBEE
Construction du 63kV rural																_		X >	_	Χ		SBEE
Interconnexion avec le Niger															X X	X	X	X >	(CEB
Etude de faisabilité, APS, APD															X X							
AO - Construction																Χ	Χ	X >	(

Tableau 2 : Plan d'action période 2015 - 2020 (1/2)

Projet	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	Coûts	Institution en charge
Centrale Cycle Combiné au Gaz (Gazoduc ou GNL)	х х	х х	х х	х х	х х	х х	х х						WAPP/DGE/CEB
Etude disponibilité Gaz au Nigéria et Ghana		х х										200 000\$	DGE
Assurer financement étude GNL		Χ											WAPP/DGE
Etude disponibilité GNL		Х										300 000\$	WAPP/DGE
APD Barge			х х									200 000\$	WAPP/Ministère Energie
AO Barge				ХХ									
Construction / Connection de la barge au gazoduc					х х	х х							WAPP/Ministère Energie
APD Centrale cycle combiné au Gaz			X X	Χ								200 000\$	WAPP/CEB
AO Centrale cycle combiné au Gaz				ХХ									WAPP/CEB
Construction Centrale Cycle combiné au Gaz					хх	хх	хх						WAPP/CEB
Etudes sur les Feed-in Tariff		X X										200 000\$	DGE/ANADER/Régulateur

2 Centrale Multi-Fioul 120MW de Maria-Gléta

Le processus pour la construction d'une centrale multi-fioul de 120MW à Maria-Gléta est déjà avancé. Le recrutement d'un bureau d'étude pour le dépouillement des appels d'offres pour la sélection d'une entreprise de construction de la centrale a été annoncé en mars 2015. Cependant les études des aspects logistiques, environnementaux et sociaux de l'approvisionnement de cette centrale ne paraissent pas suffisantes.

2.1 Etude des aspects logistiques, environnementaux et sociaux d'approvisionnement d'une centrale bicombustible à Maria Gleta (ou Lomé) en fioul lourd

L'installation d'une centrale diesel bicombustible HFO/gaz naturel à Maria-Gléta (120 puis 400 MW) a été étudiée par TRACTEBEL (au stade de l'APD) dans la perspective d'un fonctionnement au gaz naturel. Dans le cas de l'indisponibilité de quantités suffisantes de gaz, la centrale devra tourner au fioul lourd ce qui exige une noria de camions pour assurer l'approvisionnement en combustible ou bien la construction d'un oléoduc calorifugé et d'une station de compression depuis le stockage pétrolier du port de Cotonou. Ces deux options sont problématiques avec des conséquences prévisibles pour la détérioration des chaussées et les risques et nuisances encourus par les populations riveraines dans le premier cas, du fait des investissements supplémentaires et des difficultés d'exploitation dans le second cas.

Une étude socio-environnementale comparative est nécessaire afin d'examiner les conséquences d'un fonctionnement au fioul lourd de la centrale bicombustible à construire à Maria-Gléta en complément des études d'ingénierie menées par Tractebel dans la perspective d'une indisponibilité du gaz naturel.

Les aspects socio-environnementaux sont aussi à examiner pour l'installation de la centrale à Lomé. Cela serait l'alternative au cas où l'installation à Maria-Gléta encourrait des graves impacts socio-environnementaux ou des coûts élevés de réduction des risques (investissements supplémentaires) qui mettraient en péril la faisabilité du projet.

Etude des aspects logistiques, environnementaux et sociaux d'approvisionnement d'une centrale bicombustible à Maria Gleta (ou Lomé) en fioul lourd

Institution en charge : DGE
Démarrage de l'étude : 2016
Durée de l'étude : 6 mois
Coûts : 100 000 US\$

3 Etude sur l'instauration de la CEB comme « acheteur unique », l'introduction d'un organe de Régulation et l'implication du secteur privé comme producteur indépendant

Le Plan Directeur prévoit que les futures centrales de production sont construites et exploitées par des entreprises privées qui vendent la production à la CEB qui devient de cette manière l'acheteur unique pour le Bénin et le Togo.

Une étude de faisabilité technique, institutionnelle, juridique et commerciale est à mener en vue d'investir la CEB du statut de véritable acheteur unique et d'opérateur de réseau en charge d'optimiser au jour le jour ainsi qu'à court, moyen et long terme le bouquet énergétique des deux pays. Dans un tel contexte la CEB pourrait faire appel aux importations, à ses moyens propres mais aussi aux producteurs indépendants installés sur le territoire et aux moyens de la CEET et de la SBEE. Ces nouvelles responsabilités devraient être contrebalancées par la création d'un organe de régulation indépendant, commun aux deux pays, en charge de vérifier la qualité et l'équité des actions de la CEB. Ces aspects seront également à traiter dans l'étude.

Finalement, l'étude devrait faire des recommandations sur les changements nécessaires au niveau de la législation, de la réglementation du secteur de l'électricité et de la fiscalité pour inciter le secteur privé à s'impliquer comme IPP au Togo ou au Bénin.

Etude sur l'instauration de la CEB comme « acheteur unique », l'introduction d'un organe de

Régulation et l'implication du secteur privé comme producteur indépendant Institution en charge : Ministères en charge de l'énergie au Bénin et au Togo

Démarrage de l'étude : 2016 Durée de l'étude : 18 mois

Coûts: 300 000 US\$

4 Installation d'une centrale à charbon et des infrastructures associées

Le Plan Directeur montre que si l'approvisionnement en gaz naturel par le gazoduc ouest africain continue à être limité, les centrales à charbon apparaissent dans la solution d'approvisionnement à moindre coût économique. Dans l'optique de la construction et de l'exploitation de ces centrales il faut prévoir la réalisation d'importantes infrastructures associées : (i) port minéralier, (ii) ligne 330kV SèmèKpodji-Sakété. Le plan directeur du développement des infrastructures d'énergie électrique du Togo (SNC- LAVALIN Juillet 2014) mentionne aussi le charbon comme une option pour l'approvisionnement des clients du Togo. La question de la faisabilité de l'importation du charbon n'est pas traitée dans le plan du développement des infrastructures d'énergie électrique du Togo.

4.1 Port minéralier

A priori les infrastructures portuaires existantes à Cotonou ne permettront pas d'importer les grandes quantités de charbon nécessaires au fonctionnement des centrales associées : environ 3300

Tome 6 : Plan de mise en œuvre

T/an/MW installé, soit de 415 000 Tonnes (125MW) à 2 891 000 Tonnes (1000MW). Il est notamment nécessaire de disposer de grandes surfaces pour entreposer les stocks de charbon entre chaque livraison par bateau. La construction de telles infrastructures pourra bénéficier à d'autres secteurs de l'économie. Les ministères de l'économie et du transport devront y être associés. Il faudra réaliser les études de faisabilité, d'Avant-Projet Sommaire et d'Avant-Projet Détaillé et la rédaction des appels d'offres pour la construction de ce port. La génération d'électricité à partir du charbon importé bénéficiera aussi bien au Togo qu'au Bénin. Néanmoins il ne paraît pas raisonnable de doubler les infrastructures portuaires pour l'importation de charbon dans les deux pays. Il faudra une coordination entre Lomé et Cotonou pour décider du meilleur emplacement d'un tel port. Le Bénin semble être une meilleure option pour cette centrale car le site de SèmèKpodji présente l'avantage de pouvoir facilement être relié au réseau 330kV et de pouvoir accueillir un port minéralier, contrairement au littoral togolais dont le raccordement au réseau 330kV sera problématique.

Etudes de faisabilité, APS, APD et rédaction des DAO pour la construction d'un port minéralier

Institution en charge : DGE/Ministère de l'économie/Ministère des transports (Bénin + Togo)

Démarrage de l'étude : mi-2016 Durée de l'étude : 18 mois Coûts : 300 000 US\$

Construction d'un port minéralier
Démarrage du projet : 2019
Durée de construction : 36 mois

4.2 Construction d'une centrale à charbon 2x125 MW et études associées

La plupart des cas étudiés incluent la construction de centrales à charbon. En parallèle des études sur le port minéralier il faudra réaliser les études de faisabilité, d'APS et d'APD pour la réalisation d'une centrale à charbon de 2x125MW. L'étude devra notamment statuer sur la possibilité de confier l'exploitation à un IPP. Le temps de trouver les financements pour cette étude, elle pourra débuter mi-2016 et durera un an sous la direction de la CEB. De même que pour la question du port cette centrale devra être étudiée en coordination avec les autorités du Togo.

Etudes de faisabilité, APS, APD et rédaction des DAO pour une centrale 2x125MW Charbon

Institution en charge : CEB

Démarrage de l'étude : mi-2016

Durée de l'étude : 12 mois

Coûts: 200 000 US\$

La construction de la centrale pourra débuter après une phase d'appel d'offres d'environ un an. La construction d'une centrale de ce type prend environ 3 ans.

Construction d'une centrale 2x125MW Charbon

Démarrage du projet : 2019 Durée de construction : 36 mois

4.3 Etudes et construction d'une ligne 330kV Sèmè Kpodji - Sakété

La construction de centrales à charbon à proximité du port minéralier de Sémé-Kpodji nécessitera la construction d'une ligne 330 kV double terne pour évacuer l'énergie produite sur la dorsale sud au niveau de Sakété. La construction de cette ligne sera précédée des études de faisabilité et d'avant-projet correspondantes sous l'égide de la CEB.

Etudes et construction d'une ligne 330kV SèmèKpodji - Sakété

Institution en charge : CEB
Démarrage de l'étude : 2017
Durée de l'étude : 12 mois
AO et construction : 2 ans
Coûts des études : 200 000 US\$

5 Etudes de disponibilité de gaz et de faisabilité d'une barge pour stockage et regazéification de GNL

Le Plan Directeur montre l'importance de la disponibilité du gaz naturel pour le parc de production. Trois sources potentielles ont été mises en évidence :

- Le gaz nigérian convoyé par le gazoduc WAPCo à partir de la station de compression d'IKEDI. Les fournisseurs nigérians n'ont pas tenu leurs engagements contractuels vis-à-vis du Ghana, du Togo et du Bénin et les perspectives restent à ce jour très incertaines.
- Le gaz en provenance du Ghana et également convoyé à contre-courant par le gazoduc WAPCo à partir d'une station de compression à construire à TAKORADI. Les études récentes concernant le Ghana évoquent surtout l'alimentation de TEMA via le WAPCo ou une station de regazéification de GNL et n'évoquent pas explicitement des exportations vers les pays voisins.
- La création d'une station flottante de regazéification de GNL au Bénin dans le port de Cotonou ou à Sémé-Kpodji, ou à Cococodji, ou dans un autre pays raccordé au gazoduc WapCo. Le gaz serait partiellement réinjecté dans le gazoduc WAPCo afin de desservir les centrales de MARIA GLETA et LOME.

Bien que connexes, les deux sujets que sont (i) la fourniture du gaz à partir du gazoduc WAPCo et (ii) l'installation d'une station flottante de regazéification de GNL, doivent être traités séparément.

- i. La question de la disponibilité du gaz venant du Nigéria pour alimenter les centrales du Bénin (TAG de la CEB, TAG de CAI, future centrale bicombustible de Maria-Gléta, futurs cycles combinés au gaz) et importé par le gazoduc WAPCo est une question différente avec un cadre plus restreint que la question du GNL. Il faut préciser les quantités disponibles à court et moyen termes, et le prix auquel ce combustible sera disponible.
- ii. La question de l'importation de GNL acheté sur le marché mondial, de sa regazéification et de sa vente au Bénin, au Togo, au Ghana et potentiellement au Nigéria est une question qui est beaucoup plus large que le cadre de cette étude. Pour être rentable, et notamment pour couvrir ses coûts fixes, une telle installation devra maximiser le portefeuille de ses clients et donc se tourner à la fois vers le Bénin, mais aussi vers les autres pays alimentés par le gazoduc WAPCo. Les bénéfices de ces infrastructures toucheront tous les pays du WAPCo:

Bénin, Togo, Ghana et Nigéria, c'est pourquoi une institution internationale doit étudier cette question. Le WAPP est l'institution la plus à même de piloter cette étude.

5.1 Etude sur la disponibilité du gaz naturel au Nigéria et au Ghana pour la fourniture via le gazoduc du WAPCo

Les sous-sections suivantes présentent une trame des Termes de Référence pour cette étude.

5.1.1 Objet de l'étude

Le Bénin et le Togo, seuls ou par l'intermédiaire de la CEB avaient accordé une place prédominante au gaz naturel dans leurs bouquets énergétiques prévisionnels. Ce combustible devait alimenter des centrales Diesel bicombustibles, des cycles combinés ou des turbines à combustion. Ces projets étaient inscrits dans le plan directeur du WAPP. L'approvisionnement principal devait provenir du Nigéria par l'intermédiaire du gazoduc Ouest africain, reliant Ikedi au Nigéria à Cotonou (Bénin), Lomé (Togo), Tema (Ghana) et Takoradi (Ghana). Des contrats avaient été signés en 2003 entre le Nigéria, pays fournisseur, WAPCo et les différents clients, notamment le Ghana qui devait recevoir 123 MPC/jr contre 5 promis au Togo et au Bénin dans un premier temps. A ce jour le contrat avec le Ghana n'est pas honoré et les demandes de livraisons supplémentaires du Togo et du Bénin restent sans suite.

Il est urgent pour ces pays de reconsidérer leur stratégie gazière et dans cette perspective de faire l'inventaire des difficultés actuelles et des opportunités d'autres sources d'approvisionnement potentielles en gaz naturel de réseau.

5.1.2 Contexte

L'étude du plan directeur du Bénin mentionne les centrales suivantes situées soit au Bénin même, soit au Togo alimentées à terme en gaz naturel et devant toutes contribuer à l'alimentation électrique du Bénin :

Tableau 3 : Besoins en gaz naturel

centrale	statut	Puissance installée	Alimentation en	localisation
TAC CEB Cotonou	Existant CEB	1 x 20 MW	5 MPC/jr	Maria Gléta
TAC CEB Lomé	Existant CEB	1 x 20 MW	5 MPC/jr	Lomé Port
TAC CAI	Existant	8 x 10 MW	20 MPC/jr	Maria Gléta
Diesel Contour Global	Existant	6 x 18 MW	25 MPC/jr	Lomé Port
Diesel Maria Gléta	Projet en cours 2018	120 MW	30 MPC/jr	Maria Gléta
Cycle combiné Maria Gléta	Projet 2025 WAPP	450 MW	100 MPC/jr	Maria Gléta
Cycle combiné Contour Global	Projet 2025 au plan directeur CEET	90 MW	20 MPC/jr	Lomé Port
Total			205 MPC/jr	

- A ce jour, seuls 10 MPC/jr sont fournis par le Nigéria via WAPCo au Togo et au Bénin.
- Le gouvernement béninois étudie plusieurs propositions d'alimentation en gaz de la centrale CAI émanant d'opérateurs privés via le gazoduc WAPCo ou une flotte de camions de gaz comprimé. Les prix proposés sont très élevés par rapport à ceux prévus dans le contrat initial ou sur le marché mondial.
- Il n'existe pas dans la région de terminal méthanier bien que des projets soient envisagés au Ghana, au Bénin et au Togo.
- Le gazoduc sous-marin, qui n'est pas ensouillé, a été sévèrement endommagé en 2013 par une ancre dérivante entrainant la suspension des livraisons de gaz naturel pendant plus d'un an.
- A son plein potentiel, la station de compression d'Ikedi serait capable de délivrer une pression de 140 bars, ce qui n'est pas le cas aujourd'hui. Des pressions insuffisantes sont parfois observées à Maria Gléta et à Lomé.
- La capacité de transit du gazoduc sous 140 bars à Ikedi est estimée à 450 MPC/jr.

5.1.3 Objectifs de l'étude

5.1.3.1 Approvisionnement en gaz naturel par le gazoduc

- Connaître précisément les conditions techniques et financières d'approvisionnement actuelles en gaz naturel par le WAPCo.
- Estimer les quantités de gaz naturel réellement disponibles pour l'exportation par le WAPCo vers le Bénin et le Togo à partir du Nigéria et/ou du Ghana aujourd'hui et d'ici 2025.
- Prévoir les conditions techniques et financières d'approvisionnement futur du Bénin et du Togo en gaz naturel par gazoduc.

5.1.4 Description des prestations du Consultant

Pour atteindre les objectifs recherchés le Consultant retenu devra réaliser les tâches suivantes :

- Réaliser directement des enquêtes auprès des partenaires impliqués dans le WAPCo au Nigéria, Bénin, Togo et Ghana afin de recueillir les données techniques et financières concernant la disponibilité de gaz naturel, le fonctionnement du gazoduc et de la station de compression, les projets de développement (exploitation de nouveaux gisements, terminaux méthaniers, extension/renforcement de gazoduc).
- Construire un modèle de calcul du plan de pression dans le gazoduc. Ce modèle sera remis au Client. En déduire les régimes de fonctionnement admissibles (quantités livrées, pression aux stations, fonctionnement éventuel à plusieurs sources, compatibilité des gaz livrés).
- Apprécier les risques encourus par le gazoduc. Calculer les coûts de renforcement éventuels des antennes.

5.1.5 Qualification du Consultant

Le Consultant devra justifier d'une expérience internationale de 15 ans sur les aspects techniques et économiques du transport de gaz naturel, notamment en Afrique. Il pourra si nécessaire être assisté par un expert également hautement qualifié du domaine technique ou économique de l'industrie du gaz.

5.1.6 Organisation de la mission

Les Ministères de l'Energie du Bénin et du Togo et la CEB fourniront au Consultant toute l'assistance nécessaire pour faciliter les rencontres avec les partenaires nationaux impliqués dans le secteur gazier.

Il est attendu du Consultant qu'il possède les contacts adéquats dans l'industrie mondiale du gaz pour lui permettre d'accéder aux experts qualifiés à l'étranger notamment au Nigéria et au Ghana.

Le consultant devra effectuer trois missions au Bénin aux fins de présentation d'un rapport d'étape et du rapport final provisoire. Ces missions pourront être combinées avec les enquêtes au Nigéria et au Ghana.

5.1.7 Délais

Les délais de réalisation de l'étude sont de six mois à compter de la notification du marché.

5.1.8 Rapports à fournir

Le Consultant devra fournir un rapport d'étape et un rapport final.

Le premier rapport d'étape concernera la présentation des résultats des enquêtes auprès des partenaires du secteur gazier dans la région.

A l'issue de sa mission le Consultant soumettra le rapport final provisoire qui fera l'objet d'une procédure de validation par le Client. Aux termes de celle-ci le Consultant rédigera le rapport final.

Etude sur la disponibilité du gaz naturel au Nigéria et au Ghana pour la fourniture via le gazoduc du

WAPCo

Institution en charge : DGE Démarrage de l'étude : 2016 Durée de l'étude : 6 mois Coût de l'étude : 200 000\$

5.2 Etude de l'opportunité d'importation de GNL

Tous les pays alimentés en gaz par le gazoduc de l'Afrique de l'Ouest sont concernés pas la question de l'importation de GNL qui augmenterait les quantités de gaz disponibles sur le marché. Les coûts fixes d'exploitation d'une telle installation sont conséquents et grèvent la rentabilité du projet. Plus le marché potentiel est important, plus les coûts finaux de livraison seront bas. Il est de l'intérêt du Bénin de se joindre aux autres pays alimentés par le gazoduc de l'Afrique de l'Ouest pour former le marché le plus large possible qui sera à même d'intéresser des investisseurs privés pour construire une telle infrastructure.

Comme précisé dans les annexes du rapport production les quantités de GNL importées pour un seul pays seront trop faibles pour que les infrastructures soient rentables. Si la barge permet l'import de GNL pour plusieurs pays, les coûts fixes pourraient être répartis sur les 3 pays et donc les coûts finaux incombant au Bénin seraient réduits par rapport à l'hypothèse où le Bénin seul supporterait le poids de l'importation du GNL.

Ainsi il est de l'intérêt du Bénin d'initier une démarche au niveau régional pour étudier l'opportunité d'importer du GNL. La structure régionale la plus à même de piloter cette étude est le WAPP. Cette institution qui préconise l'installation d'une centrale à cycles combinés au gaz naturel au Bénin à vocation régionale devrait également se pencher sur la question de l'approvisionnement en gaz de cette centrale, le GNL étant une option à examiner.

Concernant la technologie « station flottante / barge » qui est aujourd'hui encore une nouvelle technologie, l'étude doit examiner les conditions que cette réalisation requiert :

- Disposer d'un emplacement en mer pour implanter à demeure une barge de GNL à proximité des côtes en tenant compte du relief des fonds marins,
- Réglementer la zone de sécurité autour de la barge et notamment le trafic maritime,
- Mobiliser une flotte de navires pour assurer les livraisons régulières de GNL adaptées à la capacité de stockage et au flux de consommation.

Cette étude devra :

- Evaluer les quantités de gaz pour satisfaire le marché des trois pays,
- Etudier l'offre en GNL et les conditions d'approvisionnement,
- Etudier les arrangements institutionnels qui permettront de mettre à disposition le GNL pour les quatre pays,
- Collecter les informations sur les barges existantes : coûts d'investissement, coûts d'opération et de maintenance,
- Etudier le prix de vente en supposant qu'un opérateur privé importe, stocke, regazéifie et vende via le gazoduc,
- Etudier l'emplacement optimal de la barge le long de la côte entre le Ghana et le Bénin,
- Rédiger une étude de faisabilité sommaire d'un terminal méthanier (choix de l'emplacement, implantation marine ou terrestre, dimensionnement, stockage, connexion au gazoduc, pression, coût des installations, coûts de maintenance),
- Evaluer les scénarios plausibles d'évolution des prix du gaz naturel en réseau et du GNL,
- Fournir des modèles de contrat « take or pay » de gaz naturel de réseau ou de GNL.

Etude de l'opportunité d'importation de GNL au Ghana, Togo, Bénin ou Nigéria

Institution en charge : WAPP / DGE Démarrage de l'étude : 2016 Durée de l'étude : 6 mois

Coût de l'étude : 300 000\$

6 Implantation d'un terminal méthanier

6.1 Etude détaillées d'implantation

A condition que les études sur le gaz concluent à la faisabilité du projet, il faudra réaliser une étude d'avant-projet détaillé pour la construction d'une barge permettant l'importation de GNL. Si la décision politique d'avoir recours de façon significative au gaz est prise dans le mix énergétique du Bénin et à moins que l'étude sur la disponibilité du gaz au Nigéria ne conclue que de larges quantités sont disponibles de façon indubitable, l'importation de gaz sous forme de GNL sur le marché mondial est incontournable.

Comme suite à l'étude de faisabilité sommaire réalisée dans l'étude d'opportunité d'importation de GNL des études de faisabilité plus détaillées devront être réalisées. Elles se baseront sur les conclusions des études précédentes sur le sujet et comporteront les composantes suivantes :

- Des études détaillées de l'implantation de la barge de regazéification,
- Des études détaillées de la connexion au gazoduc de l'Afrique de l'Ouest,
- Des études détaillées des conditions de stockage du GNL,
- Des études détaillées des conditions de regazéification,
- Des études détaillées des conditions tarifaires de vente aux pays alimentés par le gazoduc,
- Des études d'impact environnemental,
- La rédaction des Dossiers d'Appels d'Offres pour la construction et l'exploitation d'une barge de regazéification.

Vu le caractère régional de ce type d'installation et la probabilité qu'elle ne soit pas installée au Bénin, de même que pour l'étude d'opportunité, l'étude d'implantation devra être pilotée par le WAPP.

Etude détaillées d'implantation d'un terminal méthanier

Institution en charge: WAPP
Démarrage de l'étude: 2017
Durée de l'étude: 1 an
Coût de l'étude: 200 000\$

6.2 Construction d'un terminal méthanier

A condition que les études sur le gaz prouvent la faisabilité du projet et à la suite des études d'implantation détaillées, la construction et l'exploitation du terminal méthanier seront confiées à un opérateur privé. Le processus d'appel d'offres se déroulera en 2018. La construction et la connexion au gazoduc durera 2 ans. Les institutions en charge de ce projet seront le WAPP, le ministère de l'énergie du pays où sera implantée la barge et la DGE pour le Bénin.

Construction d'un terminal méthanier

Institution en charge: WAPP/Ministère de l'énergie Ghana et Togo/DGE

Démarrage du projet : 2018 Durée du projet : 2 ans

7 Etude de faisabilité d'installation d'un cycle combiné de 150 MW au Bénin

Les cycles combinés utilisant le gaz naturel sont des centrales importantes sur le plan économique à condition qu'il y ait suffisamment de gaz à un prix compétitif.

Une étude de faisabilité est à mener pour un cycle combiné 150 MW à construire à Maria-Gléta entre 2020 et 2025. L'étude portera sur le choix du site et l'ensemble des aspects techniques, économiques, financiers et juridiques du projet et la possibilité de la réalisation par un producteur indépendant.

Cette centrale peut être considérée comme la première tranche de la centrale promue par le WAPP.

Etude de faisabilité d'installation d'un cycle combine de 150 MW au Bénin

Institution en charge : DGE Démarrage de l'étude : 2017 Durée de l'étude : 12 mois

Coûts: 200 000 US\$

8 Etudes sur les Feed-in Tariffs

Au vu des quantités importantes de centrales de production renouvelables, notamment des centrales PV, recommandées dans le volet production du plan directeur et du fait de leur développement préconisé par des IPP, une étude sur la rémunération des IPP par des Feed-in Tariffs est recommandée. Il est important d'assurer aux entrepreneurs privés désirant investir dans le domaine des énergies renouvelables une politique tarifaire qui leur assure une rentabilité correcte à même de permettre la réalisation de ces projets. Il faut que le gouvernement béninois adopte une politique claire à ce sujet. Le mécanisme des Feed-in Tariffs (FiT) permet un développement rapide des énergies renouvelables. Tous les pays qui l'ont mis en place ont obtenus des résultats encourageants.

Plusieurs pays en Afrique ont déjà mis en place ce mécanisme de financement : Algérie, Kenya, Ile Maurice, Rwanda, Afrique du Sud, Tanzanie, Ouganda, ou sont en train de le mettre en place : Botswana, Egypte, Ethiopie, Ghana, Namibie, Nigéria (Voir : POWERING AFRICA THROUGH FEED-IN TARIFFS, World Future Council, Février 2013). Le Bénin pourra s'appuyer sur ces expériences pour sa propre politique.

L'étude devra:

- Présenter dans les détails les mécanismes similaires existants dans d'autres pays africains.
- Détailler les conditions juridiques et institutionnelles de leur mise en œuvre.
- Recommander des Feed-in Tariffs et décrire la méthodologie appliquée pour déterminer les FiT.
- Décliner les tarifs suivant les technologies : PV, éolien, biomasse, hydro.
- Recommander la limite des capacités installées des FiT; tant pour la capacité des projets individuel, que pour la capacité totale par technologie.
- Analyser comment articuler les tarifs de rachat avec la CEB.
- Déterminer les institutions et leur rôle dans le système des FiT.

Proposer des contrats standards.

Etudes de faisabilité d'un politique Feed-in Tarifs et aspects institutionnels pour sa mise en œuvre

Institution en charge : DGE/ANADER/Régulateur

Démarrage du projet : 2016

Durée du processus de négociation : 6 mois

Coût des études : 200 000 US\$

9 Suivi de l'étude WAPP sur la stabilisation du réseau nigérian

La DGE et la CEB veilleront à se tenir au courant des développements de l'étude du WAPP sur la résolution des problèmes de réglage et de stabilité du réseau nigérian. Celle-ci pourrait exiger beaucoup de temps, compromettre les importations depuis le Nigéria et conditionner les schémas d'exploitation voire les développements du réseau de transport prévus pour le Bénin. Certaines solutions envisagées (stations de conversion dos-à-dos) sont également contraignantes pour l'avenir.

10 Interconnexion avec le Niger

Le plan directeur du WAPP mentionne une interconnexion entre le Niger, le Nigéria, le Bénin et le Burkina sous le nom de « dorsale Nord ». Cette interconnexion permettra de valoriser l'énergie produite sur le site charbonnier de Salkadamna. Les études spécifiques de ce plan directeur pour le Bénin confirment la pertinence de cette option. La dorsale nord doit relier, entr'autres, le poste nigérien de Gaya au poste Béninois de Malanville. L'énergie est ensuite acheminée vers les grands centres de consommation et de d'étoilement du nord Bénin : Bembéréké et Parakou. Ces infrastructures sont prévues à l'horizon 2025.

Le transit énergétique sur l'interconnexion Bénin-Niger pourrait être du même ordre de grandeur que celui circulant sur l'interconnexion avec le Nigéria : 200 MW. La partie Malanville-Niger est prévue en 330 kV. A cet horizon une ligne HTB reliant Parakou à Malanville via Bembéréké et Guéné sera déjà en service à la tension de 161 kV. Un seul terne est prévu entre Guéné et Malanville, ce qui est insuffisant pour transiter la puissance issue de l'interconnexion avec le Niger. Un renforcement de cette liaison est recommandé.

Une étude de faisabilité, suivi des études d'APS et d'APD et la rédaction des DAO sera à réaliser pour la mise en place effective de cette interconnexion. Il sera également nécessaire de suivre l'évolution de la centrale de Salkadamna et de démarrer un processus de négociation avec les autorités nigériennes pour fixer un tarif d'achat.

Interconnexion avec le Niger : études et construction des lignes

Institution en charge : CEB
 Démarrage des études : 2022
 Durée des études : 1 an
 Coût des études : 200 000US\$

- Durée des appels d'offre et construction : 2 ans

11 Etudes des extensions et renforcement du réseau 63 kV de la SBEE

11.1 Etudes Détaillées (APD) du réseau 63 kV de Cotonou

Comme exposé dans le Tome 3 du Plan Directeur (Transport), les rames des postes-sources de l'agglomération de Cotonou et les lignes alimentant ces postes-sources risquent d'être surchargées dès 2020. Il convient donc d'envisager de renforcer le réseau 63 kV de l'agglomération de Cotonou de Calavi à Sémé-Kpodji pour pouvoir créer d'autres postes sources.

Les infrastructures suivantes sont nécessaires :

Postes	Lignes 63kV
 Poste de Calavi Poste de Cococodji Poste de Godomey Poste intermédiaire entre Godomey et Calavi (Agamandin) Poste intermédiaire entre Védoko et Gbegamey Poste intermédiaire entre Akpakpa et Sémé-Kpodji (Sekandji) Poste de Sémé-Kpodji. Tranche 63kV à Maria-Gléta 	 Boucle Calavi - Maria-Gléta – Cococodji - Godomey Ligne Védoko-Godomey Ligne Godomey - Maria-Gléta Renforcement de la ligne Védoko-Porto-Novo

Pour tous ces projets, hormis ceux entrant dans le cadre du projet Calavi qui sont déjà étudiés (Poste et lignes associées aux postes de Calavi et Cococodji), des études détaillées (APD) sont à mener par la SBEE pour la construction des ouvrages associés. L'implantation de ces nouveaux postes mènera à la restructuration des réseaux MT associés, restructuration pour lesquelles des études détaillés seront également nécessaires car dépassant le cadre de ce Plan Directeur. Les études de faisabilité pour les autres lignes et postes, et pour la restructuration complète des réseaux MT sont à mener maintenant pour une réalisation sur la période 2020-2025.

La SBEE peut déjà se positionner pour l'acquisition des terrains de plusieurs postes dont la nécessité est avérée quel que soit le scénario : Godomey et Sémé-Kpodji.

Etude du réseau 63 kV de Cotonou

Institution en charge : SBEE Démarrage du projet : 2016

Recrutement d'un cabinet et étude : 1 an

Coût de l'étude : 200 000\$

11.2 Etudes détaillées de la ligne 63 kV Ouidah-GrandPopo et du poste 161/63 d'Avakpa

L'alimentation des centres urbains de Ouidah et de Grand-Popo va nécessiter la construction d'une ligne 63 kV. En effet ces localités sont actuellement alimentées en MT mais la croissance de la charge dans ces zones va nécessiter de changer le plan de tension pour éviter les chutes de tensions

Tome 6: Plan de mise en œuvre

excessives. Cette ligne d'environ 65 km sera tirée depuis Avakpa où il faudra rajouter une travée 63kV. Au vu des charges sur Ouidah et GrandPopo cette ligne est nécessaire à bref délai. Les études de faisabilité, d'APS, d'APD et la rédaction des DAO doivent être lancées au plus tôt, sous la responsabilité de la SBEE.

Etude Ligne 63kV Avakpa – Ouidah - GrandPopo

Institution en charge : SBEE Démarrage du projet : 2016

Recrutement d'un cabinet et étude : 1 an

Durée de construction : 1 an **Coût de l'étude : 2**00 000\$

11.3 Etudes détaillés du poste de Dogbo

L'alimentation de la commune de Dogbo pourra se faire grâce à un poste-source piqué sur la ligne Adjarala-Avakpa. Cette ligne est prévue avec la réalisation de la centrale d'Adjarala. Il faut associer à l'étude de cette ligne HTB celle du poste et de la restructuration des réseaux MT.

Institution en charge : SBEE Démarrage du projet : 2017

Recrutement d'un cabinet et étude : 6 mois

Durée de construction : 6 mois **Coût de l'étude :** 100 000\$

11.4 Etudes détaillés du poste de Tanzoun et restructuration des réseaux MT associés

La charge de la ville de Porto-Novo est entièrement desservie par le poste HTB/HTA 63kV/MT de la ville. Ce poste et les réseaux correspondants risquent d'être rapidement surchargés. Il faudra donc reporter une partie de la charge sur le poste 161/63 kV de Tanzoun en cours de construction. Il faut prévoir l'étude de la restructuration des réseaux associés.

Institution en charge : SBEE **Démarrage du projet : 201**6

Recrutement d'un cabinet et étude : 6 mois

Durée de construction : 6 mois **Coût de l'étude :** 100 000\$

11.5 Etudes des réseaux ruraux 63kV de la SBEE

De nombreux réseaux ruraux en 63k V et postes 161/MT sont à prévoir pour une mise en service à l'horizon 2025-2030. La réalisation de tous ces réseaux devra être anticipée par des études qui se dérouleront entre 2020 et 2025. Ces études sont à prévoir et à financer d'ici à 2020. La recherche de financement par la SBEE devra être conduite en 2020, pour des études réalisées en 2021. Les travaux pourront commencer en 2022. L'essentiel des mises en service sera fait d'ici 2025.

Institution en charge : SBEE

Démarrage de la recherche de financement : 2018

Coût de l'étude : 300 000\$

12 Renforcement de l'ABERME

Le programme d'électrification rurale du Plan Directeur est ambitieux : de 80 à 100 localités sont à raccorder au réseau chaque année. Cela constitue un vrai défi au niveau du financement ainsi que pour la réalisation des travaux préparatoires et des travaux d'électrification.

Les travaux préparatoires consistent notamment dans la préparation des études d'Avant-Projet Sommaire et Détaillé (APS – APD). Ces études déterminent le tracé des lignes de raccordement, la configuration des réseaux de distribution à établir et fournissent une estimation des coûts d'investissement. Les études aboutissent à la passation des marchés de réalisation des travaux. Les travaux préparatoires portent aussi sur l'intermédiation sociale qui informe les clients potentiels dans les localités sur les bénéfices liés à l'électrification et sur les frais qu'ils doivent assumer pour le branchement et la consommation.

L'ABERME a déjà acquis une grande expérience dans la réalisation des projets d'électrification. Compte tenu du grand nombre de projets prévus dans le Plan Directeur, le renforcement de l'équipe de l'ABERME semble nécessaire, dans le contexte de la politique habituelle de l'ABERME qui privilégie la sous-traitance. Un bureau de contrôle fait, par exemple, la supervision des travaux d'électrification exécutés par des entreprises. Il est proposé que dans un premier temps l'ABERME soit renforcée par au moins deux ingénieurs de distribution, un expert en passation des marchés et un responsable commercial et de l'intermédiation sociale. Avec l'assistance de la SBEE et d'experts internationaux au démarrage, cette équipe doit s'impliquer dans la préparation des APS et APD et former des bureaux d'études locaux dans l'établissement des APS et APD. Les bureaux d'études dont le personnel a participé à cette formation peuvent soumettre des offres pour l'exécution des APS/APD (contrats cadre).

Pour assurer ensuite sa mission de maîtrise d'ouvrage, l'ABERME sera renforcée par au moins deux ingénieurs à plein temps pour le suivi du projet dans sa globalité, d'un responsable des actions commerciales pour la supervision des activités d'intermédiation sociale et d'un responsable en passation des marchés, également à plein temps.

Institution en charge: MERPMEDER / ABERME

Démarrage du projet : 2016

Recrutement d'un cabinet et étude : 12 mois

Coût de l'étude : 200 000\$